
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



12 

Intensity Effects and Absolute Phase Effects  
in Nonlinear Laser-Matter Interactions.  

Sándor Varró  
Research Institute for Solid State Physics and Optics  

of the Hungarian Academy of Sciences 
Hungary 

1. Introduction 

The generation of short pulses of electromagnetic radiations rely in many cases on nonlinear 

interactions, and, on the other hand, the resulting sources may have very large intensities, 

and can induce high-order nonlinear processes. Of course, these two faces of light-matter 

interactions are intimately connected, but they can usually be treated separately, depending 

on the emphasize put on one side or on the other. The subject of the present  chapter belongs 

to the physics of „strong-field phenomena” taking place in laser-matter interactions, and it 

partly concerns quantum optics, too. A brief overview of theoretical methods for treating 

nonlinear light-matter interaction is given, and some characteristic examples are presented. 

We review the basic classical and quantum approaches in simple terms, by possibly 

avoiding involved mathematical derivations. We shall attemp to give a clear conceptual 

framework and illustrative examples, on the basis of which the main characteristics of the 

intensity and phase effects showing up in various extreme nonlinear light-matter 

interactions can be understood. We shall limit the discussion mostly to the single-electron 

picture, and genuine many-body effects will not be considered. On „strong-field 

phenomena” we mean here those phenomena whose main characteristics are governed by 

higher powers than linear of the laser intensity. Two typical examples for such processes are 

the nonlinear photoelectric effect and high-harmonic generation induced by strong laser 

fields. The former one has been the subject of an extensive research already from the 

beginning of the sixties of the last century, starting with the works of Keldish (1965) and 

Bunkin & Fedorov (1965). As for the later developments, see Farkas (1978), Krause et al. 

(1992), the book by Delone and Krainov (1994), and a recent review on multiphoton surface 

photoelectric effect by Ferrini et al. (2009). If one photon energy is not enough to ionize an 

atom (or deliberate an electron from a metal surface), then, in order to have a non-negligible 

ionization probability per unit time for many-photon absorptions, one needs a high-power 

source of the radiation. The high-harmonics of an incoming optical radiation stem from the 

laser-induced nonlinear polarization of the active constituents of matter, which, may for 

example be bound dipoles of atoms, molecules, solids or free electons in the conduction 

band of metals or in beams propagating in free space. Another wide class of strong-field 

phenomena consists of the laser-assisted processes, like, for instance x-ray scattering on 

atomic electrons in the presence of a high-power laser radiation. Here, in contrast to the 
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induced processes, the primary process can of course take place without any nonlinearity, 

but the additional interaction modifies the spectrum of the scattered radiation, due to the 

appearence of side-bands separated by the laser frequency (see e.g. Puntajer & Leubner, 

1990). The relative strengths of these side-bands are nonlinear functions of the laser 

intensity. In all the above-mentioned examples a considerable spectral broadening of the 

signals may take place, which results in temporal compression, i.e. short pulses are formed. 

Of course, the appearance and the quality of these pulses crucially depend on the phase 

relations of its Fourier components. In general, one may say that the generation of short 

pulses of electromagnetic radiation are based on nonlinear laser-matter interactions. As for 

the theoretical description of the mentioned, mostly very high-order processes, the greatest 

challenge is to work out non-pertubative methods, on the basis of which the interactions 

with the strong fields are taken into account up to arbitrary orders. This is needed because 

the perturbation theory may break down for large intensities, even to that extent that terms 

like ’perturbation’ or ’higher-order’, in fact, simply loose their usual contents. The optical 

tunneling offers itself as a good example for such a situation, when the electrons within one 

optical cycle leave the binding potential which is broken down by the high electric field of 

the laser radiation (Keldish (1965), Bunkin & Fedorov (1965)). Here one encounters with the 

fundamental question of wave-particle duality of both the electromagnetic radiation and the 

electron (see e.g. Büttiker & Landauer (1982) and Chiao (1998)). Another conceptually and 

also practically important question is to what extent can one control the phase of the 

ultrashort pulses, and, at all, what are the ultimate limits of phase stabilization in a given 

generating process? The systematic quantitative analysis of these problems is still missing, 

at least concerning the quantum uncertainties of the phases. One may expect that the usual 

high-intensity laser fields, being in a highly populated coherent state, can certainly be well 

represented in a satisfactory manner in the frame of external field approximation, i.e. in 

terms classical Maxwell fields of definite amplitudes and phases, or in terms of classical 

stochastic processes. On the other hand, in the generation of extreme pulses, like sub-

femtosecond or attosecond pulses, it is an open question whether the fully quantum or the 

semiclassical description deliver the correct interpretation.  

Within the limited space at our disposal, it cannot be our purpose to give an historical 
overview, and it would be impossible to review the presently ongoing research on strong-
field phenomena. Besides studying the important early works, like Ritus & Nikishov (1979), 
Faisal (1987), Gavrila (1992), Mittleman (1993) and Delone & Krainov (1994), the interested 
reader can find further references in recent reviews, dealing with various aspects. We refer 
the reader e.g. to Brabec & Krausz (2000), Ehlotzky (2001), Agostini & DiMauro (2004), 
Salamin et al. (2006), Mourou et al. (2006) , Krausz & Ivanov (2009), Ehlotzky et al. (2009) 
and Gies (2009). In fact, the conceptual framework of the theory of strong-field phenomena 
has not changed very much in the last couple of decades. The main point in the theory has 
long been the following. In contrast to the usual texbook approach, where the light (or 
electromagnetic radiation, in general) is treated as a perturbation, the essence of all new 
methods is just to turn around this scheme, and consider the strong field as the dominating 
agent in the interaction. Besides direct numerical, ab initio calculations, the analytic 
approaches still play a very important role, because only this can give an intuitive 
understanding of the mentioned processes, and help to find the really important parameters 
to be controlled in the experiments. In the meantime, the laser technology has undergone a 
very fast development, which made it possibile to generate extreme radiation fields in well-
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controlled ways. Many processes have become accessible for direct experimental basic 
research, whose results, at the same time, have many potential applications in other 
branches of science and technology. We shall not touch this aspects, either. In the present 
chapter we attemp to give a summary of the characteristics of the simplest basic nonlinear 
processes taking place in strong-field laser-matter interactions. Based partly on our earlier 
and recent works, we shall present some typical examples, which may serve as guides 
towards a possibly intuitive insight into the broad field of research on strong-field light-
matter interactions.  
In Sections 2 and 3, on the occasion of a summary on nonlinear Thomson scatteing, high-
harmonic generation and multiphoton ionization, we introduce the basic parameters 

(dimensionles intensity parameter, the ponderomotive energy shift, and the Keldish-γ or 
adiabaticity parameter) which govern the characteristics of the processes under discussion. 
The carrier-envelope phase effect will be studied in simple terms of classical 
electrodynamics. We shall briefly discuss the multiphoton analogon of the Kramers-
Heisenberg dispersion formula. In Section 4 the nonlinear effect of the laser-induced 
oscillating double-layer potential on metal surfaces and the x-ray generation in the presence 
of a static homogeneous electric field will be touched. Here we shall introduce a new 
nonlinearity parameter, that seems to be a key element in the theoretical analysis of many 
recent experiments showing unexpectedly high laser-induced nonlinearities. We shall 
briefly discuss the question of optical rectification and the generation of quasi-static wake-
fields, whose polarization can be manipulated by changing the carrier-envelope phase 
difference. Besides, the analogy between the usual Fourier-synthesis of the high-order 
harmonics stemming from a nonlinear scattering, and the interference of above-threshold 
electronic de Broglie wave components shall be emphasized. This latter effect may give a 
possibility for generation high-current attosecond electron pulses. In Section 5 some 
quantum statistical properties of short electromagnetic radiation pulses will be analysed. 

2. Classical description of basic strong field phenomena. Carrier-envelope 
phase difference effects in ultrashort pulse interactions 

In the present section we shall summarize the most important elements of the conceptual 
framework in which nonlinear laser-matter interactions can be theoretically considered. At 
the same time, this part serves as an introduction of the important parameters in terms of 
which the particular natures of these various processes can be quantified. In Table 1. we 
show the possible combinations of theories in the descriptions of photon-electron 
interactions. For short, on the word ’photon’ we mean electromagnetic radiation in general. 
The most fundamental illustrative cases are the nonlinear Thomson and Compton 
scattering, which in the cleanest way show some general basic characteristics of the 
nonlinear photon-electron interactions (see e.g. Brown & Kibble (1964), Leubner (1978, 1981), 
Bergou & Varró (1981b), Gao (2004), Lan et al. (2007),  Boca & Florescu (2009), Mackenroth et 
al. (2010)). According to the description displayed in cell No. 2 in Table 1., consider the 

classical equation of motion of a point electron of charge −e and rest mass m interacting in 
vacuum with a linearly polarized plane wave of electromagnetic radiation: 

 md(γv)/dt=−e[E0+(v/c)×B0],     E0=ε0F(η),     η≡t−n0⋅r(t),     B0=n0×E0 , (1a) 

 F(η)=−∂2Π(η)/c2∂t2,     Π(η)=(c/ω0)2F0f0(η)cos(ω0η+ϕ0),     f0(η)=g0(η)≡exp(−η2/2τ02), (1b) 
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Photon
Electron 

Trajectory, Rays 
(Geometric Optics) 

Field 
(Maxwell Theory) 

Quantized Field 
(Photon Picture) 

Trajectory, Current 
(Point Mechanics) 

1. 2. Classical 
Electron Theory 

3.Classical Current, 
Poisson Photon 

Field, Current 
(Wave Mechanics) 

4. 5. Semiclassical 
Description 

6.Quantum 
Current, 
General Photon 

Quantized Field 
(Negaton-Positon) 

7. 8. 9. Quantum 
Electrodynamics 

Table 1. Possible descriptions of photon-electron interactions. The most widely applied 
descriptions are displayed in cells Nos. 2. and 5. Concerning the electron motion, in each 
cells the relativistic description is also included. The cells Nos. 1., 4. and 7. are empty, 
because the direct interaction of point charged particles with rays of radiation are not 
considered. 

where v(t)=dr(t)/dt and c are the velocity of the electron and of the light field in vacuum, 

respectively, and γ=[1−(v/c)2]−1/2 is the usual relativistic factor. The amplitude of the electric 

field strength, the polarization vector and propagation vector are denoted by F0, ε0 and n0, 

respectively. In Eq. (1b) we have introduced the Hertz potential Π(r,t)=Π(η), and the special 

case of a quasi-monochromatic wave of mean circular frequency ω0=2π/Τ0 having a pulse 

envelope function  f0(η), and the carrier-envelope phase difference (CEPD) ϕ0. This latter 

quantity is often simply called absolute phase. In general, the pulse envelope function  f0(η) 

has its maximum value 1 at η=0, and vanishes for η→±∞ (as an example, a Gaussian 

envelope function g0 of full width at half maximum (FWHM) 2τ0(log2)1/2 is shown in the last 
equation of Eq. (1b)). The first equation of Eq. (1a) is a highly nonlinear second order 

ordinary differential equation for the electron’s position r(t), because through the variable η 
the electromagnetic field strengths in their arguments contain this trajectory in a 
complicated manner. Thus, in general, we do not expect a simple harmonic motion, even if 
we set the envelope function constant (f0=1), when we are dealing with an ideal 
monochromatic plane wave. This special case was first studied long ago by Halpern (1924) 
in the context of a possible description of Compton scattering. Later it turned out that the 
seemingly complicated equation in Eq. (1a) can be solved analytically for an arbitrary 

functional form of f(η). It can be shown that dη/dτ=γ(1−n0⋅v/c) is a constant of motion 

(where dτ=dt/γ denotes the proper time element) thus, at the position of the electron the 

complete argument η of the wave is a linear function of the proper time of the electron. As 

an example, take an x-polarized wave (ε0=(1, 0, 0)) propagating in the positive z-direction 
(n0=(0, 0, 1)). Then the equation of motion in Eq. (1a) can be brought to the set of equations 

mad2x/dη2=−eF(η),   a≡ γ(1−vz/c)=const.,   d2z/dη2=(d/2cdη)(dx/dη)2,   d2y/dη2=0, (2a) 

 γmc2=mc2+m(dx/dη)2/2. (2b) 

The first (still exact) equation in Eq. (2a) is completely analogous to a simple Newton 
equation in a homogeneous time-varying field, which can be immediately integrated, and 

then, from the third equation, the function z(η) can be determined. In Eq. (2b) we have 
shown the total energy of the electron, which naturally splits to the sum of the rest energy 
and a term analogous to the nonrelativistic kinetic energy. One has to keep in mind, 
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however, that the trajectory still cannot be expressed by the true time t in a closed form. It is 

possible to give analytic expressions for t(η), x(η), z(η) as functions of the retarded time η 

(or, equivalently, of the proper time τ). The „initial data” on the light-like hyperplane 

η=const. cannot directly correspond to true initial values, because the prescription 

t−z/c=const. cannot account for a true separation of the particles from a real interaction 
region, since this should be specified on the space-like plane t=const. (in order to secure 
causality). Concerning the solution of this problem see Varró & Ehlotzky (1992). In the 

nonrelativistic limit (v/c<<1, γ→1, a→1), in dipole approximation (η→t) and in a stationary field 
we have the simple results 

 md2x/dt2=−eF0cos(ω0t+ϕ0),   dx/dt=−voscsin(ω0t+ϕ0)+v0,   x=xosccos(ω0t+ϕ0)+v0t+x0, (3a) 

 vosc/c=μ0,   xosc=μ0λ0/2π,   μ0≡eF0/mcω0,   μ0=0.8528×10−9I0[W/cm2]1/2λ0[μm], (3b) 

μ0= 1.0426x10-9 [I0 /(W/cm2)]1/2 / [hν0 /eV],    μ0=(I0/Ic)1/2,   Ic=cEc2/8π,   Ec=2πe/r0λ0, (3c) 

where vosc and xosc are the velocity and coordinate amplitudes, respectively, of the electron 
oscillating in the laser field of intensity I0 (measured in W/cm2) and of central wavelength 

λ0=2π/k0=2πc/ω0=c/ν0 (measured in microns, μm=10−4cm). The dimensionless intensity 

parameter μ0 introduced in the third equation of Eq. (3b) is the ratio of the amplitude of the 

velocity oscillation to the velocity of light. Though μ0 is a classical parameter, in Eq. (3c) we 

have expressed it in terms of the associated photon energy hν0, too, where h denotes the 

Planck constant. Besides, we have introduced the critical intensity Ic (for which μ0=1) 
associated to the critical field strength Ec, where r0=e2/mc2 =2.818×10−13cm is the classical 

electron radius. The work eEcλC/2π=hν0 done on the electron by this critical electric field 

(assumed here static) along the Compton wavelength  λC=h/mc= 2.426×10−10cm just equals 

the central photon energy hν0. According to Eq. (3c), for a laser field of mean photon energy 

hν0=1eV the critical intensity is Ic=1018W/cm2. The parameter μ0 quantifies the limits of 

validity of the approximations just applied. If μ0 approaches unity, then vosc gets close to the 
velocity of light and the nonrelativistic description is not valid any more. At the same time, 
the amplitude of the position oscillations becomes comparable with the wavelength, and the 

dipole approximation breaks down, too, thus the term n0⋅r/c in the retarded time η cannot 
be neglected in the equation of motion. Just this kind of term is responsible for the 
generation of higher-order harmonics by a free electron in the presence of a strong laser 
field. In the nonrelativistic regime, under the action of the laser field, a pure harmonic 
oscillation is superimposed on the free inertial motion of the electron. According to classical 
electrodynamics (Jackson (1962)), for this simple harmonic motion the average power radiated 
per unit solid angle in the nth higher-harmonic is: 

 dPn/dΩ=(e2ω02/2πc)(ntanθ)2[ Jn(μ0ncosθ) ]2,   (e2ω02/2πc)=α(hν0/T0),   α≡ 2πe2/hc, (4) 

where Jn  denotes ordinary Bessel function of first kind of order n (see e.g. Gradshteyn and 

Ryzhik (2000)), and θ is the angle between the propagation direction of the emitted radiation 
with respect to the direction of oscillation (here: x-axis). In order to make the numerical 
estimates easier, in Eq. (4) we have also introduced the Sommerfeld fine structure constant 

α≈1/137. For instance, for a Ti:Sapphire laser the total power emitted (exclusively to the 

fundamental frequency) by a single electron becomes ~ αμ0
2(hν0/T0)≈ αμ0

2×10−4 Watt. This is 

because in the nonrelativistic case under discussion, we have μ0 << 1, i.e. the argument of the 

www.intechopen.com



 Laser Pulse Phenomena and Applications 

 

248 

Bessel function is much smaller than its order n = 1, 2, …, and the approximation Jn(nz)≈ 

(nz/2)n/n! ≈ (z/2e)−n is essentially exact. The ratio of the partial powers of the consecutive 

harmonics is to a good accuracy (dPn+1)/(dPn) ≈ (μ0cosθ/2e)2 <<< 1, thus practically no 
harmonics are produced, except for the fundamental one. This simple example shows that 
the higher-harmonic generation on a free electron is an inherently relativistic effect.  
In order to illustrate intensity and absolute phase effects in the relativistic regime, we 
present the solution of the initial value problem of the general equation in Eq. (2) for a 

stationary field F(η)=F0cos(ω0η+ϕ0). First, let us specify the position and velocity of the 

electron at the time instant t=0, in the case when ϕ0=0, such that x(0)=(dx/dt)(0)= 

z(0)=(dz/dt)(0)=0, thus η(0)=0. In accord with an early work by Halpern (1924), on x-ray 
scattering, we obtain  

x=μ0(λ0/2π)[1—cos(ω0η)],   z= (μ0/2)2(λ0/4π)[2ω0η+sin(2ω0η)],    2ωt=2ω0η+βsin(2ω0η), (5a) 

ω≡ ω0/[1+(μ0/2)2],   β≡ (μ0/2)2/[1+(μ0/2)2] < 1,   z(t)=βct—(λ0/2π)Σk[Jk(kβ)/k]sin2kωt. (5b) 

The summation with respect to k in the last equation of Eq. (5b) runs through all the 
harmonic indeces k=1, 2, …, and Jk denotes the ordinary Bessel function of first kind of 

order k. From the parametric representations of x(η) and z(η) in Eq. (5a) one can 
immediately derive the well-know „figure-8 shape” for the electron trajectory if one 
transforms out the uniform motion in the longitudinal z-direction (propagation direction of 
the ideal laser field). Of course, the  modulus of the velocity components are smaller than c 
for arbitrary high intensities. On the other hand, the energy in Eq. (2b) becomes 

γmc2=mc2[1+(μ0/2)2(1—cos(2ω0η)], where the term (μ0/2)2mc2≡Up is usually called 

ponderomotive energy shift. The velocity of the longitudinal drift motion βc approaches c from 

below in the extreme case when μ0 >>> 1, even if the initial velocity is zero. The  frequency ω 
of the electon’s fundamental oscillation in the laboratory frame is down-converted by a 

factor of [1+(μ0/2)2], but, on the other hand, the „renormalized spectrum” becomes very 
broad for large enough intensities. Really, by applying the asymptotic formula 8.455.1 of 

Gradshteyn & Ryzhik (2000), πJn(x) ≈ [2(n-x)/3x]1/2K1/3{[2(n-x)]3/2/3x1/2}, where K1/3 denotes 

the modified Hankel function. With the help of this result we have [Jn(nβ)]2 ~ exp(—n/nc) 

with nc = (3/8)1/2(μ0/2)[1+(μ0/2)2] >>> 1 is the critical harmonic number. As for the 

longitudinal motion under discussion, the cut-off frequency ωc=ncω is of the order of μ0ω0, 

which may reach the x-uv region of the electromagnetic spectrum. For example, if μ0=60 we 

have for the critical number nc ≈ 16500, and the spectrum starts from ω≈ ω0/900   and ends 

around ω≈ 30×ω0, covering terahertz and uv radiations as well.  
The explicit calculation becomes much more complicated if the phase ϕ0 is nonzero. The 
qualitative difference in this case is that, besides the oscillation around the position x=0, the 
transverse motion (along the polarization) aquires a drift x1(sin ϕ0)t, too. The longitudinal 
motion is similar to that we have encountered in Eq. (5b), but now the drift part depends on 
the initial phase: 

 z(t)=βc(1+2sin2ϕ0)t—(λ0/2π)Σk(Akcos2kω’t+Bksin2kω’t), (6) 

where the Fourier coefficients Ak and Bk are combinations of Bessel functions, whose 
explicite form is not interesting here. Instead of proceeding further with the analytic 
formulae, we give in Figs. 1a-d and Figs. 2a-b some typical trajectories of an electron 
interacting with a strong laser pulse. 
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Fig. 1a. Shows the parametric variation of the 
electron’s position along the polarization 
vector of the strong two-cycle laser field. We 
have taken a Gaussian pulse displayed in the 

last equation of Eq. (1b) with ϕ0=0, and the 

intensity parameter was set μ0=0.9, 

corresponding to the critical intensity I0 ≈ 

1018W/cm2 for an optical field with hν0=1eV. 

Fig. 1b. Shows the parametric variation of the 
electron’s position along the propagation 
vector of a strong two-cycle laser field. This 
figure shows that the longitudinal motion has 
a systematic drift, whose velocity is 

essentially βc, as has been given in Eq. (5b). 
The parameters are the same as in Fig. 1a. 

 

 

Fig. 1c. Shows the parametric variation of the 
electron’s position along the polarization 
vector of the strong two-cycle laser field. We 
have taken a Gaussian pulse displayed in the 

last equation of Eq. (1b) with ϕ0=0, and the 

intensity parameter was set μ0=0.9, 

corresponding to the critical intensity I0 ≈ 

1018W/cm2 for an optical field with hν0=1eV. 

Fig. 1d. Shows the same as Figure 1c, but now 
the essentially uniform drift motion has been 
subracted from the longitudinal motion, thus 
the motion of the electron is viewed from a 
comoving frame. The coordinate z’ has been 

defined as z’≡z—(μ0/2)2(λ0/4π)×2ω0η, 
according to Eq. (5a). The curve starts slightly 
below the origin, towards negative z’ values, 
and then proceeds to positive values and 
finally gets back to the origin from above. 
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Fig. 2a. Shows the same as Fig. 1d for the 
reduced electron trajectory, but now the 
carrier envelope phase difference of the 

Gaussian pulse has been taken ϕ0=—π/2, i.e. 
now we are dealing with a sine-pulse. The 
curve starts slightly below the origin, 
towards negative z’ values, and then 
proceeds to positive values and finally gets 
back to the origin from above. 

Fig. 2b. Shows the reduced electron trajectory 
around the maximum of a relatively long (~ 

20 cycle) Gaussian sine-pulse (when ϕ0=—

π/2). The nearly uniform drift motion has not 
been transformed out completely, in order to 
illustrate that the „figure-8 trajectory” is never 
a stationary lemniscate. The curve starts at the 
point (0,—1.5) towards negative z’ values, 
and then proceeds to positive values and 
finally arrives at the ponit (0,+1.2). 

 
 

 
 

Fig. 3. The real time-dependence of the longitudinal position z’(t)≡—[z(t)—βct] of the 

electron as given in Eq. (5b), where we have subtracted the uniform drift motion βct. The 
trajectory is compared with the ideal phase function („saw-tooth”), which is given by the 

famous Fourier series Σk(sinkx)/k=(π—x)/2 on the open interval (0, 2π). From the first 

equation of Eq. (5b), the „saw-tooth” is represented by the sum Σk[sin(2k×0.11(t/T))]/k. 

which corresponds to the μ0=15 value of the dimensionless intensity parameter.  
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In order to consider the general role of the ponderomotive energy shift (μ0/2)2mc2=Up 
introduced after Eq. (5b), we write the relativistic equation of motion in a covariant form, 
which is equivalent to Eq. (1a) and the relativistic work theorem. From Eq. (1a) we obtain 

mdu/dτ=(e/c)(u0E+u×B) and mdu0/dτ=(e/c)u⋅E, where (u0, u)={uμ}={dxμ/dτ} is the four-
velocity, {xμ}=(ct, r) is the four-position, and  dτ=dt/γ denotes the proper time element of the 
electron. We adopt the signature (+ — — —), and then the metric tensor g becomes g00=—

gii=1 for i=1, 2, 3, and the off-diagonal elements are zero, i.e. gμν=0 for μ≠ν, for μ, ν =0, 1, 2, 3. 
With the usual summation convention, the four-product of two vectors {aμ} and {bν} reads 
a⋅b≡gμνa

μbν=aμbμ=a0b0—a⋅b, and the gradient vector is defined as ∂≡{∂μ}≡{∂/∂xμ}. With these 
notations the covariant equation of motion of the electron in the laser field becomes: 

duμ/dτ=(e/mc)Fμνu
ν ,  Fμν=∂μAν—∂νAμ ,    duμ/dτ=—(e/mc)dAμ/dτ + (e/mc)uν(∂μAν), (7a) 

 uμ=Vμ—(e/mc)Aμ ,   dVμ/dτ=(e/mc)Vν(∂μAν)—(e/mc)2Aν(∂μAν), (7b) 

where we have introduced the field tensor Fμν , the vector potential Aμ and the part Vμ of the 
four velocity (soon we shall assume that this is a „slowly-varying” quantity). We emphasize 
that at this stage Eqs. (7a-b) do not contain any approximations, the above manipulations do 
not rely on the assumption that Vμ is slowly-varying on any space-time scale. If we take the 
average over the oscillations of the vector potential in the second equation of Eq. (7b), then, 
because  〈Vμ〉=〈uμ〉, we have 

d〈Vμ〉/dτ=—(e/mc)2∂μ 〈AνAν〉 ,  md〈uν〉/dτ= ∂ν[μ2(r, t)mc2/2],  md〈v〉/dt=—mc2∇μ2(r)/2. (7c)                      

In Eq. (7c) we have introduced the generalized intensity parameter μ , in terms of which the 

ponderomotive energy is expressed as Up(r, t)= μ02f(r, t)(mc2/4), where μ0≡eF0/mcω0 is the 
maximum value of the dimensionless intensity parameter, and  f(r, t) is a (slowly-varying) 
spatio-temporal intensity profile function of the laser beam. The third equation in Eq. (7c) is 
a (nonrelativistic) special case of the second, more general equation. Here the 
ponderomotive energy is represented by a conservative (static) potential. It is important to 
note that, regardless of the sign of the charge of a particle, the ponderomotive potential of 
the laser field is repulsive towards the lower intensity values (because it is proportional with 
the square of the charge and with the negative gradient of the intensity distribution). This 
means, for instance, that an ionized electron experiences a force pushing it out of the 
interaction region. As a consequence, for instance, the measured energy spectrum of the 
ionized electrons are different to that they have their „place of birth” inside the laser beam. 

Since 2mc2=1MeV, the maximum energy increase may be of this order if μ0≈2, i.e. if the 

maximum intensity I0≈2×1018 W/cm2 for an optical field (hν0≈1eV). This kind of 
ponderomotive energy increase is still considered as a way towards laser acceleration of 
charged particles. It is clear that even at nonrelativistic intensities, the ponderomotive 
energy shift may considerably be larger than the photon energy. For an optical field of 

2×1013 W/cm2 intensity the ponderomotive energy shift is Upmax≈10eV. 
At the end of the present section we present a simple classical example to illustrate the 

possibility of linear absolute carrier-envelope phase difference effects. Let us take the 

Newton equation of a charged particle bound in a linear potential, and driven by a laser 

pulse represented by a Gaussian envelope, and study the Fourier spectrum of its position: 

 d2x/dt2 + Γdx/dt  + Ω2x=−(e/m)F0exp(—t2/τ2)cos(ω0t+ϕ0) =−(e/m)F(t), (8a) 
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x(ω)|2 = (e/m)2|F(ω)|2/[(ω2—Ω2) + Γ2],   |F(ω)|2 = |C(ω)|2 [cosh(2τ2ωω0) + cos(2ϕ0)], (8b) 

M(ω)≡[(|x(ω)|2)max − (|x(ω)|2)min]/ [(|x(ω)|2)max + (|x(ω)|2)min] = 1/cosh(2τ2ωω0), (8c) 

where the subsidiary quantity C(ω) introduced in Eq. (8b) does not depend on ϕ0 , its 
detailed form is unimportant here. In Eq. (8c) we have defined the modulation function M(ω), 
which is an analogon of the visibility used in optics. According to Figs. 4a-b-c, the 
modulation is negligible except for the very low-frequency part of the spectrum, where it 
can be considerable if ω/ω0 < 0.2 for a three-cycle pulse, for instance. However, this is just 
that region where the signal (in the present case; the induced dipole) is very small. In the   
 

 

Fig. 4a. Shows the linear modulation function 
for two few-cycle Gaussian pulses according 
to the formula given by Eq. (8.c). The upper 
and the lower curves refer to the values 

ω0τ=3 and ω0τ=5, respectively. 

Fig. 4b. Shows the amplitude (dipole) 
spectrum of the linear oscillator (see Eq. (8b)) 

with eigenfrequency Ω = 0.1ω0 and damping 

constant Γ = 0.005ω0. 

 

 

Fig. 4c. Shows the variation of the resonant value of the modulus square of the resonant 

dipole moment (at frequency ω = Ω = 0.1ω0) as a function of the carrier-envelope phase 

difference ϕ0 , according to Eq. (8b). 

www.intechopen.com



Intensity Effects and Absolute Phase Effects in Nonlinear Laser-Matter Interactions.  

 

253 

linear regime, the spectrum of the response follows the spectrum of the excitation according 
to this simple model, as is shown in Fig. (4b). If the system has a low-frequency resonance, 
then both the signal and the modulation become large enough, as can be seen in Figs. 4b-c.  

3. Multiphoton ionization and the multiphoton Kramers–Heisenberg formula 
for high-harmonic generation.  

The usual dispersion relations to light scattering are derived in the linear regime, where the 
incoming radiation is treated as a weak perturbation in comparison of the atomic binding 
potential. By restricting the present analysis to nonrelativistic intensities, we start with the 
Schrödinger equation of a single electron interacting jointly with the atomic potential V(r), 

with the laser field, characterized by the dipole term er⋅F(t), and with the spontaneously 

emitted radiation, whose effect is also described by a dipole term of the form er⋅F’(t): 

 [p2/2m + V(r) + er⋅F(t) + K(r,t)] |Ψ(t)〉 = i©∂t |Ψ(t)〉,     F(t)=εF0(t)cos(ω0t+ϕ0), (9a) 

 K(r,t)= er⋅F’(t),     F’(t)=iε’(2π©ω’/L3)1/2[aexp(−iω’t)—a†exp(+iω’t)], (9b) 

where p=—i©∂/∂r is the electron’s momentum operator and L3 is the quantization volume. 

The frequency, the polarization vector and the quantized amplitude of the emitted photon 
are denoted by ω’, ε’ and a, respectively. The quantized amplitudes satisfy the usual 
commutation relation [aa†—a†a]=1. The system starts at some initial time t0 in the product 
state  |Ψ(t0)〉=|Ψ0〉=|ψ0〉|0’〉, and evolves, according to the above Schrödinger equation, to a 
final state |Ψ0(t1)〉. Here |ψ0〉 is the initial electron state, and |0’〉 symbolizes the vacuum 
state, where the prime refers to the scattering mode that is initially empty. If we neglect the 
spontaneous emission during the interaction, then Eq. (9a) can describe multiphoton 
excitation or ionization, or multiphoton direct or inverse Bremsstrahlung processes. 
Following the general method due to Varró & Ehlotzky (1993), we can go over to the 
Kramers-Henneberger frame, and receive a integral equation for the evolution operator of 
the complete system. By projecting to a final state 〈Ψ1|, we obtain for the S-matrix elements: 

〈Ψ1|Ψ0(t1)〉=δ10—(i/©)∫dt〈Ψ1|U0+(t)W(t)U0(t)|Ψ0〉 

 —(i/©)2∫dt∫dt’〈Ψ1|U0+(t)W(t)U0(t) U0+(t’)W(t’)U0(t’)|Ψ0〉+〈Ψ1|R0(t1)〉, (10a) 

where U0(t) denotes the unperturbed propagator of the electron, and |R0(t1)〉 represents the 

third iteration of the integral equation. In deriving Eq. (10a) we have used that 〈Ψ1| and  

|Ψ0〉 are orthogonal eigenstates of the unpertubed Hamiltonian. The effective interaction 

represented by the operator Wα(t) has the form 

W(t)≡Vcl(r,t)+ K(r+α,t),     Vcl(r,t)≡V(r+rcl(t))—V(r),     md2rcl(t)/dt2=—eF(t), (10b) 

where rcl(t) is the classical position of the electron satisfying the Newton equation. 
According to Eqs. (3a-c), for a stationary field with ϕ0=0 (or in other words, for smooth 
switching–on  and –off of the laser field) the trajectory simply reads rcl(t)=α(t)≡α0εzsinω0t, 
α0≡μ0λ0/2π. Owing to the periodic modulation of the space-translated atomic potential 
Vcl(r,t), already the first nontrivial term on the right hand side of Eq. (10a) contains all the 
higher harmonics of the incoming laser radiation: 
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 Vcl(r,t)=ΣnVn(r)exp(−inω0t),       Vn(r)=ΣlVn(l)(r)Pl(cosθ), (11) 

where Pl(cosθ) is the l-th Legendre polynomial and θ is the polar angle of the electron’s 
position with respect to the polarization vector of the laser field. The detailed form of the 
„multipole-multiphoton expansion coefficients” Vn(l)(r) have been presented by Varró & 
Ehlotzky (1993).  
Before entering into a short analysis of high-harmonic generation (HHG) in the frame of our 
semiclassical method, a brief summary may be in order on the famous model by Keldish 
(1965) on the multiphoton ionization and the optical tunneling or cold emission of electrons 
induced by strong laser fields (see Bunkin & Fedorov (1965), Farkas et al. (1983,1984), Chin et 
al. (1983), Farkas & Chin (1984) and Walsh et al. (1994)). Leaving out the interaction term K 
responsible for the spontaneous emission of radiation, the second term on the right hand 
side in Eq. (10a) can be approximated in the following way: 

 Tfi(1) =—(i/©)∫dt 〈p|Up†(t)U2†(t)Ur†(t)V(r)|ψ0〉exp[(i/©)(p2/2m−E0)t], (12a) 

 Ur(t)=exp[(ie/©ω0)F0r⋅εcos(ω0t)],     Up(t)=exp[−(i/©)p⋅α0εzsinω0t], (12b) 

 U2(t)=exp[−(i/©)ΔE2t − i(ΔE2/2©ω0)sin(2ω0t)],        ΔE2=μ02mc2/4, (12c) 

 Tfi(Keldish) =—(i/©)∫dt ∫d3r ψ∗
p(r, t)V(r)ψ0(r, t)=−2πiΣn Tfi(n)δ[Ep− (E0− ΔE2 + n©ω0)], (12d) 

where μ0≡eF0/mcω0=10−9I01/2/Eph (with Eph≡©ω0/eV being the photon energy measured in 

eV) is the same dimensionless intensity parameter which has already been introduced in Eq. 
(3c) in the course of the classical analysis. We have also encountered the quantity 

ΔE2=μ02mc2/4=Up, which is just the ponderomotive energy shift, defined after Eq. (5b). In the 

Keldish model the final state of the electron is taken to be a Volkov state ψp(r, t) of some 

average energy Ep= p2/2m, which is a dressed state with respect to the interaction with the 
laser field. In the initial state the interaction with the laser is not incorporated, so it is an 

unperturbed atomic ground state ψ0(r, t)=ψ0(r)exp[−(i/©)E0t]. The explicit form of a 

nonrelativistic Volkov state reads (where A(t) is the vector potential of the field F(t)):  

 ψp(r, t)=〈r|Ur(t)|p〉exp{−(i/©)∫dt’[p−(e/c)A(t’)]2/2m},    F(t)=−∂A(t)/c∂t, (13a) 

exp[−(i/©)p⋅α0εzsinω0t]=exp[−i(μ0p⋅εz/©k)sin(ω0t)]=ΣnJn(μ0p⋅εz/©k)exp[−(i/©)(n©ω0)t], (13b) 

where we have explicitely written out the Fourier expansion coefficients of the exponential 

in Eq. (12b), by using the Jacobi-Anger formula for the generating function of the ordinary 

Bessel functions (Gradshteyn & Ryzhik (2000)). This is one of the key mathematical formula 

with the help of which the strength of the multiphoton side-bands of additional energies n©ω0 

can be calculated. It is clearly seen that the appearance of the side-bands is a result of the 

sinusoidal modulation of the phase of the Volkov state given in Eq. (13a). The multiphoton 

ionization process can be viewed as a transition from a side-band to the free electron mass 

shell corresponding to free propagation. This is expressed by the delta functions in the 

incoherent superposition of the multiphoton transition amplitudes, describing the 

conservation of energy: 

www.intechopen.com



Intensity Effects and Absolute Phase Effects in Nonlinear Laser-Matter Interactions.  

 

255 

 pn2/2m=n©ω0−(|E0|+ ΔE2 ) > 0,   n = nmin + nexcess =1, 2, 3, … , (14) 

where nmin is the minimum number of quanta for the deliberation of the electron from the 

binding potential, and nexcess denotes the number of excess quanta, which may be absorbed 

additionally in the continuum. This latter phenomenon is called above-threshold ionization 

(ATI). The above-threshold electron spectra of nonlinear photoionization induced by 

relatively long laser pulses, analysed thoroughly e.g. by Krause et al. (1992), Agostini (2001), 

Paulus and Walther (2001), and recently by Banfi et al. (2005) and Ferrini et al. (2009) for 

multiphoton surface photoelectric effect, have common features with the corresponding 

high-harmonic spectra. The initial fall-off, the (occasionally rising) plateau and the sharp 

cut-off are present in each cases. Just for illustration, in Fig. 5 we show the structure of a 

typical ATI spectrum, which in many cases very much resembles to the HHG spectrum. 

 

 

Fig. 5. Shows schematically a typical above-threshold ionization (ATI) electron spectrum. 
The initial fall-off, the plateau and the  cut-off are usually also present in the higher-
harmonic generation (HHG) processes (in which case the harmonic order is drawn on the 
abcissa). 

From Eq. (14) it is seen that the ionization potential is increased by the ponderomotive 
energy shift, which, by the increase of the intensity, may well become even much larger than 
the photon energy. In such cases the channel corresponding to the minimum number of 
photons gets closed, and the phenomena of peak supression enters in the scene. Keldish (1965) 
has approximately calculated the total ionization probability, by using the method of 
stationary phase of the classical action in the phase of the electron’s Volkov state. On the 
basis of his method, from Eqs. (12d) and (13a-b), the total probability can be approximated 
by the formula (see also Landau & Lifshitz (1978)): 

w ~ exp[—(2A/©ω0)f(γ)],   f(γ)≡(1+1/2γ2)Arshγ—(1+γ2)1/2/2γ,   γ≡ω0(2mA)1/2/eF0≡2ω0τ, (15) 

where A=|E0| is the ionization potential (work function), and τ is the tunnel time. The 

Keldish γ parameter defined in Eq. (15) can also be expressed in terms of the dimensionless 

intensity parameter introduced already in Eq. (3b): γ=2(A/2mc2)1/2/μ0 . We emphasize that 
the above approximate formula can be realistic strictly in the case when the ionization 

energy is much larger than the photon energy, A=|E0|>>©ω0. In the meantime the formula 

has been considerably refined, in particular by Ammosov, Krainov & Delone (1998), but we 
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shall not enter into these more sophisticated methods. We also note that the tunneling time τ 
introduced here corresponds to the concept of tunneling time by Büttiker and Landauer 

(1982). The numerical value of the Keldish γ can be calculated according to the following 

formula: γ=2×106Eph(A/I0)1/2, where the photon energy Eph and the ionization potential 
(work function) measured in electron volts, and the peak intensity I0 measured in W/cm2. 

For example for Eph=1, A=25, and I0=1012 we have γ=10. On the basis of Eq. (15), in the two 

extreme cases γ >> 1 („large frequency and small intensity”: „multiphoton regime”) and γ << 
1 („small frequency and large intensity”: „tunnel regime”) we can give a simple physical 
interpretation of Eq. (15): 

w ~ [μ02(mc2/8A)]A/©ω0 ~ (I0)n  if  γ >> 1,         w ~ exp[—4(2mA3)1/2/3©eF0]  if  γ << 1, (16)  

In the first formula of Eq. (16) we mean on the power index n the minimum number of 

photons needed for the ionization, n©ω0>≈A. The „n-power-law” corresponds to the fall-off 

regime shown in Fig. 5. The tunnel regime γ < 1 can be reached with intensities higher than 
1014 W/cm2 in the above numerical example. In Figs. 6a and 6b we show in a special case the 
intensity dependence of the Keldish gamma parameter and the relative probability, 
respectively. 
 

 

Fig. 6a. Shows the intensity dependence of 

the Keldish γ parameter, defined in Eq. (15), 

for the special values A=16eV and ©ω0=0.1eV, 

which correspond to the ionization of Argon 
atoms by a CO2 laser. The transition region is 
located around the intensity value 1012 

W/cm2, where the value of the γ parameter 
becomes about unity. 

Fig. 6b. Shows the intensity dependence of the 
Keldish relative probability, according to Eq. 
(15), for the special values A=16eV and 

©ω0=0.1eV, which correspond to the 

ionization of Argon atoms by a CO2 laser. 
Around the intensity value 1012 W/cm2, the 
dependence changes from the perturbative 
behaviour to the tunneling regime, as can also 
be estimated from Eq. (16). 

The general equation for the matrix elements for multiphoton transitions, Eqs. (10a-b), can 
also be used to calculate the production rates of high-harmonics, as has been shown by 
Varró & Ehlotzky (1993). In contrast to the standard method based on the determination of 
the laser-induced nonlinear atomic dipole moment, this description relies on scattering 
theory, and it yields a possible multiphoton generalization of the Kramers-Heisenberg dispersion 
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relation. By performing the time integral, we have the energy conservation for an n-th-order 

process ©ω’=n©ω0—(Ef—E0), thus the formalism describes also the possibility that the final 

energy Ef of the atomic electron does not coincides with its initial energy E0 . On the basis of 
Eqs. (10a-b) the differential cross-sections for such processes read 

dσn/dΩ=r02(ω’/ω0)3(2a0/α0)2|Mn|2,   r0=e2/mc2, a0=©2/me2,  Mn=(εz⋅ε’)δf0δn1 + S1 + S2 , (17a) 

 S1 ≡ +iΣk[〈ψf|Vn|Ek〉〈Ek|(r⋅ ε’)|ψ0〉(Ek—E0+©ω’+iε)—1] , (17b) 

 S2 ≡ +iΣk[〈ψf|(r⋅ ε’)|Ek〉〈Ek|Vn|ψ0〉(Ek—E0+©ω’—n©ω0+iε)—1] , (17c) 

where in the summation over the intermediate states the positive infinitesimal ε has been 
introduced. It can be shown that the cross-section given by Eqs. (17a-b-c) reduces to the well-
known linear dispersion formula. In Varró & Ehlotzky (1993) we have calculated the matrix 
elements analytically, and applied to the calculation of the production rates on three kinds of 
noble gas atoms, and obtained reasonable agreement with the experimental observations. 

4. The nonlinear effect of the laser-induced oscillating double-layer potential 
on metal surfaces. X-ray generation in the presence of a static homogeneous 
electric field. 

In case of multiphoton photoelectric effect of metals, Farkas & Tóth (1990) and  Farkas et al. 

(1998) measured very high-order above-threshold electrons coming from metal targets. The 

theoretical interpretation of these results has been first given by the present author in Varró 

& Ehlotzky (1998) and recently in Kroó et al. (2007). In Varró et al. (2010) on the basis of the 

so-called laser-induced oscillating double-layer potential model the spontaneous emission of 

radiation by metallic electrons  in the presence of electromagnetic fields of surface plasmon 

oscillations. Our original model belongs to a wider class Floquet-type analyses (see e.g. 

Kylstra (2001)), and considers the inelastic electron scattering on the oscillating double-layer 

potential generated by the incoming laser field at the metal surface. The model has already been 

succesfully used to interpret the experimental results on very high order surface 

photoelectric effect in the near infrared (Farkas & Tóth (1990)) and in the far infrared regime 

(Farkas et al., 1998). In this description the basic interaction leading to very high 

nonlinearities is caused by the collective velocity field of the oscillating electrons near the 

metal surface, within a layer of thickness smaller that the penetration depth δ. Because the 

quasistatic velocity field is screened inside the metal, the thickness of the layer is taken as 

the Thomas-Fermi screening length δs=1/kF  where kF=(6πnee2/EF)1/2. The wave function of 

an electron will then obey the two Schrödinger equations 

(p2/2m—V0—VDsinω0t)ΨI= i©∂t ΨI   (z < 0) ,     (p2/2m+VDsinω0t)ΨII= i©∂t ΨII   (z > 0), (18a)  

where the subscript I refers to the interior region (metal) and II to the exterior region 

(vacuum), respectively. Following Varró & Ehlotzky (1998), the amplitude of the collective 

velocity field  

VD=2πnee2α0δs=μ0(ωp/4ω0)( δs/δ)(2mc2),       ωp=(4πnee2/m)1/2 ,        VD=3μ0×104eV, (18b) 
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where ωp is the plasma frequency, α0≡μ0λ0/2π, and δ denotes the skin-depth of the metal 

taken at the laser frequency ω0. The interaction with the other agents like surface plasmon 
fields should in principle still be taken into account, but since their direct effect is much 
smaller than that of the induced collective velocity field, we have not displayed these direct 
interaction in Eqs. (7a-b). Thus in Eqs. (7a-b) we only display the Schrödinger equation 
relevant in the final state interaction, where additional energy redistribution takes place due 
to the interaction with the induced near field. The outgoing electron current components for 

which the momenta pn=[2m(n©ω0—A)]1/2 are real (n ≥ n0=4 in the case under discussion), 

corresponding to n-order multiplasmon absorption, have been obtained from the Fourier 

expansion of ΨI and ΨII . The unknown multiphoton reflection and transmission coefficients, 
Rn and Tn , respectively, can be determined from the matching equations, i.e. from the 

continuity of the wave function, ΨI(0,t)=ΨII(0,t)
 

and of its spatial derivative, ∂zΨI(0,t)= 

∂zΨII(0,t) which relation must hold for arbitrary instants of time. The resulting two coupled 
infinite set of linear algebraic equations for Rn and Tn can be numerically solved without any 
particular difficulty, moreover, it is possible to derive quite accurate analytic approximate 
formulas, too. According to these results, the current components normalized to the 
incoming current can be expressed as 

 jt(n)=(pn/q0)|Tn|2 ,    |Tn|2 ≈ Jn2(a)     (n ≥ n0),    a ≡ 2VD/©ω0 , (19) 

where q0=(2mEF)1/2 is the average of the initial momenta. For instance, in case of 

I0=2×108W/cm2
 we have 2VD=11eV, and a=2VD/©ω0=7 for a Ti:Sapphire laser of photon 

energy 1.56eV. We have taken for the ratio ( δs/δ)=2×10—2, i.e. for the δ=22.5nm skin-depth 

of gold metal the screening length is about δs=0.4nm. Though the standard nonlinearity 

parameter, μ0=10—5, is very small at such intensities, the parameter „a” is that large that it 
can cause 7th order nonlinearities with sizeable probability. This numerical example clearly 
shows that already at very low intensities used in several experiments the new nonlinearity 
parameter „a” introduced in Eq. (19) has a much larger value than the argument of the Bessel 
function in Eq. (13b). On the basis of this remarkable quantitative difference, our theory 
based on introducing the laser-induced near-field is capable of accounting for the basic 
features of the recently measured unexpectedly broad above-threshold electron spectra. 

Because of the smallnes of μ0, in the frame of the standard nonperturbative Volkov 
description there is no chance to interpret several recent and earlier multiphoton 
experiments. It is interesting to note that these high nonlinearities found in the experiments 
cannot be accounted for by including the effect of field enhancement due to the generation 
of surface plasmon oscillations. Though this effect results in a two order of magnitude 
increase of the intensity parameter, owing to the compression of the radiation field at the 
metal surface, it is still not enough to have the standard nonperturbative description to 
work.  
The double-layer near-field model has also been applied to consider the generation of x-rays 

by irradiating metal surfaces with a powerful laser beam in the presence of a static electric 

field (Varró et al. (1999)). A similar effect has been recently studied by Odžak & Milošević 
(2005) in their work on high-order harmonic generation in the presence of a static electric 

field.  
Recently, in a series of papers (see Varró (2004) and Varró (2007a-b-c)) the author has 
studied the scattering of a few-cycle laser pulse on a thin metal nano-layer, and the effect of 
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the carrier-envelope phase difference has been investigated. The analysis has been extended 
to consider plasma layers, too, in the relativistic regime. Perhaps the most surprising effect 
which came out from the analysis, was the generation of phase dependent wake-fields. This 
wake-fields are reflected quasi-static. 
By analogy, one may think that if the phases of the above-threshold electron de Broglie waves 
generated at the metal surface are locked (i.e. the difference of the phases of the 
neighbouring components is a smooth, possibly a constant  function of the order, namely the 
number of absorbed photons), then the Fourier synthesis of these components yields an 
attosecond electron pulse train emanating perpendicularly from the metal surface, quite 
similarily to the generation of attosecond light pulses from high harmonics (which, on the 
other hand, are propagating in the specular direction). This expectation is quite natural, 
because the spacing of the electron peaks in the frequency space is just the optical frequency 

hν0/h=ν0, like in the case of high-harmonic generation. The idea has been worked out quite 
recently by Varró & Farkas (2008a), where further references can be found concerning the 
general question attosecond electron pulses.  Concerning these developments, we refer the 
reader to the above-mentioned papers. 

5. Some quantum phase and other statistical properties of few-cycle and 
attosecond pulses 

It is a natural, and both conceptually and practically important question that to what extent 
can one control the phase of the ultrashort pulses, and, at all, what are the ultimate quantum 
limits of phase stabilization in a given generating process? The systematic quantitative 
analysis of these problems is still missing, at least concerning the quantum uncertainties of 
the phases. One may expect that the usual high-intensity laser fields, being in a highly 
populated coherent state, can certainly be well represented in a satisfactory manner in the 
frame of external field approximation, i.e. in terms classical Maxwell fields of definite 
amplitudes and phases, or in terms of classical stochastic processes. On the other hand, in 
the generation of extreme pulses, like sub-femtosecond or attosecond pulses, it is an open 
question whether the fully quantum or the semiclassical description should be used for the 
correct interpretation. The reader can judge the importance of such questions by 
remembering the chapters devoted to the classical theory of coherence in the book by Born 
& Wolf (2009), for instance. Concerning the general description of quantum coherence and 
correlations of the electromagnetic radiation, we refer the reader to the books by Klauder & 
Sudarshan (1968), Scully & Zubairy (1997), Loudon (2000) and to the book by Schleich (2001) 
on quantum optics in phase space. In this context one has to keep in mind that, after all, 
though we have been speaking of „photon absorption” or „photon emission” in 
„multiphoton processes”, either the classical or semiclassical framework has been used, in 
which the word „photon” has simply no meaning. As is general in the study of nonlinear 
laser-induced processes, the appearance of the side-bands in the electron energy in the 

phase of the wave function, exp[—(i/©)(Eel—E’el)t—inω0t] , is transformed to the 

mathematically identical form exp[—(i/©)(Eel—E’el+n©ω0)t]. The delta functions δ(Eel—

E’el+n©ω0) appearing in the transition probabilities are said to be responsible for the energy 

conservation  E’el=Eel+n©ω0, and then this balance equation is considered as „n-photon 

absorption” by the electron. On the other hand, in the very sense, no true light quanta has 
been considered, but rather mere classical Maxwell fields.   
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Recently we have analysed in quite details the interaction of strong quantized radiation 
fields with free electron wave-packets (see Varró (2008b-c) and Varró (2010b)), and found 
that the entangled photon-electron states, developed due to the interaction, are closely 
related to the number-phase minimum uncertainty states of the photon field. We have also 
proved (Varró (2010)) that the strong-field interactions necessarily lead to entangled states 
and the appearance of entropy remnants of a photon-electron system. In a series of papers 
Fedorov et al. (2006) have shown that the short-pulse and strong-field breakup processes 
may be considered as a route to study entangled wave-packets. For the other extreme of 
weak, single-photon fields we have recently presented a method to treat intensity-intensity 
correlations by simple classical probability theory (Varró (2008c)). The study of the 
interaction of electrons with quantised radiation field dates back to our earlier works 
(Bergou & Varró (1981a-b)), in which the multiphoton Bremsstrahlung processes and the 
nonlinear Compton scattering were described on the basis of an algebraic treatment 
introduced by us. These analyses has served as a “microscopic foundation” for the 
semiclassical treatments. Here we mention only one genuine quantal effect, namely that in 

Compton scattering the frequency ω’n of the scattered radiation depends on the change in 
the occupation of the modes of the incoming radiation: 

 ω’n=(nω0+ωcμ02δ/4)/[1+(2nω0/ωc+ μ02/2)sin2(θ/2)] , (20) 

where ωc≡mc2/© is the Compton frequency, θ is the scattering angle and δ≡(Nf—Ni)/Ni is 

the “depletion factor”, which is a relative change in the photon occupation number. The 

“quantum  intensity parameter” μ0 can be defined in a similar manner as in the semiclassical 
theory, in Section 2, such that in the present definition we formally associate an amplitude 

A0=(c/ω0)(2π©ρ)1/2 for the vector potential, where ρ=〈Ni〉/L3 is the initial photon density. 

In the following we present the simplest quantal description of high-harmonic generation in 
Thomson (Compton) scattering, where we describe the electron by a classical current 
density j(r,t), which is induced by the incoming strong laser field. This part corresponds to 
the description listed in cell No. 3 in Table 1. According to Eq. (3a) we take a nonrelativistic 

oscillation caused by a moderately intense field, i.e. v(t)=−ε0voscsin(ω0t+ϕ0) and 

r(t)= ε0xosccos(ω0t+ϕ0), thus we do not consider the effect of the possible drift motion (in fact, 
for an electron being initially at rest, this assumption does not correspond to any 
approximation, except that the special case of a smooth switching-on and -off is considered).  
The equation of motion of the quantized readiation field reads: 

 i©∂t|Φ〉=Hint|Φ〉,   Hint =−(1/c)∫d3rj(r,t)⋅AQ(r,t),   j(r,t)=−ev(t)δ(r−r(t)), (21a) 

 AQ(r,t)=Σks[g(k, s; r, t)aks +  g∗(k, s; r, t)a†
ks], (21b) 

 g(k, s; r, t)≡c(2π©/ωkL3)1/2ε(k,s)exp(ik⋅r−iωkt),   ωk=c|k|,   [aks, a†
k’s’]=δkk’δss’ , (21c) 

where AQ(r,t) is the vector potential of the whole quantized radiation field decomposed into 
the vector plane wave modes represented by g(k, s; r, t). The exact solution of Eq. (21a) can 

be expressed with the help od the displacement operators D[αks(t)] for each mode, by 

properly determining the parameters αks(t), as is shown in the following equation: 

 |Φ(t)〉=ΠksD[αks(t)] |Φ(t0)〉,   αks(t)=(i/©c) ∫dt∫d3rj(r,t)⋅ g∗(k, s; r, t). (22) 
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We summarize some basic properties of the displacement operator D(α) and the coherent 

states denoted by |α〉, which are generated from vacuum under the action of the classical 
current. In order to simplify these formulae we do not display the mode index {k, s} (where 
k is the propagation vector and s is the polarization index of the scattered radiation): 

 D(α)≡exp(αa†−α*a),        D(α)|0〉=|α〉=Σkαk/(k!)1/2|k〉exp(−|α|2),      a|α〉=α|α〉, (23) 

Finally we note that the the displacement property D†(α)aD(α)=a+α means a shift of the 
quantized amplitudes. By putting explicit form of the electron current in the integral on the 
right hand side of Eq. (22), and using the Jacobi-Anger formula for the generation of the 
ordinary Bessel functions, we obtain: 

αks(t)= (i/©)ceμ0(2π©/ωkL3)1/2(ε0⋅ε(k,s))Σn{nJn[μ0λ0(ε0⋅k)]/μ0λ0(ε0⋅k)}∫dtexp[i(ωk—nω0)t]. (24) 

The time integral for large interaction times give a disctrete sequence of resonant 

frequencies ωk=nω0, which are just the high-harmonic frequencies. In general, if the 
quantized field is initially on the vacuum state (thus we do not consider induced processes), 

i.e. |Φ(t0)〉= |0〉,   then the quantum state |Φ(t)〉, developing due to the interaction with the 
oscillating electron, will be a multimode coherent state. Because of the frequency condition 
coming from the resonant time integral in Eq. (24), each harmonic components will be in a 
coherent state, regardless of their average occupation (which is governed by the size of the 
Bessel functions). The expectation value of the energy of a particular component is given by 
the expression: 

 〈(n©ω0)a†nω0sanω0s〉=r02|s×ε0|2 n4[2Jn(z)/z]2,    s≡ k/| k|,   z≡nμ0(s⋅ε0). (25) 

The formula, Eq. (25) is equivalent with the the classical formula for the high-harmonic 
production in nonlinear Thomson scattering, however, it contains only the first moment of 
the photon distribution, so it should be considered as a mean value. Of course, each 
harmonics of the scattered quantum field is loaded by inherent fluctuations, thus, the phases 
of the components are uncertain to a lesser or larger extent. 
The simplest description of the phase uncertainties of a quantum field can be formulated in 

terms of the Susskind and Glogower „cosine” and „sine” operators, C and S, respectively, 

which are defined in analogy with the cosine and sine of a phase of the complex number 

(see e.g. Varró (2008c)). By introducing the formal polar decomposition of the quantized 

amplitudes, a=E(a†a)1/2, a=(a†a)1/2E†, we define 

 C≡(E+E†)/2,   S≡(E—E†)/2i,   ΔC2≡〈(C—〈C〉)2〉,     ΔS2≡〈(S—〈S〉)2〉, (26) 

where the variances ΔC2 and ΔS2 characterize the phase uncertainties. In Fig. 7 we have 

plotted the sum of this variances as a function of frequency in a Gaussian few-cycle pulse 

(which may result from high-harmonic generation, resulting in a quantum state like |Φ(t)〉 
above in Eq. (22)). 

The Figure 7 clearly shows that the quantum phase uncertainty is quite steeply increasing as 

the spectral components are getting off the cental peak, and finally the uncertainty saturates, 

and takes its maximum value 1. It should be kept in mind that in general the nonlinear 

sources cannot be described by classical currents. According to our recent study(see Varró 

(2008b) and Varró (2010))., the joint quantum interaction with localized electron wave 
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packets result in the generation of phase eigenstates of Jackiw type, thus they have very 

different correlation properties in comparison with coherent states, which are set to be the 

closest analogons of classical stable fields. 

 

 

Fig. 7. Shows the normalized quantum amplitude distribution |αω|2 of a 3—cycle 

femtosecond pulse and the dependencece of the quantum phase uncertainty ΔC2+ΔS2 

associated to each spectral components with normalized frequency ω/ω0. The pulse has 
been represented by a continuous Gaussian multimode coherent state, like that given in Eq. 

(22). The spectrum is peaked around ω0 , where the quantum phase uncertainty has its 
minimum (it is essentially very close to zero).  
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