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1. Introduction

This chapter gives a new and exact impedance control of DC motor. From Hogan’s original
work, the control input for impedance control is torque input since the impedance control is
designed for Lagrangian systems. However, in actual situation, there exist dynamics between
the torque and control input and this dynamics can be dominant in certain scale. In such
situation, if we neglect the dynamics or try to cancel the dynamcis, the standard impedance
control can lose the stability or the control performance at least.
To overcome this problem, we need an new impedance control which takes the dynamics into
account wihtout canceling any dynamics. In this chapter we give a solution for this problem
by focusing on Casimir function which is rarely used in the conventional robotics.
The rest of this chapter is organized as follwows. In Section 2, we give a new model of
DC motor with dynamics between the torque and control input. In Section 3, we propose
a new impedance control which is based on Casimir function. Casimir function is one of the
properties of port-Hamiltonian systems. In Section 4, we confirm the proposed method in
numerical simulation and we conclude this chapter in Section 5.

2. Modeling

Let us start from a well-known model of DC motor:
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where the displacement θ, the velocity ω and the current i are the states , the voltage v is the
control input with the torque constant K and the inductance L.
Although the system (1) is a third-order system and thus not mechanical system, the system (1)
has a mechanical-like structure, that is, can be modeled as a port-Hamiltonian system van der
Schaft (2000), Maschke & van der Schaft (1996) with a Hamilonian H = (1/2J)p2 + (1/2)Kr2
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2 Ferroelectrics

where x =
[

q p r
]T

=
[

θ Jω
√

Li
]T

is the new state, v̄ = v/
√

L is the new input

with K̄ = K√
L

R̄ = R
L and

y =∇r H

is taken as the passive output. It is confirmed that this system is now passive Takegaki &
Arimoto (1981) with respect to the Hamiltonian H, that is,

Ḣ ≤ yTv

holds. This passive property is studied in many systems and used as a structural property
to drive robust and nonliear controllers for stabilization Ortega & Garcia-Canseco (2004)
Stramigioli et al. (1998), trajectory tracking Fujimoto & Sugie (2001) and motion generation
problems Sakai & Stramigioli (2007).
However, in this chapter, we consider a different problem, namely, impedance control
problems and we do not focus on the passivity but focus on another structural property:
Lemma 1 Consider the system (1) with zero-input v ≡ 0 in the case of no dissipation R = 0 .
Let the skew-symmetric part of the matrix A be J(x) = J(x)T. Then the system has a solluton
of the following PDE

∇xC(x)J(x) = 0

and the solution is characterized as

C(x) = K̄q + r.

Proof This is confrimed by a direct calculation. (Q.E.D.)

This means that, in the case of no dissipation R = 0, not only the Hamiltonian function H but
also the Casimir function C are constant

Ċ = 0 (u ≡ 0)

for any the value of the Hamiltonian function H. Then we can express the system (1) by using
the Casimir function (with respect to J) explicity.
Lemma 2 (Modeling) Consider the system (1) with zero-input v ≡ 0 in the case of no
dissipation R = 0. Then the coordinate transformation convert the system (1) into
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ṗ
Ċ
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with the state xc = (q p C)T and the Hamiltonian function

H̄ =
p2

2J
+

(K̄q)
2

2
− K̄qC.

Proof This is also confrimed by a direct calculation although the old Hamiltonian H is not
equal to the new Hamiltonian H̄. (Q.E.D.)

400 Ferroelectrics400 Ferroelectrics

www.intechopen.com



An Exact Impedance Control of DC Motors Using Casimir Function 3

3. Exact impedance control

In this section, we give an exact impedance control for DC motor by using Casimir functions.
Proposition 1 (Main result) Consider the system (1) with the velocity input. Then the following
controller

⎧

⎨

⎩

˙̄C = K̄q − (1 + kc)(K̄q + r)

v = C̄/Jc

(4)

converts the close-loop system into the mechanical system with the impedance parameters Jc, kc > 0.
Proof First we introduce an artificial Casimir function C̄ and via the following dynamic
extension ⎡
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where v̄ is the input corresponding to the (artificial) Casimir function.

Then the Hamiltonian function H̄ is replaced by the following new Hamiltonian function
which has a special structure suitable for impedance design with any parameters kc > 0 and
Jc > 0 as follows:

H̄mec = H̄ + K̄
C2

2
+
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2Jc
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2
+
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(6)

due to the definition of the Casimir function. Finally the dynamic controller

{
v = +∇C̄ Hmec

v̄ = −∇C Hmec
(7)

converts the system (1) with a dissipation R ≥ 0 into the the following Hamiltonian system
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Fig. 1. A port-Hamiltonian system with flow inputs.
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Fig. 2. Time response of Hmec

with x̄c = (q p C C̄)T. (Q.E.D.)

The proposed impedance control does not input the torque but the velocity, unlike the
conventional impedance control for the mechanical systems. This difference is ullustrated
in Fig.1. The spring coefficient k between the real mass and the virtual mass is not design
parameter unlike the spring coefficient kc between the environment and the virtual mass.
Note that there is no canceling action in the controller.

4. Numerical simulations

Fig.2 shows the time response of the Hamiltonian function Hmec in the case of no dissipation
(the Adams method) in the case of the parameters J = 1.5 L = 0.165 K = 0.47, Jc = 0.5, a = 0.03
and the initial conditions r(0) = q(0) = 0 p(0) = 0.5. It is confrimed that the value is constant
as in the acutal Hamiltonian systems
Figs.3-5 show the time responses of the Casmir function and the state q and p in the case of
dissipation R = 3.2. The parameters have changed Jc → 15 and a → 3.
In all cases, the nonliner behavior has changed intuitively due to the mechanial strucutre in
the closed-loop system. The validity of our methods are confirmed.

5. Conclusions

there exist dynamics between the torque and control input and this dynamics can be dominant
in certain scale. In such situation, if we neglect the dynamics or try to cancel the dynamcis,
the standard impedance control can lose the stability or the control performance at least.
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To overcome this problem, we need an new impedance control which takes the dynamics into
account wihtout canceling any dynamics. In this chapter we give a solution for this problem
by focusing on Casimir function which is rarely used in the conventional robotics.
First we give a new model of DC motor with dynamics between the torque and control
input. Second, we propose a new impedance control which is based on Casimir function.
Casimir function is one of the properties of port-Hamiltonian systems. Finally, we confirm the
proposed method in numerical simulation.
The generalization of the proposed method and appilications to other systems (such as
hydraulic systems and mascle-skelton systems) are next works in near future.
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