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1. Introduction

Since fuzzy logic was introduced by Lotfi Zadeh in 1965 (41), it has had many successful
applications in all fields that one can imagine. The reason is that many real-world applications
problems are involved the systems in which at least some parameters are represented by
fuzzy numbers rather than crisp numbers and linguistic labels such as small and large are
also associated with the fuzzy sets. On the other hand a system of fuzzy linear equations may
appear in a wide variety of problems in various areas such as mathematics, statistics, physics,
engineering and social sciences.
The objective of this chapter is to introduce a method to find a good approximate solution to
a system of fuzzy linear equations, and first we need to be familiar with some notations on
fuzzy numbers in this chapter, however it is assumed that the reader is relatively familiar with
the elementary fuzzy logic concepts.
In (14), Chong-Xin and Ming represented a fuzzy number ũ by an ordered pair of functions
(u(r),u(r)), 0≤ r ≤ 1, which satisfies some requirements.
In papers and books the authors mainly have used linear membership functions as spreads,
because they are conceptually the simplest, have a clear interpretation and play a crucial role
in many areas of fuzzy applications, and almost every works on this field of study have been
done on triangular or trapezoidal fuzzy numbers, but polynomial form fuzzy numbers are
simple and have a clear interpretation too, and in order to obtain a richer class of fuzzy
numbers we use polynomials of the degree higher than one, as the spreads of membership
functions of fuzzy numbers. Thus in (2) we introduced a type of fuzzy numbers in which both
left spread function u(r) and right spread function u(r) are polynomials of degree at most m.
We named this type of fuzzy numbers, m-degree polynomial-form fuzzy numbers.
The main aim of introducing this type of fuzzy numbers is that in many applications of fuzzy
logic and fuzzy mathematics we need (or it is better) to work with the same fuzzy numbers.
It has been shown in (2) that a fuzzy number ũwith continuous left and right spread functions
can be approximated by a fuzzy number with m-degree polynomial-form, where choosing m
depends on the shape of left and right spread functions L and R, and the derivation order of
them.
Some applications of this approximation in the case m = 1 (trapezoidal fuzzy numbers) are
given in (3), and some properties of this approximation operator are recently given in (10).
There are many other literatures which authors tried to approximate a fuzzy number by a
simpler one (2; 3; 4; 18; 25; 27; 28; 29; 30; 31; 32; 42). Also there are some distances defined by
authors to compare fuzzy numbers (35; 37).
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2 Ferroelectrics

Obviously, if we use a defuzzification rule which replaces a fuzzy set by a single number,
we generally loose too many important information. Also, an interval approximation is
considered for fuzzy numbers in (25), where a fuzzy computation problem is converted into
interval arithmetic problem. But, in this case, we loose the fuzzy central concept. Even
in some works such as (4; 31; 32; 42), authors solve an optimization problem to obtain
the nearest triangular or trapezoidal fuzzy number which is related to an arbitrary fuzzy
number, however in these cases there is not any guarantee to have the same modal value
(or interval). But by parametric polynomial approximation we are able to approximate many
fuzzy numbers in a good manner.
The problem of finding the nearest parametric approximation of a fuzzy number with respect
to the average Euclidean distance is completely solved in (13). Ban point out the wrongs
and inadvertence in some recent papers, then correct the results in (12). A parametric
fuzzy approximation method based on the decision maker‘s strategy as an extension of
trapezoidal approximation of a fuzzy number offered in (34). An improvement of the nearest
trapezoidal approximation operator preserving the expected interval, which is proposed by
Grzegorzewski and MrXowka is studied in (39). There are some trapezoidal approximation
operators introduced in (26; 29; 38)
But the main aim of this chapter is to give a method to solve linear system of fuzzy equations.
There are three categories of a linear system of fuzzy equations

Ax= b.

– In the first category, the coefficient matrix arrays are crisp numbers, the right-hand side
column is an arbitrary fuzzy vector and the unknowns are fuzzy numbers.

– In the second category, the coefficient matrix arrays are fuzzy numbers, the right-hand side
column is an arbitrary fuzzy vector and the unknowns are crisp numbers.

– In the third category, all the coefficient matrix arrays, the right-hand side arrays and the
unknowns, are fuzzy numbers.

There have been few papers of fuzzy linear equations with crisp unknowns, and in this
chapter we propose a method for solving an n× n linear system from second category based
on (9). However there are many reported studies in which researchers tried to solve a system
of linear fuzzy equations numerically (1; 5; 6; 7; 11; 15; 21; 22). In most of these studies the
problem is considered for a system with fuzzy unknowns and crisp coefficients. Some new
work has been done on fully fuzzy linear systems of equations. Some works are done on fully
fuzzy linear system of equations (16; 17). Some works have been done on rectangular m× n
system of equations (11; 24; 43) and some works have been done on blocked matrices (33; 36).
A minimal solution for dual fuzzy linear system is given in (8). A class of methods is
considered in (40).
The structure of this chapter is as follows: First we represent source distance and m−source
distance; and we present the nearest approximation of a fuzzy number in polynomial
parametric form, introduced in (2) and present some properties of it where recently published
in (10). Next we present a method for solving a fuzzy system of linear equations with
m-degree polynomial parametric-form fuzzy coefficients and crisp unknowns by a least
squares method. Then we introduce the extension of this method to solve a general fuzzy
system of linear equations with LR fuzzy coefficients and crisp unknowns.
One of the advantages of the proposed method is that by this method not only one can find a
good approximation of the solution of such fuzzy systemswith polynomial-form fuzzy arrays
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Numerical Solution of a System of Polynomial Parametric form Fuzzy Linear Equations 3

but even a system of fuzzy linear equations with general type of fuzzy number arrays can be
solved by this method.
Finally some applied examples are given at the end of this chapter .

2. Preliminaries

Let F (R) be the set of all normal and convex fuzzy numbers on the real line (44).

Definition 2.1 (19), A generalized LR fuzzy number ũ with the membership function µũ(x),x ∈ R

can be defined as

µũ(x) =

⎧
⎪⎪⎨
⎪⎪⎩

lũ(x) , a ≤ x ≤ b,
1 , b ≤ x ≤ c,

rũ(x) , c ≤ x ≤ d,
0 , otherwise,

(2.1)

where lũ(x) is the left membership function that is an increasing function on [a,b] and rũ(x) is
the right membership function that is a decreasing function on [c,d]. Furthermore we want to
have lũ(a) = rũ(d) = 0 and lũ(b) = rũ(c) = 1. In addition, if lũ(x) and rũ(x) are linear, then ũ is
a trapezoidal fuzzy number which is denoted by (a,b, c,d). If b = c, we denoted it by (a, c,d),
which is a triangular fuzzy number.
For 0< α ≤ 1; α-cut of a fuzzy number ũ is defined by (20),

[ũ]α = {t ∈ R | µũ(t)≥ α}. (2.2)

Definition 2.2 (35), A continuous function s : [0,1] −→ [0,1] with the following properties is a
regular reducing function :

1. s(r) is increasing.

2. s(0) = 0,

3. s(1) = 1,

4.
∫ 1
0 s(r)dr = 1

2 .

In (14), Chong-Xin and Ming represented a fuzzy number ũ by an ordered pair of functions
(u(r),u(r)):
The parametric form of a fuzzy number is shown by ṽ = (v(r),v(r)), where functions v(r) and
v(r); 0≤ r ≤ 1 satisfy the following requirements:

1. v(r) is monotonically increasing left continuous function.

2. v(r) is monotonically decreasing left continuous function.

3. v(r) ≤ v(r) , 0≤ r ≤ 1.

4. v(r) = v(r) = 0 for r < 0 or r > 1.

Definition 2.3 (35), The value and ambiguity of a fuzzy number ũ are defined by

val(ũ) :=
∫ 1

0
s(r)[u(r) + u(r)]dr, (2.3)

and

amb(ũ) :=
∫ 1

0
s(r)[u(r)− u(r)]dr, (2.4)

respectively.
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4 Ferroelectrics

Definition 2.4 (2; 9) We say a fuzzy number ũ has m−degree polynomial-form, if there exist two
polynomials pm(r) and qm(r), of degree at most m; such that ũ = (pm(r),qm(r)).

Let PFm(R) be the set of all m−degree polynomial-form fuzzy numbers.

Definition 2.5 (2), Let for positive integer k, we have u,u ∈ Ck[0,1]. We define k-validity and
k-unworthiness of a fuzzy number ũ by

valk(ũ) :=
∫ 1

0
s(r)[u(k)(r) + u(k)(r)]dr, (2.5)

and

ambk(ũ) :=
∫ 1

0
s(r)[u(k)(r)− u(k)(r)]dr, (2.6)

respectively.

0-validity and 0-unworthiness of a fuzzy number are its value and ambiguity, respectively. i.e.

val0 := val, amb0 := amb.

Proposition 2.1 For any nonnegative integer k, the k-validity and k-unworthiness have the following
properties:

1. valk(ũ± ṽ) = valk(ũ)± valk(ṽ),

2. ambk(ũ± ṽ) = ambk(ũ)± ambk(ṽ).

Definition 2.6 Let for positive integer m, we have u,u∈ Cm−1[0,1]. For k= 0,1, . . . ,m− 1, we define

dk(ũ, ṽ) := |valk(ũ− ṽ)|+ |ambk(ũ− ṽ)| . (2.7)

Definition 2.7 Let X and Y be two non-empty subsets of a metric space (M,d). We define their
Hausdorff distance dH(X,Y) by

dH(X,Y) =max{sup
x∈X

inf
y∈Y

d(x,y), sup
y∈Y

inf
x∈X

d(x,y)}. (2.8)

3. Source distance and m-source distance

Definition 3.1 (2), Let AF (R) be a subset of F (R). ṽ∗ ∈ AF (R), is the nearest approximation of
an arbitrary fuzzy number ũ ∈ F (R) out of AF (R), with respect to a meter d if and only if

d(ũ, ṽ∗) = min
ṽ∈AF(R)

d(ũ, ṽ). (3.1)

Definition 3.2 (2), For ũ, ṽ ∈ F (R), we define source distance of ũ and ṽ by

D(ũ, ṽ) :=
1

2

{
d0(ũ, ṽ) + dH([ũ]

1, [ṽ]1)
}
, (3.2)

where dH is the Hausdorff metric.
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Numerical Solution of a System of Polynomial Parametric form Fuzzy Linear Equations 5

In (2) we proved that the source distance, D, is a metric on the set of all trapezoidal fuzzy
numbers.

Definition 3.3 For a nonnegative integer j, we define jth-source number by

Ij :=
∫ 1

0
r js(r)dr. (3.3)

Lemma 3.1 Let Ij be the j
th-source number, then {Ij} is a positive decreasing sequence, where I0 =

1
2 .

i.e. 0≤ . . . < I2 < I1 < I0 =
1
2 .

Proof: By using the definition of jth-source number and regular reducing function we have
I0 =

1
2 . By Mean Value Theorem for integrals for any integer j ≥ 1, there exists a ψ ∈ (0,1),

such that

Ij = ψ

∫ 1

0
r j−1s(r)dr < Ij−1.

�

Definition 3.4 For ũ, ṽ ∈ F (R), we define m-source distance of ũ and ṽ by

Dm(ũ, ṽ) :=
1

2
dH([ũ]

1, [ṽ]1) +
m−1

∑
k=0

′dk(ũ, ṽ).

where
m−1
∑
k=0

′ is defined by

m−1

∑
i=0

′ai =
1

2
a0 +

m−1

∑
i=1

ai.

Theorem 3.2 For ũ, ṽ, w̃, z̃ ∈ F (R), the distance, Dm, satisfies the following properties:

1. Dm(ũ, ũ) = 0,

2. Dm(ũ, ṽ) = Dm(ṽ, ũ),

3. Dm(ũ, ṽ) ≤ Dm(ũ, w̃) +Dm(w̃, ṽ),

4. Dm(kũ,kṽ) = |k|Dm(ũ, ṽ) for k ∈ R,

5. Dm(ũ+ w̃, ṽ+ z̃)≤ Dm(ũ, ṽ) + Dm(w̃, z̃).

Example 3.1 For two crisp real numbers a and b we have

Dm(a,b) = |a− b|.

Proposition 3.3 The fuzzy number ṽ∗ is a nearest approximation of ũ out of PFm(R) if and only if

Dm(ũ, ṽ
∗) = min

ṽ∈PFm(R)
Dm(ũ, ṽ). (3.4)

We denote the set of all the nearest approximations of a fuzzy number ũ, out of PFm(R), by
N∗
PFm(R)m

(ũ).

437Numerical Solution of a System of Polynomial Parametric form Fuzzy Linear Equations 437Numerical Solution of a System of Polynomial Parametric form Fuzzy Linear Equations

www.intechopen.com
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Theorem 3.4 Let ũ be a fuzzy number. If for positive integer m we have u,u ∈ Cm−1[0,1], then ṽ is
the nearest approximation of ũ out of PFm(R) if and only if Dm(ũ, ṽ) = 0.

Proof: See (2). �

Theorem 3.5 Let m be a positive integer and suppose that ũ ∈ F (R) be an arbitrary fuzzy number.
ṽ ∈ PFm(R) is the nearest approximation of ũ out of PFm(R), if and only if for k = 0, . . . ,m− 1; ṽ
and ũ have the same k-validity and k-unworthiness and furthermore [ũ]1 = [ṽ]1.

Proof: See (2). �

Corollary 3.6 Let ũ be a generalized LR fuzzy number. If for positive integer m we have u,u ∈
Cm−1[0,1], then the nearest approximation of ũ out of PFm(R) exists.

Theorem 3.7 (10) The nearest approximation of a m-degree polynomial-form fuzzy number, out of
PFm(R), is itself.

Proof: Let ṽ ∈ PFm(R) be the nearest approximation of ũ ∈ PFm(R). Also let

v(r) = dmr
m + . . .+ d1r+ d0,

and
u(r) = cmr

m + . . .+ c1r+ c0,

By defining w(r) = v(r)− u(r) = ∑
m
j=0 ajr

j, where aj = cj− dj for j= 0,1, . . . ,m; we have w(1) =

0 and ∫ 1

0
w(k)(r)s(r)dr = 0, k = 0,1, . . . ,m− 1.

Therefore we have a homogenous system of linear equations with the following nonsingular
coefficients matrix ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 · · · 1
I0 I1 I2 I3 · · · Im
0 I0 2I1 3I2 · · · mIm−1

0 0 2I0 3!I1 · · · m(m− 1)Im−2
...

...
...

...
...

0 0 0 0 · · · m!I1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Therefore w≡ 0. i.e. u ≡ v. In a similar way u ≡ v. Thus ũ = ṽ. �

Corollary 3.8 Dm(., .) is a meter on PFm(R).

Lemma 3.9 (10) Let ũ be a fuzzy number. For all m≥ 1 if N∗
PFm

(ũ) is not empty, then we have

|N∗
PFm(R)m

(ũ)| = 1.

Proof: Let ũ∗1 and ũ∗2 be two nearest approximations of a fuzzy number ũ out of PFm(R).
Thus Dm(ũ∗1 , ũ) = Dm(ũ∗1 , ũ) = 0, and we have

Dm(ũ
∗
1 , ũ

∗
2) ≤ Dm(ũ

∗
1 , ũ) + Dm(ũ, ũ

∗
2) = 0.

From lemma 3.7 we have ũ∗1 = ũ∗2 . �
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www.intechopen.com



Numerical Solution of a System of Polynomial Parametric form Fuzzy Linear Equations 7

Corollary 3.10 Let ũ be a l-degree polynomial-form fuzzy number where l ≤ m. If ṽ∗ be the nearest
approximations of ũ out of PFm(R), then ṽ∗ = ũ.

Lemma 3.11 (10) Let ũ∗ and ṽ∗ be the nearest approximations of two fuzzy numbers ũ and ṽ,
respectively. Then we have

Dm(ũ
∗, ṽ∗) = Dm(ũ, ṽ)

Proof: We have

Dm(ũ
∗, ṽ∗) ≤ Dm(ũ

∗, ũ) + Dm(ũ, ṽ) + Dm(ṽ, ṽ
∗) = Dm(ũ, ṽ).

In a similar way Dm(ũ, ṽ) ≤ Dm(ũ∗, ṽ∗). �

Lemma 3.12 (10) Let ṽ and ũ be two fuzzy numbers where u,v,u,v ∈ Cm−1[0,1]. If Dm(ũ, ṽ) = 0,

then there are two sequences of points {δi,k}
m−1
k=0 , i = 1,2 such that for k = 0,1, · · · ,m− 1,

u(k)(δ1,k) = v(k)(δ1,k),

and
u(k)(δ2,k) = v(k)(δ2,k).

Proof: Let for two fuzzy numbers ṽ and ũ we have Dm(ũ, ṽ) = 0. Thus for k = 0,1, . . . ,m− 1,
we have

[ũ]1 = [ṽ]1,
valk(ṽ) = valk(ũ), k = 0, . . . ,m− 1 ,
ambk(ṽ) = ambk(ũ), k = 0, . . . ,m− 1 ,

Therefore

∫ 1
0 s(r)[u(k)(r)− v(k)(r)]dr = ±

∫ 1
0 s(r)[u(k)(r)− v(k)(r)]dr, k = 0, . . . ,m− 1 ,

Thus ∫ 1
0 s(r)[u(k)(r)− v(k)(r)]dr = 0, k = 0, . . . ,m− 1 ,∫ 1
0 s(r)[u(k)(r)− v(k)(r)]dr = 0, k = 0, . . . ,m− 1 .

Thus by Mean Value Theorem for integrals, for any k = 0,1, . . . ,m− 1, there are two numbers
δ1,k and δ2,k such that

u(k)(δ1,k) = v(k)(δ1,k),

u(k)(δ2,k) = v(k)(δ2,k).

�

4. Properties of m−source distance

Some properties of the approximation operators are presented by Grzegorzewski and
Mrówka (28). In this section we consider some properties of the approximation operator
suggested in Section 3.
Let Tm : F (R) −→ PFm(R) be the approximation operator which produces the nearest
approximation fuzzy number out of PFm(R) to a given original fuzzy number using
Theorem 3.5. Almost all of the theorems of this section are taken out from (10).
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Theorem 4.1 The nearest approximation operator is 1-cut invariance.

Proof: It is a necessary condition for this approximation that

[Tm(ũ)]
1 = [ũ]1.

�

Theorem 4.2 The nearest approximation operator is invariant to translations. i.e. for each ũ ∈ F (R)
and a ∈ R, we have Tm(ũ+ a) = Tm(ũ) + a.

Proof: Let a be a real number. Then u+ a = u+ a and u+ a = u+ a. Therefore

val(Tm(ũ+ a)) = val(ũ+ a) = val(ũ) + a = val(Tm(ũ)) + a,

amb(Tm(ũ+ a)) = amb(ũ+ a) = amb(ũ) = amb(Tm(ũ)) = amb(Tm(ũ) + a),

Also for k = 1,2, . . . ,m− 1, we have

valk((Tm(ũ) + a)) = valk((ũ+ a)) = valk(ũ) = valk(Tm(ũ)),

and
ambk((Tm(ũ) + a)) = ambk((ũ+ a)) = ambk(ũ) = ambk(Tm(ũ)).

Thus
Dm(Tm(ũ+ a),Tm(ũ) + a) = 0.

Since both Tm(ũ + a) and Tm(ũ) + a have m-degree polynomial-form, then from Lemma 3.9
we have

Tm(ũ+ a) = Tm(ũ) + a.

�

Theorem 4.3 The nearest approximation operator is scale invariant. i.e. for each ũ ∈ F (R) and
λ ∈ R, we have Tm(λũ) = λTm(ũ).

Proof: Let λ 	= 0 be a real number. Thus for k = 0,1, . . . ,m− 1, we have

valk(λũ) = λvalk(ũ) , ambk(λũ) = λ ambk(ũ).

and
Dm(Tm(λũ),λTm(ũ)) = 0.

Therefore from Lemma 3.9 we have

Tm(λũ) = λTm(ũ).

�

Theorem 4.4 The nearest approximation operator fulfills the nearness criterion with respect to
m−source metric Dm defined in Definition 3.4, on the set of all m−degree polynomial-form fuzzy
numbers.
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Numerical Solution of a System of Polynomial Parametric form Fuzzy Linear Equations 9

Proof: By Lemma 3.3, we have

Dm(ũ,Tm(ũ)) = min
ṽ∈PFm(R)

Dm(ũ, ṽ),

therefore
Dm(ũ,Tm(ũ))≤ Dm(ũ, ṽ), ∀ṽ ∈ PFm(R).

�

Theorem 4.5 The nearest approximation operator is continuous.

Proof: An approximation operator T is continuous if for any ũ, ṽ ∈ F (R) we have

∀ǫ > 0, ∃δ > 0, Dm(ũ, ṽ)< δ =⇒ Dm(T(ũ),T(ṽ)) < ǫ.

Let Dm(ũ, ṽ)< δ. By Theorem 3.2 we have

Dm(Tm(ũ),Tm(ṽ))≤ Dm(Tm(ũ), ũ) + Dm(ũ, ṽ) + Dm(ṽ,Tm(ṽ))

and by Theorem 3.4 we have Dm(Tm(ũ), ũ) = Dm(ṽ,Tm(ṽ)) = 0. Thus

Dm(Tm(ũ),Tm(ṽ))≤ Dm(ũ, ṽ) < δ.

Therefore its suffices to take δ ≤ ǫ. �

Theorem 4.6 The nearest trapezoidal approximation operator (case m=1) is monotonic on any set of
fuzzy numbers with equal cores.

Proof: See (2). �

Theorem 4.7 The nearest approximation operator is order invariant with respect to value function.

Proof: The proof is trivial, because val(Tm(ũ)) = val(ũ) and val(Tm(ṽ)) = val(ṽ). �

Theorem 4.8 The nearest approximation operator does not change the distance of fuzzy numbers by
m-source distance. i.e.

Dm(Tm(ũ),Tm(ṽ)) = Tm(Dm(ũ, ṽ)) = Dm(ũ, ṽ).

Proof: The proof is trivial by Lemma 3.11.
�

By the following Theorem we show that the nearest approximation operator is a linear
operator:

Theorem 4.9 The nearest approximation operator is a linear operator on the set of all fuzzy numbers.
i.e. for a real number λ and two fuzzy numbers ũ and ṽ we have

Tm(λũ+ ṽ) = λTm(ũ) + Tm(ṽ).
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Proof: From Lemma 3.2 we have

Dm(λũ+ ṽ,λTm(ũ) + Tm(ṽ)) ≤ Dm(λũ,λTm(ũ)) + Dm(ṽ,Tm(ṽ))

= Dm(λũ,λTm(ũ))

= |λ|Dm(ũ,Tm(ũ)) = 0.

Also we have
Dm(λũ+ ṽ,Tm(λũ+ ṽ)) = 0,

therefore
Dm(Tm(λũ+ ṽ),λTm(ũ) + Tm(ṽ)) = 0.

Since both fuzzy numbers Tm(λũ+ ṽ) and λTm(ũ) + Tm(ṽ) belong to PFm(R), we have

Tm(λũ+ ṽ) = λTm(ũ) + Tm(ṽ).

�

5. Linear system of fuzzy equations

In this section we introduce a method for solving fuzzy linear system of equations, and this
method is taken from (9).
Let Ã and b̃ be a matrix and a vector with fuzzy number arrays, respectively. A system of
fuzzy linear equations with crisp variables is a system with the following form:

Ãx= b̃. (5.1)

Equivalently we have

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ã11x1 + ã12x2 + . . .+ ã1nxn = b̃1
ã21x1 + ã22x2 + . . .+ ã2nxn = b̃2

...
ãn1x1 + ãn2x2 + . . .+ ãnnxn = b̃n

(5.2)

where fori, j= 1, · · · ,n; ãij’s and b̃i’s are fuzzy numbers.

Lemma 5.1

Consider two systems of linear equations as follows

Ãx= b̃. (5.3)

and
[Ã]1x= [b̃]1. (5.4)

If system (5.3) has a solution then the system (5.4) has a solution. Furthermore if x∗ be the
solution of (5.3) then x∗ is the solution of (5.4) too.
Proof: It is straightforward. �

Corollary 5.2 If system (5.4) hasn’t any solution then the system (5.3) hasn’t any solution too.
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Numerical Solution of a System of Polynomial Parametric form Fuzzy Linear Equations 11

6. Solution of fuzzy linear equations

In this Section we try to solve a system of fuzzy linear equations with m−degree
polynomial-form fuzzy number coefficients. Let for positive integer m, all ãij’s and b̃i’s are
fuzzy numbers with m−degree polynomial-form, for i, j= 1, · · · ,n. Our equations now are as
follows:

n

∑
j=1

ãijxj = b̃i , i = 1, . . . ,n. (6.1)

where for i, j= 1, . . . ,n; ãij, b̃i ∈ PFm(R) , and xj ∈ R. We can consider (6.1) as

n

∑
j=1

(aij(r), aij(r))xj = (bi(r),bi(r)) , i = 1, . . . ,n.

It means that

∑
xj≥0

aij(r)xj + ∑
xj<0

aij(r)xj = bi(r), i = 1, . . . ,n, (6.2)

and

∑
xj≥0

aij(r)xj + ∑
xj<0

aij(r)xj = bi(r), i = 1, . . . ,n. (6.3)

Let xj = x′j − x′′j , where

x′j =

{
xj, xj ≥ 0,

0, xj < 0,

and

x′′j =

{
0, xj ≥ 0,

−xj, xj < 0,

thus x′j,x
′′
j ≥ 0, and we have

n

∑
j=1

aij(r)x
′
j −

n

∑
j=1

aij(r)x
′′
j = bi(r), i = 1, . . . ,n, (6.4)

and
n

∑
j=1

aij(r)x
′
j −

n

∑
j=1

aij(r)x
′′
j = bi(r), i = 1, . . . ,n. (6.5)

Since ãij’s and b̃i’s are fuzzy numbers withm−degree polynomial-form, there exist coefficients
cijk, dijk, eik and fik such that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

aij(r) = ∑
m
k=0 cijkr

k, i, j= 1, . . . ,n,

aij(r) = ∑
m
k=0 dijkr

k, i, j= 1, . . . ,n,

bi(r) = ∑
m
k=0 eikr

k, i = 1, . . . ,n,

bi(r) = ∑
m
k=0 fikr

k, i = 1, . . . ,n.

(6.6)

By substituting (6.6) into the equations (6.4) and (6.5), we have

n

∑
j=1

m

∑
k=0

cijkr
kx′j −

n

∑
j=1

m

∑
k=0

dijkr
kx′′j =

m

∑
k=0

eikr
k, i = 1, . . . ,n,

443Numerical Solution of a System of Polynomial Parametric form Fuzzy Linear Equations 443Numerical Solution of a System of Polynomial Parametric form Fuzzy Linear Equations

www.intechopen.com



12 Ferroelectrics

and
n

∑
j=1

m

∑
k=0

dijkr
kx′j −

n

∑
j=1

m

∑
k=0

cijkr
kx′′j =

m

∑
k=0

fikr
k, i = 1, . . . ,n.

Consequently for all i = 1,2, . . . ,n, and k = 0,1, . . . ,m, we have

n

∑
j=1

cijkx
′
j −

n

∑
j=1

dijkx
′′
j = eik, (6.7)

and
n

∑
j=1

dijkx
′
j −

n

∑
j=1

cijkx
′′
j = fik. (6.8)

Considering

C=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c110 . . . c1n0
...

...
c11m . . . c1nm
...

...
cn10 . . . cnn0
...

...
cn1m . . . cnnm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d110 . . . d1n0
...

...
d11m . . . d1nm
...

...
dn10 . . . dnn0
...

...
dn1m . . . dnnm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

e=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e10
...

e1m
...

en0
...

enm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f10
...
f1m
...
fn0
...

fnm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, x′ =

⎛
⎜⎝

x′1
...
x′n

⎞
⎟⎠ , x′′ =

⎛
⎜⎝

x′′1
...
x′′n

⎞
⎟⎠ , y=

(
x′

x′′

)

one should solve the following system of linear equations,

Sy= d, (6.9)

where

S =

(
C −D
D −C

)
, x=

(
x′

x′′

)
, d =

(
e
f

)

and we have x= x′ − x′′.
S is a 2n(m + 1) × 2n matrix, and since m > 0, we try to solve the following least squares
problem:

min
y∈R2n

‖Sy− d‖2 . (6.10)
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It is well known that the solution of (6.10) is equal to the solution of its corresponding normal
system of equations as follows:

STSy= STd. (6.11)

Lemma 6.1

The system (6.11) always has a solution even when STS is singular.
Proof: See (23).

�

Let x∗ and x be the solution of systems (5.3) and (5.4), respectively and let x̃ and x̂ be the
obtained solutions corresponding to the systems (6.9) and (6.11), respectively. From the last
lemma it is known that x̂ always exists.

Lemma 6.2

Let all ãij’s and b̃i’s have m−degree polynomial-form. If x∗ exists then x and x̃ exist and
x∗ = x= x̃= x̂.
Proof: It is straightforward.

�

x̂ is the least squares solution of the system Ãx= b̃, also if it’s corresponding vector y satisfies
in the system Sy= d then x̂ is the exact solution of the system Ãx= b̃.
If STS is nonsingular then the solutions of two systems (6.9) and (6.11) are the same and y∗ =
(STS)−1STd.
By a simple computations it can be shown that

STS=

(
L −M

−M L

)
,

where
L= CTC+DTD , M= CTD+DTC.

Thus

STS−→

(
L− M L−M
−M L

)
−→

(
L−M 0
−M L+M

)
,

therefore
|STS| = |L−M| · |L+M|.

Also we have

L−M= (C−D)T(C−D) , L+M= (C+D)T(C+D).

If C−D be a full rank matrix then L−M is nonsingular and if C+D be a full rank matrix
then L+M is nonsingular. i.e. if rank(C±D) = n then STS is nonsingular.

7. Numerical solution of fuzzy linear equations

In this section we consider a system of fuzzy linear equations as

Ãx= b̃, (7.1)

where for i, j= 1, · · · ,n; ãij’s and b̃i’s, are from LR type fuzzy numbers.
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For the purpose of solving (7.1), we consider the following system of equations

Ã
(m)

x= b̃
(m)

, (7.2)

where for i, j = 1, · · · ,n; the quantities ã
(m)
ij ’s and b̃

(m)
i ’s are the nearest approximations of

the given numbers ãij’s and b̃i’s out of PFm(R), respectively. Existence of the nearest
approximations of the given fuzzy numbers is known from Lemma 3.6.
From Lemma 6.1 we know that this system has a least squares solution. Using the process in

the Section 6we obtain a least squares solution x(m) for this system. We name this solution,
the m-degree nearest least squares (m−DNLS) solution of the system (5.3). Thus we have

Ã
(m)

x(m) = b̃
(m)

, (7.3)

Choosing m depends on the shape of left and right spread functions L and R, and the
derivation order of them.

8. Numerical examples

In this Section we present some numerical examples which have been solved on both
m−degree polynomial-form fuzzy number coefficients and general LR fuzzy number
coefficients.

Example 8.1 Consider the following 2 by 2 system of equations with m= 1:
{

(−1+ 2r,4− 2r)x1 + (−2+ 3r,3− 2r)x2 = (−8+ 13r,17− 10r),
(1+ r,4− r)x1 + (2r,5− 2r)x2 = (2+ 8r,23− 8r),

For this system of equations by solving the least squares system we have x1 = 2 and x2 = 3.

Example 8.2 Consider the following 2 by 2 system of equations with m= 1:

{
(−1+ r,3− r)x1 + (1+ 2r,4− r)x2 = (−12+ 11r,17− 8r),
(−1+ 2r,3− 2r)x1 + (3r,6− 2r)x2 = (−15+ 19r,23− 16r),

For this system of equations by solving the least squares system we have x1 = −5 and x2 = 3.

Example 8.3 Consider the following 2 by 2 system of equations with m= 2:

{
ã11x1 + ã12x2 = b̃1,
ã21x1 + ã22x2 = b̃2,

where
ã11 = (3r+ r2,7− 3r+ 2r2)
ã12 = (2r+ r2,4− 2r+ 2r2)
ã21 = (1+ 2r+ r2,8− 3r+ r2)
ã22 = (1+ 2r+ r2,6− 3r+ 2r2)
b̃1 = (48.45r + 17.1r2,111.15− 48.45r+ 34.2r2)
b̃2 = (17.1+ 34.2r+ 17.1r2,131.1− 51.3r + 19.95r2),

For this system of equations by solving the least squares system we have x1 = 14.85 and x2 =
2.25.
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Example 8.4 Consider the following 2 by 2 system of equations

{
ã11x1 + ã12x2 = b̃1,

ã21x1 + ã22x2 = b̃2,

where
⎧
⎪⎪⎨
⎪⎪⎩

ã11 = ã22 = (2+ ln{(e− 1)r+ 1},4− ln{(e− 1)r+ 1}),
ã12 = ã21 = (3+ ln(2r+ 1),3+ 2ln3− ln(2r+ 1)),
b̃1 = (13+ ln{((e− 1)r+ 1)2(2r+ 1)3},17+ 6ln3− ln{((e− 1)r+ 1)2(2r+ 1)3}),
b̃2 = (12+ ln{((e− 1)r+ 1)3(2r+ 1)2},18+ 4ln3− ln{((e− 1)r+ 1)3(2r+ 1)2}).

By choosing m= 3, we have

⎧
⎪⎪⎨
⎪⎪⎩

a11 = a22 = 2.01846+ 1.48660r − 0.64225r2 + 0.137185r3 ,

a11 = a22 = 3.98154− 1.48660r + 0.64225r2 − 0.13718r3 ,
a12 = a21 = 3.02605+ 1.66763r − 0.75820r2 + 0.16313r3 ,

a12 = a21 = 5.17117− 1.66763r + 0.75820r2 − 0.16313r3 ,

⎧
⎪⎪⎨
⎪⎪⎩

b1 = 13.11509+ 7.97609r − 3.55909r2 + 0.76375r3 ,

b1 = 23.47658− 7.97609r + 3.55909r2 − 0.76375r3 ,
b2 = 12.107499+ 7.79506r − 3.44314r2 + 0.73781r3 ,

b2 = 22.28695− 7.79506r + 3.44314r2 − 0.73781r3 ,

and the 3−DNLS solution of this system is x1 = 2.000000 and x2 = 3.000000.

Example 8.5 Consider the following 2 by 2 system of equations

{
ã11x1 + ã12x2 = b̃1,
ã21x1 + ã22x2 = b̃2,

where ⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ã11 = ã21 = (ln(r+ 1), ln(4− 2r)),
ã12 = (ln(2r+ 1), ln(4− r)),
ã22 = (ln(r+ 1), ln(5− 3r)),
b̃1 = (ln{(r+ 1)2(2r+ 1)}, ln{(4− 2r)2(4− r)}),
b̃2 = (3ln(r+ 1), ln{(4− 2r)2(5− 3r)}).

the 1−DNLS solution of this system is x1 = 2.022850 and x2 = 0.06491, meanwhile the
2−DNLS solution of this system is x1 = 2 + 0.0 × 10−6 and x2 = 1 + 0.0 × 10−6, also the
3−DNLS solution of this system is x1 = 2+ 0.0× 10−13 and x2 = 1+ 0.0× 10−13.

9. Conclusion

In this chapter a new method was proposed to solve a system of linear equations. If all
coefficients are polynomial form fuzzy numbers then the system may have an exact solution
but otherwise we can approximate fuzzy coefficients with m-degree polynomial-form fuzzy
numbers and find an approximated solution of the system. Choosing m depends on the shape
of left and right spread functions L and R, and the derivation order of them. The presented
method can be applied on any system of equations with LR fuzzy number coefficients.
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