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1. Introduction  

The design and control of functional molecular machines and devices is one of the 
fascinating and challenging research targets in molecular science (Feringa et al., 2000; 
Kinbara & Aida, 2005; Kay et al., 2007). They were originally inspired from biological 
machines such as ATP synthases (Boyer, 1993; Abrahams et al., 1994) and myosin and 
kinesin (Jülicher et al., 1997). They now include various kinds of artificial molecular 
machines such as transmitters, shuttles, nanocars and logic gates (Balzani et al., 2008), which 
can be driven by external forces at the molecular level. Some of them are not simply sized-
down versions of macroscopic machines and are controlled at the quantum level (Roncaglia 
& Tsironis, 1998). 
Lasers are energy sources over a wide range of wave lengths from mid-infrared to 
ultraviolet, which make it possible to drive various sizes of molecular machines without any 
direct contact. Lasers are expected to play an important role as a source of external forces for 
controlling molecular machines because lasers have various controlling-parameters such as 
central frequencies, pulse shapes, photon polarizations and time differences between two 
pulses (Assion et al., 1998; Gouliemakis et al., 2004). 
Based on coherent control theory (Kosloff et al. 1989; Shi & Rabitz, 1990; Shapiro & Brumer, 
2000), laser pulses can be designed to produce the maximum desired target with minimum 
laser energy (Assion et al., 1998; Rice & Zhao, 2000; Gordon & Fujimura, 2002; Bandrauk et 
al., 2002). Molecular machines can be controlled through coherent interactions between 
lasers and molecules at a quantum level (Hoki et al., 2003). The procedures are sometimes 
called “quantum ignition” for driving molecular motors (Fujimura et al., 2004). The time 
evolution is obtained by solving the time-dependent Schrödinger equation or the Liouville 
equation (Sugawara & Fujimura, 1994; Ohtsuki et al., 1999; Hoki et al., 2001). Application of 
coherent control theory enables extraction of key factors for driving molecular motors with a 
unidirectional motion, though we have to wait for further experimental progress to carry 
out coherent control experiments on artificial molecular machines. In this chapter, we 
present fundamental principles for unidirectional motions of chiral molecular motors driven 
by linearly polarized laser pulses having no photon helicity. 
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In Sec. 2, we first clarify the role of molecular chirality. We discuss the mechanism of 
unidirectional motions of chiral motors. For this purpose, it is instructive to mention 
mechanisms of unidirectional motions of bio-motors. In bio-motors, the unidirectional 
motions are explained in terms of so-called nonequilibrium fluctuations of a Brownian 
motion with a saw-toothed ratchet potential (Astumian & Hänggi, 2002; Reimann, 2002). 
Molecular chirality is an essential factor for the unidirectional motion of a rotary motor 
driven by a linearly polarized laser pulse. The motion is basically determined by both the 
asymmetric potential originating from its molecular chirality and a periodic perturbation of 
laser-molecule interactions (Hoki et al., 2003). 
We next present the results of a quantum dynamics simulation of simple, real chiral 
molecules to clarify the mechanism of unidirectional motions. The directional motion is 
determined by molecular chirality, not by the external laser field, which gives periodic 
perturbations to motors. We treat molecular motors in a heat bath by using the Liouville 
equation to demonstrate dephasing effects due to interactions with the heat bath. Here, we 
consider the case in which the magnitude of fluctuation forces causing dephasing is weak 
compared with that of laser-motor interactions. The situation is common for the treatment of 
molecule-laser interactions but different from the case of bio-motors, the dynamics of which 
can be explained in terms of nonequilibrium fluctuations of bath modes. We also present 
results of unidirectional motions obtained by using a pump-dump laser-ignition method 
(Hoki et al., 2004). We finally present a practical method for detecting quantum dynamics of 
molecular motors in real time. 
In Sec. 3, we briefly present results of optimal control for unidirectional motions of chiral 
molecular motors. A local and global control methods were applied to chiral molecular 
motors (Yamaki, 2005; Yamaki, 2008). 
In Sec. 4, we treat a simple molecular machine consisting of two internal rotors, one of 
which is a propeller and the other of which is a motor driven by laser pulses. We discuss the 
mechanism of energy transmission from the motor to the propeller.  
In Sec. 5, we present some future research subjects in laser-driven molecular motors after a 
summary of the chapter.  

2. Unidirectional rotations of molecular motors 

First of all, we define the equation of motion and the Hamiltonian of the light-driven 
molecular motors, which are used throughout this chapter. The system Hamiltonian of a 
molecular motor in the presence of an electric field of light E(t) within the long-wave 
approximation is written as 

 0
ˆ ˆ ˆ( ) ( )SH t H tΓ Γ Γ= − ⋅μ E , (1) 

where 0ĤΓ  is a molecular Hamiltonian that consists of a kinetic energy operator, T̂ and a 
potential energy operator, 0V̂Γ ; ˆ Γμ  is a dipole moment vector; Γ(=S, R) indicates molecular 
chirality, which is sometimes omitted if it is not necessary in the later sections. Explicit 
forms of ˆ ( )SH tΓ  will be defined later. The total Hamiltonian including surrounding effects is 
written as 

 ˆ ˆ ˆ ˆ( ) ( )S SS B SSBH t H t H HΓ Γ Γ= + +  (2) 
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with the bath Hamiltonian ˆ
BH and the motor-bath interaction Hamiltonian ˆ

SBHΓ . We can 
obtain results of interactions between the motor and laser pulses as a special case. The 
quantum dynamics of the molecular motors can be generally described by the time-
dependent Liouville equation given as 

 ˆˆ ˆ( ) ( ) ( )i t L t t
t

ρ ρΓ Γ Γ∂
=

∂
¥ , (3) 

where ˆ ( )tρΓ  denotes the density operator of molecular motors in the heat bath, and  
ˆ ˆ( ) [ ( ), ]L t H tΓ Γ=  with commutator ,⎡ ⎤⎣ ⎦ . The time-dependent coupled equation (3) is solved 

numerically with an initial condition ˆ (0)ρΓ  given by the Boltzmann distribution at 
temperature T. 

2.1 Molecular chirality and periodically perturbed chiral molecular motors 
One of the ideas for creating unidirectional motions is shown in the upper panel of Fig. 1. 
Consider a saw-toothed ratchet potential V0(φ). The potential V0(φ) is characterized by the L 
periodicity as V0(φ) = V0(φ+L), and by the broken spatial symmetry that is expressed as 
V0(φ−c) ≠ V0(−φ+c) for any c. The asymmetric static potential energy V0(φ) is not sufficient to 
create unidirectional motion of the system, and one of the typical ratchet systems introduces 
a time-correlated tilting force f(t), which is known as a nonequilibrium fluctuation of a 
Brownian motion. As shown in the upper-left panel of Fig. 1, when the force is negative, a 
mass point falls down to the left side. On the other hand, when the force is positive, the 
mass point falls down to the right side. In this way, by combining static asymmetric 
potential V0(φ) and unbiased force such that the time average of f(t) equals zero, a 
unidirectional motion in the system can be obtained. Here, the direction is determined by 
the shape of the static asymmetric potential energy V0(φ), and the mass point moves in the 
intuitive direction in which the slope to climb is gentle. 
A rotary motion of a chiral molecule can also be characterized by asymmetric potential 
energy. Consider an idealized chiral molecule with two rigid groups, A and B, as shown in 
Fig. 2. Here, the mass of A is set to be heavy compared with that of B, and A is taken as the 
body and B is taken as the rotating group. These two groups are connected to each other by 
a single bond, and the rotary motion is described in terms of coordinate φ. We call a pair of 
the chiral molecules (S)- and (R)-motors in this paper. The potential energy of rotation VΓ(φ) 
with Γ= S or R is characterized by an asymmetric potential, and the potential energy satisfies 
VS(φ) = VR(−φ) since the two motors (S) and (R) have mirror image. The rigid group B has 
plus and minus extremities to create an electric dipole moment. Therefore, the lowest-order 
interaction energy between the dipole moment and an oscillating electric field with a linear 
photon polarization can be written as cos(φ) f(t). We note that a linearly polarized light has 
no photon helicity, i.e., no photon angular momentum. 
The time-dependent effective potential energy of the rotary motion under an oscillating electric 
field is schematically shown in the lower panel of Fig. 1. The major difference from the above-
mentioned tilting ratchet is that the chiral molecule is periodically perturbed, and the entire 
effective potential has L periodicity as VΓ(φ,t) = VΓ(φ + L,t). In contrast to the case of the tilting 
ratchet, it is not always obvious whether the system creates a unidirectional motion or not, 
although the same rotational direction as that in the upper panel in Fig. 1 is expected. In the next 
subsection, we examine the direction of the rotary motion by using a real model molecule. 
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Fig. 1. Upper panel: a model for unidirectional Brownian motions. Lower panel: a model for 
unidirectional motions of a chiral molecular motor induced by a linearly polarized laser 
pulse. 
 

 

Fig. 2. A simplified model for chiral molecular motors, (S)- and (R)-motors, which are mirror 
images of each other. They have two rigid groups, A and B. The parameter φ denotes the 
rotational angle between A and B. 

2.2 Quantum dynamics simulation of a chiral molecular motor 
We chose (R)-2-chloro-5-methylcyclopenta-2,4-dienecarbaldehyde shown in Fig. 3a as a 
model system. Note that the molecule has a chiral center at the C3 atom. Consider the 
internal rotation of the CHO group around the C2-C3 bond, and the coordinate of the 
rotation φ as the dihedral angle O1-C2-C3-H4. In the molecular frame, the z-axis is chosen 
along the C2-C3 bond, and the x-axis is set toward the H4 atom at a right angle to the z-axis. 
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Fig. 3. (a) (R)-2-chloro-5-methylcyclopenta-2,4-dienecarbaldehyde as a chiral molecular 
motor. The aldehyde (-CHO) group is an motor driven by a laser pulse. (b) The ground state 
potential of (R)- and (S)- motors as a function of dihedral angle φ. (c) Cartesian components 
of the dipole moment vector in the molecular frame (x,y,z). Reproduced with permission 
from J. Chem. Phys., 119, 12393 (2003). 

Consider a quantum dynamics of the motor in the electronic ground state since the 
frequency of the laser used is in the far-IR range. The model system has the following 
essential properties: (i) owing to molecular chirality, the potential energy function VΓ(φ) is 
asymmetric such that VS(φ − c) ≠ VS(−φ + c) for any c, (ii) there is angle-φ dependency of the 
dipole moment vector because of the sufficient electronegativity of the O1 atom, and (iii) 
because the rotational constants of the molecule are large enough, the effects of the entire 
rotation of the molecule can be ignored. Therefore, the molecule interacting with a linearly 
polarized electric-field component of laser pulses can be a realistic model of the periodically 
perturbed ratchet system. 
Molecular parameters were calculated by using the GAUSSIAN 98 package of programs 
(Frisch et al., 1998) with the 6-31G* basis set and the MP2 method. The moment of inertia I is 
estimated as 17.6 amu Å2. The rotational constants are 1.97, 1.16 and 0.79 GHz, the time scale 
of which is sufficiently large to safely ignore the rotational effects of the entire molecule, or 
treat them classically. The potential energy curves for (R)- and (S)-motors shown in Fig. 3b 
were evaluated at each dihedral angle φ, where all the other structural parameters were 
optimized. It can be seen that these potential curves are asymmetric with respect to φ and 
are mirror images of each other. As can be seen from the optimized structure for the (R)-
motor, the rotation in the negative direction of φ has a gentle slope compared to that of the 
positive direction and vice versa in the relation for the (S)-motor. These are well-known 
properties of a chiral molecule. 
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Figure 3c shows three computed Cartesian components of the dipole moment of the (R)-
motor, μxR, μyR and μzR as a function of φ. If a rigid dipole moment rotates in xy-plane, then 
these functions can be expressed in the form of sinusoidal functions as 

 0( ) cos( ) sin( )x yφ μ φ μ φΓ Γ Γ Γ= + +μ e e μ , (4) 

where μΓ and μ0
Γ are constants. It can be seen from Fig. 3c that this is a fairly good 

approximation and μR is about −2.0 Debye. Therefore, the interaction energy with electric 
fields of a few GVm-1 is comparable to the internal rotational barrier height, ΔV=1650 cm-1. 
Assuming an electric field of a z-polarized laser pulse as 

 Z(t) (t)cos( t)ω= fE e , (5) 

the effective potential in Eq. (1) becomes 

  0V ( ) ( ) (t) V ( ) (t) sin( )cos( )cos t (t)φ φ φ μ α φ γ ωΓ Γ Γ Γ Γ− ⋅ = − + − ⋅fμ E μ E . (6) 

Here, α and γ are the Euler angles between the molecular frame xyz and the laboratory 
frame XYZ. The last term is a constant with respect to the variable φ and does not make any 
contribution to the dynamics of the molecular motor. The second term is the time-correlated 
periodic function of φ, which rocks the potential energy function VΓ(φ) as shown in the 
lower panels of Fig. 1. 
Let us now consider the rotational dynamics including motor-bath interactions. Equation (3) 
can be reduced to a so-called Lindblad-type equation (Lindblad, 1976) by assuming the bath 
consists of harmonic oscillators and the motor-bath interaction is given in the first order of 
displacements for both bath motor coordinates as 

 { }† †ˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆ( ) ( ), ( ) ( ), , ( )
2S n n n n

n

i
i t H t t A t A A t A

t
ρ ρ ρ ρΓ Γ Γ Γ Γ Γ Γ Γ Γ∂ ⎡ ⎤ ⎡ ⎤⎡ ⎤= + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∑¥ , (7) 

where ˆ ( )tρΓ is the reduced density operator of the motor and the system–bath coupling is 
phenomenologically introduced by the interaction operator ˆ

nAΓ . 
We set the interaction operator ˆ

nAΓ  to 1 1n nn a n n b n
Γ Γ Γ ΓΓ Γ+ + + . That is, only inelastic 

scattering processes were taken into account and elastic interactions were ignored. To semi-
quantitatively discuss relaxation effects, both the interaction parameters an and bn were set to 

 
2

1
2 expn n n

n

a E E

kTb

+ −⎛ ⎞= −⎜ ⎟
⎝ ⎠

, (8a) 

 2 2 1 0

0 1 0

n
n n

E E
a b

E Eτ
+ −

+ =
−

¥
, (8b) 

where En denotes the nth eigenstate of the motor in the ground state, and τ0 is relaxation 
time from n = 1 to 0. Condition (8a) assures detailed balance of the system at temperature T, 
and condition (8b) specifies the relaxation time such that the more the system is excited, the 
faster the energy relaxes. The quantum master equation, Eq. (7), was solved by means of the 
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split operator and a finite difference method with a fast Fourier transform algorithm using 
256 grids for φ. 
In order to discuss the dynamics of molecular motors in a quantum mechanical way, we 
now introduce an angular momentum operator for the internal rotation −iħ(∂/∂φ). An 
expectation value of the angular momentum operator at time t in the coordinate 
representation is defined as 

 
( ) ( )( ) , ;t d d i t

π π

π π

δ φ φ
φ φ ρ φ φ

φ
Γ Γ

− −

⎧ ′ ⎫∂ −⎪ ⎪′ ′= −⎨ ⎬
∂⎪ ⎪⎩ ⎭

∫ ∫` ¥ . (9) 

The instantaneous angular momentum of an ensemble of randomly oriented motors, 
averaged over all of the Euler angles Ω(α,β,γ), ( )tΓ

Ω
` , 

 2
1

( ) ( )
8

t t d
π

Γ Γ

Ω
= Ω∫` ` , (10) 

was calculated as an index of rotations of motors. The above integration was computed by 
the trapezoidal rule with 16 grid points for α and 64 grid points for γ. 
Let us apply a linearly polarized electric field, Eq. (5) with the envelop function f(t), 

 
2

0 sin (0 )
( )

0 ( 0, )

p
p

p

t

t

π⎧ ≤ <⎪
= ⎨

⎪ < ≤⎩

t
E t t

tf

t t

. (11) 

Here, the pulse length tp is 30 ps and the central frequency ω is 124 cm-1. The frequency is 
related to the frequency of a normal vibration which localizes to the torsion of the aldehyde 
group. The maximum amplitude of the electric field E0 is set to 3.4 GVm-1. Thus, the 
maximum difference of the dipole interaction energy, which is 2μΓE0, is larger than the 
barrier height of the potential energy ΔV ≈ 1,600 cm−1, and the wave packet of the motor can 
overcome the barrier even if the frequency of the laser is non-resonant to anharmonic 
potential energy function VΓ(φ). 
Figure 4 shows the time evolution of instantaneous angular momentum of randomly 
oriented molecular motors with initial density being set to the Boltzmann distribution at 
T = 150 K. The axis on the left-hand side denotes angular momentum in units of ћ, and the 
axis on the right-hand side denotes angular frequency in units of Hz. In Fig. 4, we obtained 

( )R t
Ω

`  ≈ −1.6ћ for (R)-motors and ( )S t
Ω

`  ≈ 1.6ћ for (S)-motors after application of the 

laser pulse. In the absence of a relaxation process (τ0=∞) as a special case, ( )tΓ

Ω
`  reaches 

the maximum value at around the pulse peak and maintains a certain value even after the 
pulse is turned off. This means that the motion created is not a pendulum one but a 
unidirectional rotation across the potential barrier. It should also be noted that rotational 
directions of randomly oriented motors are opposite in (R)- and (S)-motors. If molecules do 
not have chirality, the angular momentum becomes zero. Here, an achiral motor is obtained 
by substituting a methyl group of the motor with a chlorine atom and its potential becomes 
symmetric as VR(φ) = VS(φ). 
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Fig. 4. Temporal behaviours of the instantaneous angular momentum of randomly oriented 
(R)-motors (solid lines) and those of (S)-motors (dotted lines) at T =150 K. τ0 denotes the 
relaxation time the first excited vibrational state to the ground state. Reproduced with 
permission from J. Chem. Phys., 119, 12393(2003). 

Figures 4 also shows the relaxation effects on ( )tΓ

Ω
` . The relaxation time τ0 from the first 

excited vibrational state to the ground state is taken as a relaxation parameter. In the 
simulation, we assumed the system is weakly fluctuating by neglecting ultrafast inertial 
effects. Such a condition can be realized considering that the molecules are surrounded by 
solvent cage molecules or imbedded in rigid solvents under low temperature conditions. 
Strong τ0 dependence can be seen in Fig. 4, which is mainly due to the assumption that 
effective relaxation times were taken to be proportional to ΔV, being shorter than that of τ0 
by about two orders. One of the possibilities to drive rotation continuously is to supply laser 
pulses repeatedly to recover the loss of energies and accelerate the rotation. 
Figure 5 shows the effective potential and rotational wave packets of the (R)-motor at 
several specific Euler configurations to qualitatively understand its unidirectional motion. 
The Euler angle α was fixed at 0.5π to give the maximum interaction between the dipole 
moment vector and the photon polarization vector. The amplitude of the electric field was 
the same as that in Fig. 4. The rotational wave packet was initially localized around the 
stable configuration, φ ≈ 0. It can be seen from Fig. 5 that the initial rotational wave packet at 
the configuration γ = 0 at ωt = π or γ = π at ωt = 0 moves toward the left-hand side with a 
gentle slope when the wave packet is rocked by a strong pulsed laser. On the other hand, 
Figs. 5c and 5d show that the rotational wave packet rocked by a pulsed laser at the 
configuration γ = ±0.5π cannot obtain sufficient angular momentum to cross the potential 
barrier after the laser pulse is turned off. The origin of the unidirectional motion is the 
asymmetry of the rotational potential. The linearly polarized laser pulse acts as a kick to the 
molecular motor. The initial angular momentum is large enough to determine the rotation 
toward the gentle slope of the rotational potential after the application of laser pulse. 
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Fig. 5. A schematic view of a localized torsional wave packet on the effective potential of an 
(R)-motor fixed at a specific Euler angle γ and time ωt. The effective potential is constructed 
from the torsional potential and time-dependent periodic interaction between the chiral 
motor and laser pulse. Reproduced with permission from J. Chem. Phys., 119, 12393(2003). 

2.3 Femtosecond pump–dump laser-ignition method 
In this subsection, we describe another method called the pump-dump laser-ignition 
method for driving unidirectional motions of chiral molecular motors (Hoki et al., 2004). 
Figure 6 shows the control scheme. A femtosecond vis/UV pump pulse denoted by (1) 
creates a wave packet in an electronic excited state Vg

Γ. When the wave packet moves along 
the potential energy surface (PES) and reaches an appropriate position, it is dumped to the 
electronic ground state Vg

Γ by applying the second pulse (2). In the dumping process, the 
kinetic energy of the rotary motion is conserved before and after the dumping process as a 
result of the Franck–Condon principle. Therefore, the pump–dump laser excitation can 
ignite a unidirectional motion of the rotational wave packet because the wave packet has a 
certain kinetic energy to overcome its activation barrier height in the ground state Vg

Γ. 
Because the electronic state is altered as Vg

Γ → Ve
Γ → Vg

Γ, by the pump–dump pulse 
sequences, this mechanism has an analogy to that of the flushing ratchet system. However, 
in the pump-dump laser-ignition method, quantum dynamics of wave packets of chiral 
motors are utilized for determining unidirectional motions as shown below. 
The rotational direction is characteristic of the chirality of the molecular rotor. As shown in 
Fig. 6, the direction is determined by the gradient of Ve

Γ around its Franck–Condon region, 
and the gradient can be estimated using quantum chemistry calculations. We call this 
motion in the direction of rotation a regular rotation. If the molecule has a symmetric plane 
as in the case of an achiral molecule, the gradient should be zero. Therefore, an achiral 
molecule cannot produce unidirectional motion using a linearly polarized laser. As shown 
in Fig. 6, on the other hand, from symmetry considerations, the gradient has opposite signs 
between the (R)- and (S)- motors. 
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Fig. 6. Scheme for a pump-dump laser-ignition: an (S)-motor (left) and an (R)-motor (right).  

The time evolution of the molecular motor is determined by the time-dependent 
Schrödinger equation within the two-electronic state (the electronic ground and excited 
states) model  

 
ˆ( ; ) ( ; )( ) ( ) ( )

ˆ( ; ) ( ; )( ) ( ) ( )
g gg ge

e eeg e

t tT V t
i

t t tt T V

ψ φ ψ φφ φ

ψ φ ψ φφ φ

⎛ ⎞+ − ⋅⎛ ⎞ ⎛ ⎞∂ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ − ⋅ +⎝ ⎠ ⎝ ⎠⎝ ⎠
¥

μ

μ E

E

, (12) 

where μge(φ) (=μeg(φ)) is the transition dipole moment between the two states, Vn(φ) is the 

potential energy in the electronic state n (n = g and n = e ) and 
2 2

2
ˆ

2
T

I φ
∂

= −
∂

¥
 with moment of 

inertia I was assumed to be common in both electronic states. E(t) is the electric field of 
vis/UV laser. ψn(φ; t) is the nuclear wave packet. 
The electric field of the linearly polarized pump laser with central angular frequency ωp and 
the linearly polarized dump laser with ωd is expressed as 

 ( ) ( ; , )cos( ) ( ; , )cos( )p p p p p Z d d d d d Zt A f t t t T t A f t t t T tω ω= + + +E e e  (13) 

with the pulse amplitude Aj (j = p and d), the pulse duration Tj; the time delay tj. f(t) denotes 
the envelope function of the pulse, 

 
2 1

1 2
2 11 2

1 2

sin ( )
( ; , )

0 ( , )

t t
t t t

t tf t t t

t t t t

π −⎧ ≤ <⎪ −= ⎨
⎪ < ≤⎩

. (14) 

In order to estimate the magnitude of rotary motion of the motor, quantum-mechanical 
expectation value of the angular momentum in the electronic ground state ℓg(t),  
defined as 

 *

g g g(t) d ( ; t) i ( ; t)
π

π
φψ φ ψ φ

φ−

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

∫` ¥ , (15) 

was calculated. 
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Figure 7 shows the result of ab initio calculation of (R)-2-methylcyclopenta-2,4 
dienecarbaldehyde in S0 and S1. The fully relaxed geometrical structure of the molecule was 
calculated at the MP2/6-31+G** level of theory at each point of the chosen reaction 
coordinate φ. The potential energy in the electronic ground-state S0 and that in the first 
excited singlet state S1 were calculated by means of multi-configuration methods (Ross, 
1989).  
 

 

Fig. 7. (a) Potential energies in the ground and first excited singlet states of (R)-2-methyl-
cyclopenta-2,4-dienecarbaldehyde. (b) Transition moments as a function of φ. Reproduced 
with permission from J. Phys. Chem. B, 108, 4916 (2004).  

Figure 7a shows the PESs of the (R)-motor in S0 and S1. Because the S1 PES slope in the 
Franck–Condon region is negative, a wave packet created by a pump pulse would run with 
a positive angular momentum. Note that the minimum energy position in the ground state 
is slightly shifted in a positive direction. This is reflected in the geometry of the molecule by 
a slight bend of the aldehyde group toward the methyl group by about 7 degrees. 
We now apply the pump–dump laser-ignition method to drive a rotation of the –CHO 
group of (R)-2-methyl-cyclopenta-2,4-dienecarbaldehyde. To analyze the rotational 
dynamics, we solved the time-dependent Schrödinger equation (12) by means of the split-
operator method with the help of an FFT algorithm using 256 grid points for φ. Here, the 
motor–laser interaction, −μge(φ)·E(t) was treated numerically using Pauli matrices (Choi, 
1989). 
The upper panels a, b, and c in Fig. 8 show the time evolution of the rotational wave packets 
created in S0 by applying the pump–dump laser-ignition method. We omitted wave packets 
trapped in the S0 potential well because they do not evolve after the dump pulse is turned 
off. Here, the parameters of pulses used were Ap = Ad = 1010 V/m, Tp = Td =100 fs, tp = 50 fs, 
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td = 180 fs, ωp = 34,300 cm−1, and ωd = 32,800 cm−1. The initial state was set on the lowest 
rotational level in the electronic ground state. It can be seen that in the early stage of the 
time evolution, the motor takes about 550 fs for one cycle, which corresponds to angular 
frequency ω of 1.1×1013 s−1. From an analogy to classical mechanics, ℓ ≈ ωI and the 
expectation value of the angular momentum of the motor is estimated to be ℓ ≈ 31 ħ. 
 

 

Fig. 8. Quantum dynamics behaviors of (R)-2-methyl-cyclopenta-2,4-dienecarbaldehyde, 
which were induced by a pump-dump laser-ignition method. Reproduced with permission 
from J. Phys. Chem. B, 108, 4916 (2004). 

An interesting feature appears in panel b where the rotational wave packet is split into two 
wave packets. These wave packets converge to a single one again after about 1,500 fs, as 
shown in panel c. Panel d shows that the time-dependent expectation value of the angular 
momentum ℓg(t) can be divided into three regions, a, b and c, within rephrasing time of 
about 17,000 fs. These three regions are the same as those in the upper panels. 
This feature can be explained by a free rotor model, where the eigenfunction is 

( )1 2 exp imπ φ  with eigenvalue εm = ħ2m2/2I. The wave packet ψg(φ,t) can be expressed as 

 ( ) ( )1
; exp exp

2

b

a

m

g m m
m m

i
t C im tψ φ φ ε

π =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ ¥
. (16) 
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Here, the coefficient Cm which represents the probability amplitude of the rotational 
quantum number m is determined at the time when the dump pulse is applied. Under the 
condition of a localized distribution of the angular momentum, the wave packet at half of 
the rephrasing time, πI/ħ, can be expressed (Hoki et al., 2004) as 

 ( ) ( ) ( )1 1
; exp ; 0 exp ; 0

4 42 2g g g
i i

t I t t
π πψ φ π ψ φ ψ φ π⎡ ⎤ ⎡ ⎤= = − = + − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

¥  (17) 

This expression indicates that the wave packet splits into two parts with the same 
magnitudes at half of the rephrasing time. The rephrasing time in the present motor system 
is roughly estimated to be 2πI/ħ = 17,000 fs, which is the same order as the numerically 
evaluated one, as shown in panel c. This explains why the splitting of the rotational wave 
packet into two parts takes place in panel b. 

2.4 Method for detecting quantum dynamics of molecular motors in real time 
In the preceding subsections, we adopted a quantum-mechanical expectation value of 
angular momentum to theoretically prove rotary motions of chiral molecular motors. 
However, it is not so simple to experimentally detect the expectation values of angular 
momenta of neutral molecular motors by using optical or magnetic methods. In this 
subsection, we briefly refer to observation of ultrafast motions of molecular motors in real 
time. There are several spectroscopic methods for observation of nuclear motions on 
reaction potential surfaces in the field of so-called femtosecond chemistry (Potter et al., 1992; 
Zewail & Bernstein, 1992). In this subsection, we adopt a time- and frequency-resolved 
ionization method. We show by using a time-frequency-resolved ionization simulation that 
the results obtained in Sec. 2.3 can be experimentally observed. The method consists of a 
femtosecond probe pulse of central frequency ω3 for ionization of molecular motors in a 
nonstationary state in addition to pump and dump pulses. Ionization signals are plotted as a 
function of ω3 after fixing a delay time t3 between the dump and probe pulses. 
Figure 9 shows calculated time-frequency-resolved spectra I(ω3,t3) of (R)-2-methyl-
cyclopenta-2,4-dienecarbaldehyde (Hoki et al., 2004). The pulse duration was set to 100 fs, 
and the maximum value of the pulse amplitude was set to a small value (107 Vm-1) in order 
to satisfy a one-photon ionization in a weak field limit. We can see an oscillatory behavior of 
the spectrum at ω3 = 60,900 cm-1 corresponding to the ionization potential around φ = 0. 
Figure 9 shows wave packet motions of the molecular motor in the ground state. The time 
evolution of the intensity peaks reflects the energy of the ionization potential as a function of 
φ (Hoki et al., 2004). The time for one cycle oscillation was estimated to be 540 fs since two 
peaks of the oscillation are located at 380 and 920 fs. 
The method for the time- and frequency-resolved spectrum described above can be applied 
to detect molecular motor dynamics not only for pump-dump laser-ignition method but also 
those for other methods described in this chapter. 

3. Optimal control of unidirectional motions 

There are two types of theoretical methods for designing optimal laser pulses. One is a local 
control method and the other is a global control method (Gordon & Fujimura, 2002). Here, 
“local” means that maximization of the target is carried out at each time. Therefore, the 
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Fig. 9. Time-frequency-resolved spectra I(ω3,t3) of (R)-2-methyl-cyclopenta-2,4-
dienecarbaldehyde. Reproduced with permission from J. Phys. Chem. B, 108, 4916 (2004). 

algorithm is quite simple, and only one-sided propagation, forward or backward 
propagation, is needed to solve the time-dependent Schrödinger equation. A global control 
method is, on the other hand, general and both forward and backward propagations have to 
be carried out. However, it can be applied to any dynamical systems, though sometimes 
converging problems arise. 

3.1 Local control of a molecular motor  
In the local control method, electric field of laser pulses E(t) is given as 

 ˆ ˆ( ) 2 Im ( ) ( )t A t W t= − Ψ ΨE μ , (18) 

where A is a regulation parameter of the laser intensity, and Ŵ  is the target operator. 
Substituting 0( ) 0tΨ =  into Eq. (18), we obtain an electric field E(t0) using Eq. (18) at the 
initial time t0. Solving the time-dependent Schrödinger equation with the initial condition of 

0( )tΨ , we obtain a wave function after an infinitesimally increased propagation time. With 
this form, the procedure described above is repeated until E(tf) at the final time tf is obtained. 
The locally optimized electric field E(t) guarantees a monotonic increase in the expectation 
value of the target operator Ŵ  if it commutes with the molecular Hamiltonian, i.e., 

0
ˆˆ ,H W⎡ ⎤

⎣ ⎦ = 0. This condition can be satisfied when the target operator has the form of 
ˆ

nW n w n= ∑ , where n  is an eigenstate of 0Ĥ  and wn is a waiting factor. 
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Consider a quantum control which yields a unidirectional rotational state T  from the 
ground state 0 . Unfortunately, we cannot set the target operator proportional to a projector 
T T  because the projector does not commute with the Hamiltonian 0Ĥ . To overcome this 

difficulty, we make use of time-reversal symmetry of the time-dependent Schrödinger 
equation. We design the locally optimal electric field E(t) by carrying out backward 
propagation starting from the target state T  to yield the initial state 0  as much as possible. 
By doing so, we can set our target as the form of nn w n∑ , where the waiting factor wn 
should satisfy condition wn−1 > wn to ensure sequential population transfer to the ground state 
0 . Once the optimized electric field is determined, the motor dynamics is evaluated by 

solving the time-dependent Schrödinger equation (18) in the forward propagation. 
We now apply the local control procedure described above to (R)-2-chloro-5-methyl-
cyclopenta-2,4-dienecarbaldehyde. We construct the target state by using two eigenstates as 

( 66 65 ) / 2T i= +  for a counter-intuitive rotation toward the steep slope of the 
potential energy curve and ( )66 65 / 2T i= −  for an intuitive rotation toward the 
gentle slope of the potential energy curve. These two eigenstates are chosen because (i) the 
eigen energy of the 65th and 66th molecular states is higher than the potential barrier of 
1,500 cm−1 and (ii) the energy difference is less than 0.001 cm−1, so that these states 
practically degenerate in our observation time and correspond to the quantum number of 
m = ±33 of a free rotation system. 
 

 

Fig. 10. (a) Instantaneous angular momentum of the (R)-motor driven by a local control 
method for the intuitive rotation and (b) for the counter-intuitive rotation. Reproduction 
with permission from Phys. Chem. Chem. Phys., 7, 1900 (2005). 

Figure 10 shows time-dependent behaviors of the instantaneous angular momentum ℓ(t) of 
the (R)-motor molecule defined in Eq. (15), where the direction of the linearly polarized 
electric field vector is set to the x-axis. This clearly shows that rotational directions of the 
motor are controlled well, i.e., at the final time of 300 ps, the instantaneous angular 
momentum becomes constant values of about −23ħ and 23ħ in Fig. 10a and 10b, respectively. 
It should be noted that there exists a time difference in the initiation between the intuitive 
and counter-intuitive rotational directions. This is discussed by using the Fig. 11. 
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The figure in the left-hand side of Fig. 11 shows time- and frequency-resolved spectra of the 
locally optimized electric fields, S(ω,t), to rotate the motor in the intuitive and  
counter-intuitive directions shown in Fig. 10. A time- and frequency-resolved spectrum is 
defined as 

 ( ) ( ) ( )
2

,t d g tω τ τ τ= −∫S E , (19) 

where g(t) is a window function. We can see that the electric fields consist of four 
components (ε1, ε2, ε3 and ε4). The first two components, ε1 and ε2, simultaneously operate at 
the initial stage of motor initiation (0–160 ps). The third component, e3, dominates in the 
low-frequency regime of the rotary motion whose potential is highly anharmonic. The third 
component bridges between the initial stage and the final stage of initiation (180–250 ps) at 
which unidirectional rotation starts. The fourth component, ε4, accelerates the rotary motion. 
The frequency of this component is around 60 cm−1, which is close to the frequency 
difference between two quasi-degenerate pairs n = 63, 64 and n = 65, 66. 
Two features appear in the initial two components ε1 and ε2. One feature is that ε1 consists of 
a central frequency of about 60 cm−1 and ε2 consists of a central frequency of 120 cm−1; that 
is, the latter is twice the former. This feature reflects optical transitions between eigenstates 
of a chiral molecule: the dipole moment of the chiral molecule is proportional to cosφ and 
the transition moment between the kth and lth eigenstates involves both odd and even 
quantum transitions since the minimum of the asymmetric potential energy function is 
slightly shifted in the minus direction as can be seen in Fig. 3b because of the molecular 
chirality. The other feature is that the frequencies in both components are expressed by a 
negative chirp behavior. The negative chirp form of the electric fields originates from a 
gradual decrease in the frequency difference between two transitions with n = 0–16. 
 

 

Fig. 11. (Left) Time- and frequency-resolved spectra of the locally optimized electric fields, 
S(ω,t), for (a) intuitive and (b) counter-intuitive directions. (Right) Time-dependent 
populations under the designed electric field Ex(t) for (a) intuitive and (b) counter-intuitive 
directions. Reproduced with permission from Phys. Chem. Chem. Phys., 7, 1900 (2005). 
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To clarify the mechanism of unidirectional rotation under the condition of irradiation of 
controlled laser pulses, we examined when unidirectional motion begins. In the right-hand 
side of Fig. 11, time-dependent populations under the designed electric field Ex(t) are 
shown. We can see that a bunch of eigenstates { n } make a significant contribution to 
creation of a linear combination to compose the unidirectional rotational state. This is 
mainly due to the effect of the potential of the chiral motor. The intuitive rotation begins at 
about t = 240 ps, while the counter-intuitive rotation begins at about t = 260 ps. The 
difference of 20 ps between these two rotations corresponds to about 1.1 cm−1. This 
frequency is close to the difference in frequency between the two eigenstates n = 57 and 58. 
This indicates that the direction of rotation is determined by the phase of a coherent 
superposition of rotational eigenstates created by locally optimized electric fields. Therefore, 
the time to change the direction of rotation can be selected by timing of designed pulses. 
We note in Fig. 11 that timing of the ε3 pulse component is different between intuitive and 
counter-intuitive directions. This is the essential factor for determining the rotational 
direction. Figure 10 clearly shows that creation of coherent states, i.e., rotational states in the 
intuitive direction or those in the counter-intuitive direction, depends on the electric fields 
estimated by using local control laser fields. Note that the intuitive rotation is controlled 
earlier than the counter-intuitive rotation by 20 ps. The earlier control of the rotary motion 
in the intuitive direction is related to the fact that the intuitive rotation is induced when a 
non-optimized laser field is applied. 

3.2 Global control of a molecular motor via an excited state 
In this subsection, we present results of application of a global optimization method to 
designing femtosecond pulses for unidirectional rotary motions of a chiral motor through an 
excited state. 
A global control method tailors an electric field E(t) by solving an optimization problem of 
the objective functional 

 ( ) 2
0

1ˆ( ) ( ) ( )
( )

ft
f fY t t W t dt t

A t
= Ψ Ψ −⎡ ⎤⎣ ⎦ ∫ ¥

E E , (20) 

Here, Ŵ  is a target operator, tf is control time and A(t) is a regulation function for tuning 
laser intensity. Under the variation condition, δY/δE(t) = 0 for any t in the range [0, tf], an 
expression for the optimal field E(t) is obtained as 

 ˆ( ) ( )Im ( ) ( )t A t t t= − Ξ ΨE μ , (21) 

where ( )tΞ  is the time-dependent Lagrange multiplier that is a backward solution of the 
time-dependent Schrödinger equation with the final condition ˆ( ) ( )f ft W tΞ = Ψ . The 
optimal field is obtained by solving both the time-dependent Schrödinger equation with the 
initial condition ( 0) 0tΨ = =  and that with the final condition. 
Again, we consider (R)-2-methyl-cyclopenta-2,4-dienecarbaaldehyde as a chiral molecular 
motor. The target operator for a unidirectional rotation with a positive angular momentum 
in the ground state, ˆ

gW + , is given in terms of the angular momentum basis set m  as 

 
0

ˆ
g m

m

W m w m+

>
= ∑ , (22a) 
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where wm ≥ 0 is a weighting factor. In a similar way, the target operator for a unidirectional 
rotation with a negative angular momentum is given as 

 
0

ˆ
g m

m

W m w m−

<
= ∑ . (22b) 

Here, we note that the target operator for the regular rotation of the motor in the ground 
state is given as Eq. (22a) since the momentum created at the Franck-Condon region is 
positive as we discussed in the Sec. 2.3. The target operator for the reverse rotation is given 
as Eq. (22b). 
 

 

Fig. 12. (Left) Results for global control for driving (R)-2-methyl-cyclopenta-2,4-dienecarb-
aldehyde in the regular direction. (Right) Results for driving the motor in the reverse 
direction. Reproduced with permission from Chem. Phys., 347, (2008). 

Figure 12a (left-hand side) shows the instantaneous angular momentum ℓn(t) (n = e or g) for 
the regular rotation which were obtained by using the optimal pulses in Fig. 12b. Here, the 
control time was set to tf = 500 fs and a z-polarized linear electric field was used. The solid 
line denotes the instantaneous angular momentum in the ground state S0, ℓg(t), and the 
dashed line denotes that in the first electronic excited state S1, ℓe(t). At the final time, 
ℓg(tf) ≈ 37ħ was obtained for the regular rotation. The angular momentum ℓe(t) increases 
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faster than ℓg(t) in the early stage, t < 250 fs. This indicates that the direction of the regular 
rotation is determined in S1 as explained in section 2.3. 
Figure 12c shows the time- and frequency-resolved spectrum S(ω,t) for the optimal pulses in 
Fig. 12b. Here, the main components are labeled by s1, s2, s3 and s4. The first component for 
the regular rotation, s1, with the central frequency of 36,400–36,800 cm−1 corresponds to the 
frequency range estimated from differences between Ve(φ) and Vg(φ). The feature of s1 is a 
positive chirping that is the origin of the sharp increase in ℓe(t) between 100 and 250 fs in 
Fig. 12a. The second component, s2, has a central frequency around 35,000 cm−1, which 
corresponds to the energy difference between Ve(φ) and Vg(φ) at φ ≈ 0.3π as well. We note in 
Fig. 12c that the pulse around 100–250 fs has a positive chirp character to control motion of 
the excited wave packet that has a wide distribution of torsional states in S1 with torsional 
quantum numbers v′ = 32–48. Except for the appearance of the chirping element in the 
optimal pulse, the pulses for optimal control of the rotation of the motor in the positive 
direction are basically the same as those obtained by using the pump–dump laser-ignition 
method described in section 2.3. 
Results for optimal control of the motor in the negative direction are shown in the right-
hand side of Fig. 12. At the final time, ℓg(tf) ≈ −24ħ was obtained, the magnitude |ℓg(t)| being 
small compared with that for the regular rotation. The optimal electric field reaches the 
maximum amplitude of ca 50 GVm-1 in the early stage, which is about the same intensity as 
that for the regular rotation. Also, the large amplitude is maintained longer duration than 
that for the regular rotation. These results indicate the complexity in control for reverse 
rotation compared with the results for regular rotation. 
Figure 12c (right-hand side) shows the time- and frequency-resolved spectrum of the 
optimal field for the reverse rotation. It consists of two main components in the optimal 
pulses, labeled s1 and s2. The pulse s1 with central frequency of 36,700 cm−1 causes a coherent 
emission to torsional quantum states in S0 in the early stage, which is a coherent  
Stokes pulse. The other component s2 is a dump pulse and creates a rotational wave packet 
in S0. 
Figure 12d shows the time-dependent population of torsional eigenstates for the reverse 
rotation, v = 0, 1 in S0 and v′ = 48 in S1. Here, v′ = 48 is the dominant resonant state of the 
coherent Stokes scattering process. Figure 12d indicates that a linear combination of v = 0 
and v = 1 is created around t = 100 fs. Note that a quarter of the oscillation period of the 
superposition state is 130 fs, so that the superposition state in S0 could obtain sufficient 
displacement to change the Franck–Condon excitation as shown in Fig. 7. 
It should be noted that a new mechanism for the reverse rotation was found by applying  
a global control method. The direction of the rotational motion is determined by the 
coherent Stokes scattering processes via excited states above energy levels over the 
threshold in S1. 

4. Laser-driven molecular machine 

4.1 Model 
In this section, we present results of a quantum dynamics simulation of a laser-driven 
molecular machine, which is an extension of the chiral molecular motors discussed in the 
preceding sections. Here, we adopt a real molecule, (R)-2-chloro-5-trifluoromethyl-
cyclopenta-2,4-dienecarbaldehyde (cp-Cl-CF3-CHO), as shown in Fig. 13. The molecule 
consists of three units: an aldehyde group (-CHO), a trifluoromethyl group (-CF3) and a 
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cyclopentadiene with a chlorine atom as a main body. The aldehyde group can be driven by 
laser pulses, but the trifluoromethyl group cannot be because it is optically inactive. In that 
sense, the molecule can be regarded as one of the smallest molecular machines: the motion 
of the aldehyde group as a motor and that of the trifluoromethyl group as a gear or a 
propeller. We note that there is no belt or chain which directly connects the motor and 
blades of the gear in contrast to a macroscopic fan. It would be interesting to see if the 
machine can work by irradiation of laser pulses and to determine how power is transmitted 
from the motor to the running propeller and what the transmission mechanism is if it works. 
 

 

Fig. 13. (R)-2-chloro-5-trifluoromethyl-cyclopenta-2,4-dienecarbaldehyde attached at a 
surface as a molecular machine. The C3 atom is a chiral center. The z-axis is defined to be 
along the C3–C2 bond. R4 denotes an alkyl group. A linearly polarized laser pulse 
propagating along the y-axis Ey(t) is applied. A torsional coordinate of the aldehyde group is 
denoted by φ and that of the trifluoromethyl group is labeled by χ.  Reproduced with 
permission from Phys. Chem. Chem. Phys., 11, 1662 (2009). 

For the sake of simplicity, we treat the quantum dynamics simulation of the molecular 
machine in a two-dimensional model, in which one of the coordinates φ is regarded as that 
of the motor and another χ is regarded as a running propeller. The coordinate φ is defined as 
a dihedral angle of the O1-C2-C3-R4 group and χ  is specified by a dihedral angle of the F7-C6-
C5-C3 group as shown in Fig. 13. The z-axis is defined to be along the C3-C2 bond. The x-axis 
is defined to be on the C2-C3-R4 plane. The cyclopentadiene group, which is the main body 
of the machine, was assumed to be fixed on a surface to reduce the role of entire molecular 
rotations. In the actual simulation, an alkyl group, -R4, is replaced by -H for simplicity. 

4.2 Results of quantum dynamics simulation 
The two-dimensional potential energy surface of the molecular machine in the ground state, 
V(φ, χ), was calculated with B3LYP / 6-31+G** (Becke, 1993) in the Gaussian 03 package of 
programs. All of the other structural parameters were optimized at every two dihedral 
angles. Three components of the dipole moment function, μx(φ, χ), μy(φ, χ) and μz(φ, χ), were 
calculated in the same way as that used for calculation of V(φ, χ). Quantum chemical 
calculation shows strong φ dependence in μx(φ, χ) and μy(φ, χ), while χ dependence is fairly 
small. This indicates that the motion of φ is optically active but that of χ is not. The z 

component μz (φ, χ) was nearly constant so that the interaction term is negligible. Thus, 
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μ(φ, χ) can be expressed in the same analytical form as Eq. (4) with an amplitude 
μ = 2 Debye. Moments of inertia were assumed to be constant at the most stable molecular 
structure, Iφ  = 2.8×10-46 kg·m2 and Iχ = 1.5×10-45 kg·m2. Iχ is about five-times heavier than Iφ. 
Figure 14 shows the results of quantum dynamical calculations of the light-driven molecular 
machine at a low temperature limit. Figure 14a shows the electric field of the pulse which is 
given as ( ) ( )cos( ) yω=E et f t t with envelope function f(t) given by Eq. (11). Here, ey is the unit 

vector along the y-axis as is defined in Fig. 13; frequency ω = 45 cm-1 was taken as a central 
frequency of a pulse; E0 = 3.7 GVm-1 was taken as the amplitude of the envelope function f(t) 
and tp = 30 ps was taken as pulse length. 

Figure 14b shows the instantaneous angular momenta, ˆ ˆ( ) [ ( )]L t Tr tφ φ ρ= `  (in red) and 

ˆ ˆ( ) [ ( )]L t Tr tχ χ ρ= `  (in blue), of the motor and propeller of the machine, respectively. We also 

defined “expectation values of rotational angles φ and χ ”, φ(t) and χ(t), as indexes of the 
rotations, 

 
0

1
( ) ' ( ')

t
t dt L t

I
φ

φ
φ = ∫  (23a) 

and 

 
0

1
( ) ' ( ')

t
t dt L t

I
χ

χ
χ = ∫ . (23b) 

 

They are shown in Fig. 14c in red and blue, respectively. We can clearly see correlated 
behaviors between the motor and propeller. We can also see how the rotational power is 
transmitted from the motor to the propeller. The molecule really acts as a single molecular 
machine. 
The dynamic behaviors shown in Fig. 14 can be divided into three stages: early, transient 
and steady stages. In the early stage with the time range of 0 – 13 ps that ends just before the 
light pulse peak, the motor is subjected to a forced oscillation with large amplitudes in the 
torsional mode, which is induced by the light pulse, while the propeller just oscillate around 
the most stable structure with its small amplitudes. In other words, “idling” operates in this 
stage. This stage can be described by the one-dimensional model: as is the case with Sec. 2.2, 
it starts to rotate toward the gentle slope side of the asymmetric potential of the chiral 
molecule. In the transient stage where a bump is located in φ(t), the rotational direction of 
the motor is changed. Then χ(t) starts to increase, i.e., the propeller start to rotate. The 
rotational directions of the motor and propeller are opposite. This indicates that the 
aldehyde group and trifluoromethyl group play the role of a bevel gear at the molecular 
level, although they are not close to each other so as to have direct interactions as can be 
seen in macroscopic bevel gears. In the stationary stage after the pulse vanishes, the motor 
and propeller continue to rotate with a constant motion since there are no dephasing 
processes included. 
Figure 14d shows the time-dependent expectation values of the following energies:  

the potential energy, ˆ ˆ( ) [ ( )]V t Tr V tρ= , the kinetic energies, ˆ ˆ( ) [ ( )]T t Tr T tφ φ ρ=  and 
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ˆ ˆ( ) [ ( )]T t Tr T tχ χ ρ= , and the sum of them, H(t)=V(t)+Tφ(t)+Tχ (t). In the early stage, only the 

wave packet in the direction of φ is forced to oscillate by the pulse. This can be seen from 
Fig. 14d, in which both V(t) and Tφ(t) begin to oscillate in a correlative way, while Tχ(t) does 
not change. In the next stage in which the motion of φ changes its direction, Tχ (t) begins to 
increase gradually. This is another proof that the motor and propeller are correlated and 
that the motion of propeller is induced not by laser pulse but by intramolecular interactions, 
i.e., non-linear interactions between two torsional modes, φ and χ. 
Temperature effects on the dynamics of the molecular machine were also investigated 
(Yamaki et al., 2009). 
 

 

Fig. 14. (a) The y-component of the electric field of the pulse Ey(t) used. (b) Quantum 
mechanical expectation values of angular momentum at T=0 K: that of the motor Lφ(t) (in 
red) and that of the propeller Lχ(t) (in blue). The scale of the vertical axis for t ≤  20 ps is 
stretched compared with that for t ≥  20 ps. (c) Rotational angle of the motor φ(t) (in red) 
and that of the propeller χ(t) (in blue). (d) Quantum mechanical expectation values of 
energies: potential energy V(t) (in red), kinetic energy of f rotation, Tφ(t) (in green), and of χ, 
Tχ(t) (in blue), and the sum of them (in magenta). Reproduced with permission from Phys. 
Chem. Chem. Phys., 11, 1662 (2009). 
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Finally, we briefly discuss the mechanism of formation of the bevel gear in the molecular 
machine. Quantum dynamics simulation shows that the rotational wave packet of the 
motor, which is created by a laser pulse, is transferred to that of the propeller. Such a 
correlated behavior can be quantum mechanically explained in terms of a rotational 
coherence transfer mechanism. We note that the correlated groups, the motor and propeller, 
are located at a distance of 2.3 Å. This is long compared with distance of 1.4 Å (1.5 Å) 
between carbon atoms of a double (single) bond. There may be two possible mechanisms: 
one originates from through-conjugation and the other from through-space interactions. It 
should be noted that the conjugation of the machine is restricted to its main body. Therefore, 
the through-space interaction mechanism is the most likely mechanism. Further detailed 
analysis is needed to confirm the transfer mechanism. 

5. Summary and perspectives 

Results of theoretical treatments on quantum dynamics and quantum control of laser-driven 
chiral molecular motors were presented. First, fundamental principles for unidirectional 
motions of chiral molecular motors driven by linearly polarized (nonhelical) laser pulses 
were described. Similarities and differences between the mechanism for driving directional 
motions in the case of Brownian motors for bio-motors and in the case of chiral molecular 
motors developed in our study were clarified.  In bio-motors, the unidirectional motions are 
explained in terms of so-called nonequilibrium fluctuations of a Brownian motion with a 
saw-toothed ratchet potential, while chiral molecular motors, which are characterized by 
asymmetric potential similar to a saw-toothed ratchet potential, are driven in a 
unidirectional way by time-dependent periodic perturbations of linear polarized lasers with 
no angular momentum. Here, the magnitudes of the perturbations are large compared with 
those of interactions between molecular motors and heat bath modes, which makes the 
system different. Quantum dynamics simulations showed that the directional motion is 
determined by molecular chirality. This supports the mechanism for unidiredtional motions 
of chiral motors. We call the direction of the gentle slope of the asymmetric potential the 
intuitive direction for the unidirectional motion. 
Secondly, after reviewing a quantum control theory for driving a molecular rotor with a 
designated unidirectional motion, we presented the results of quantum control of chiral 
molecular rotors. Pulse shapes for driving rotational motions in the intuitive direction or the 
counter-intuitive direction were found with the help of the quantum control theory. The 
mechanisms of the intuitive and counter-intuitive rotations were clarified by analyzing 
nuclear wave packet motions. We restricted ourselves to simple real molecules rather than 
complicated molecular systems to elucidate features of quantum control of molecular 
motors. We also presented an effective method for controlling unidirectional motions via an 
electronic excited state of chiral motors. 
Thirdly, results of theoretical design of the smallest laser-driven molecular machine were 
presented. The smallest chiral molecular machine has an optically driven motor and a 
running propeller on its body. The mechanism of the transmission of driving forces from the 
motor to the propeller was clarified by using a quantum dynamical treatment. 
In this chapter, the quantum control procedures were applied to small molecular motors 
with the rotary part consisting of a simple, optically active group connected to the body by a 
single bond. Molecular machines with nano-scale dimension have now been synthesized 
and wait for their operation by external forces. One of the next subjects is to demonstrate 
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that these artificial machines can be driven by laser pulses. For example, laser pulses 
designed by quantum control procedures will be able to control their motions: acceleration 
or slowdown, forward or reverse motions and even turning directions. In principle, laser 
light can control coherent directed motions of assembled molecules as well. This can realize 
coherent collective precession of molecular rotors with chiral propellers (Kinbara & Aida, 
2005; Tabe & Yokoyama, 2003). Similarly, it would be interesting to control a molecular 
motor in a cage, which is a model of molecular gyroscope (Bedard & Moore, 1995; 
Dominguez et al., 2002; Setaka et al., 2007). Another interesting subject is to apply control 
procedures described in this chapter to bio-systems with a micrometer dimension. For 
example, results of laser-induced rotational motions of both normal and malaria-infected 
red blood cells in various medium solutions have recently been reported (Bambardekar et 
al., 2010). The experiments were carried out by using linearly polarized laser pulses. It was 
found that the shape anisotropy of red blood cells induces rotations in optically trapped red 
blood cells. The rotational dynamics depends on the shape changes, which are realized by 
altering the experimental conditions such as osmolarity of the medium containing the cells. 
Differences in rotational motions between normal and malaria-infected red blood cells have 
been identified as well.  Such a complicated rotational dynamics can be analyzed by using 
laser optimal control procedures, which can be used as a fast diagnostic method for malaria-
infected red blood cells. 
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