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1. Introduction  

Most ferroelectrics in practical applications are of first order phase transition, such as 

barium titanate, lead zirconium titanate, etc. However, theoretical investigation of first order 

phase transition is much more complicated than that of second order phase transitions. 

Therefore in the chapter, theoretical treatments of ferroelectric phase transition of first order 

are summarized. In the next section, results from thermodynamic theory are discussed. This 

kind of theory is often called Landau theory, Landau-Devonshire theory or Landau–

Devoshire–Ginzburg theory in literatures. Basic concepts and definitions such as 

characteristic temperatures, thermal hysteresis and field induced phase transition are 

presented. In the third section, effective field approach for first order phase transition is 

formulised. Even though this approach is a very simple statistic physics method, it supplies 

a very helpful approach to understand many physical phenomena of first order phase 

transitions. In the fourth section, results from Ising model in a transverse field under mean 

field approximation are discussed. Then the equivalence of the model with effective field 

approach is demonstrated. Also application of Monte Carlo simulation on Ising model with 

four-spin couplings is included. In the last part, understanding of physical property of 

relaxor ferroelectrics from point view of first order phase transition is addressed. 

2. Thermodynamic theory of ferroelectrics  

In this section, thermodynamic theory of first order ferroelectric phase transition is 

formalized. Free energy is analyzed at first. Then definition of characteristic temperatures is 

discussed. Afterwards temperature dependence of polarization and hysteresis loops are 

shown for static situation. At last dynamic behavior of polarization under external electric 

field is presented. 

Formalism of thermodynamic description, or Landau theory for ferroelectrics can be found 
in many classical books (Blinc & Zeks ,1974; Lines & Glass, 1977), or from website like 
wikipedia (http://en.wikipedia.org/wiki/Ferroelectricity). Based on Landau theory, the 
free energy of a ferroelectric material, in the absence of an electric field and applied stress 
may be written as a Taylor expansion in terms of the order parameter, polarization (P). If a 
sixth order expansion is used (i.e. eighth order and higher terms truncated), the free energy 
is given by: 
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where ΔG stands for the free energy difference of ferroelectric phase and that of paraelectric 
phase, Px, Py, and Pz are the components of the polarization vector in the x, y, and z 
directions respectively. The coefficients, αi,αij,αijk must be consistent with the crystal 
symmetry. To investigate domain formation and other phenomena in ferroelectrics, these 
equations are often used in the context of a phase field model. Typically, this involves 
adding a gradient term, an electrostatic term and an elastic term to the free energy. In all 
known ferroelectrics, α0 and α111 are of positive values. These coefficients may be obtained 
experimentally or from ab-initio simulations. For ferroelectrics with a first order phase 
transition, α11 is negative, and α11 is positive for a second order phase transition. 
The ferroelectric properties for a cubic to tetragonal phase transition may be obtained by 
considering the one dimension expression of the free energy which is: 

 ( ) 2 4 6
0 0 11 111

1 1 1

2 4 6
x x xG T T P P PΔ = α − + α + α  (2) 

The shape of above free energy is schematically shown in Fig. 1 at different temperatures for 
first order phase transitions. In the following numerical calculations, parameter values are 

set as α0=1, T0=1, α11=-1and α111=1 in arbitrary unit for simplicity. 
 

 

Fig. 1. Free energy for a first order ferroelectric phase transition at different temperatures 

There are four characteristic temperatures in the phase transition process, i.e., Curie-Weiss 
temperature T0, Curie temperature Tc, ferroelectric limit temperature T1 and limit temperature 
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of field induced phase transition T2. The Curie-Weiss temperature can be easily accessed 

experimentally from the Curie-Weiss law of dielectric constant ε at paraelectric phase, i.e., 

 
0

p

C

T T
ε =

−
 (3) 

In above expression, C is the Curie-Weiss constant, subscript p of ε stands for paraelectric 
phase. However the Curie temperature is less accessible experimentally. This temperature 
measures the balance of the ferroelectric phase and the paraelectric phase. At this 
temperature, the free energy of ferroelectric phase is the same as that of paraelectric phase. 
When temperature is between T0 and Tc, ferroelectric phase is stable and paraelectric phase 
is meta-stable, this can be easily seen in Fig.1. When the temperature is between Tc and T1, 
ferroelectric phase is in meta-stable state while paraelectric phase is stable. When the 
temperature is higher than T1, ferroelectric phase disappears. Normally, this temperature is 
corresponding to the peak temperature of dielectric constant when measured in heating 
cycle. In other words, peak temperature of dielectric constant measured in heating cycle is 
the ferroelectric limit temperature T1, not the Curie temperature Tc in a more precise sense. 
Between temperature T1 and T2, ferroelectric state still can be induced by applying an 
external electric field. The polarization versus the electric field strength is a double 
hysteresis loop, which is very similar with that observed in anti-ferroelectric materials. 
When the temperature is higher than T2, only paraelectric phase can exist. 
The characteristic temperatures Tc, T1 and T2 can be easily determined from Eq.(2) of free 
energy as following. The Curie temperature Tc can be obtained from the following two 
equations; 
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c x x xG T T P P PΔ = α − + α + α =  (4) 
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The first equation means that the free energy of ferroelectric phase is same as that of 
paraelectric phase, and the second equation implies that the free energy of ferroelectric 
phase is in minimum. From above two equations, we can have the expression of the Curie 
temperature Tc as 
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At the ferroelectric limit temperature T1, free energy has an inflexion point at Ps, the 
spontaneous polarization. As can be seen from Fig. 1, when temperature is below T1, free 

energy has are three minima, i.e., at P=±Ps, and P=0. Above temperature T1, there is only 
one minimum at P=0. The spontaneous polarization can be obtained from the minimum of 
the free energy as, 

 
( )

( )

3 5
0 0 11 111

2 4
0 0 11 111

0

0

x x x

x

x x x

G
T T P P P

P

P T T P P

∂Δ
= α − +α +α =

∂

⎡ ⎤α − +α +α =⎣ ⎦

 (7) 
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Since Px = 0 corresponds to a free energy maxima in the ferroelectric phase, the spontaneous 
polarization Ps is obtained from the solution of the equation: 

 ( ) 2 4
0 0 11 111 0x xT T P Pα − +α +α =  (8) 

which is 

 ( )2 2
11 11 0 111 0

111

1
4

2
xP T T⎡ ⎤= −α ± α − α α −⎣ ⎦α

 (9) 

Hence at temperature T1, we have 

 ( )2
11 0 111 1 04 0T Tα − α α − =  (10) 

In a more explicitly form, 
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Between temperature T1 and T2, there are still inflexion points, which means ferroelectric 
phase can be induced by an external electric field. When temperature is above T2, the 
inflexion points disappear. By taking the second derivative of the free energy Eq.(2), we can 
have the solution of the inflexion points,  
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That is the polarization at the inflexion points. The limit temperature of the induced phase 

transition T2 can be determined by 

 ( ) ( )2

11 0 111 2 03 20 0T Tα − α α − =  (14) 

or 

 
2
11

2 0

0 111

9

20
T T

α
= +

α α
  (15) 

The temperature dependence of the spontaneous can be calculated from Eq.(9) by 

elimination of solutions yielding a negative square root (for either the first or second order 

phase transitions) gives: 

 ( )2
11 11 0 111 0

111

1
4

2
xP T T⎡ ⎤= −α ± α − α α −⎣ ⎦α

 (16) 

The temperature dependence of the spontaneous polarization from above equation is shown 
in Fig. 2. The four characteristic temperatures are denoted by light arrows. The dark arrows 
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indicate the temperature cycles. Theoretical temperature hysteresis is ΔT=T1-T0. 
Experimentally, the temperature hysteresis could be larger than this value because of the 
polarization relaxation process. 
The hysteresis loop (Px versus Ex) may be obtained from the free energy expansion by 
adding an additional electrostatic term, Ex Px, as follows: 

 ( ) 2 4 6
0 0 11 111

1 1 1

2 4 6
x x x x xG T T P P P E PΔ = α − + α + α −  (17) 

 ( ) 3 5
0 0 11 111 0x x x x

x

G
T T P P P E

P

∂Δ
= α − +α +α − =

∂
 (18) 

 ( ) 3 5
0 0 11 111x x x xE T T P P P= α − +α +α  (19) 

 

Fig. 2. Temperature dependence of the spontaneous polarization 

Plotting Ex as a function of Px and reflecting the graph about the 45 degree line gives an 'S' 
shaped curve when temperature is much lower than the transition temperatures, as can be 
seen from curves in Fig. 3. The central part of the 'S' corresponds to a free energy local 

maximum, since the second derivative of the free energy ΔG respect polarization Px is 
negative. Elimination of this region and connection of the top and bottom portions of the 'S' 
curve by vertical lines at the discontinuities gives the hysteresis loop. Temperatures are 
labeled by each curve, label of 0.7T0 in Fig. 3 is for temperature T=0.7T0, and 1.2T2 is for 
T=1.2T2, T12 stands for T=(T1+T2)/2. When the temperature is below Curie temperature Tc, 
normal ferroelectric hysteresis loops can be obtained. When the temperature is between T1 
and T2, double hysteresis loop or pinched loop could be observed. That means ferroelectric 
state is induced by the applied electric field. When the temperature is higher than T2, the 
polarization versus electric field becomes a non-linear relation, see 1.2T2 curve in Fig. 3. It 
should point out that curves in Fig. 3 are obtained under static electric field. Experimental 
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measurements usually are performed using time dependent electric field, mostly in sine 
form. Therefore the hysteresis loops obtained experimentally might be different from the 
shapes shown in Fig. 3.  

 

Fig. 3. Static hysteresis loops at different temperatures 

Dynamic behavior of ferroelectrics from theoretical simulation could be more helpful for 
understanding the experimental observing. The dynamic property of ferroelectrics can be 
studied using Landau-Khalantikov equation (Blinc & Zeks, 1974) 

 
dP G

dt P

δΔ
= −Γ

δ
 (20) 

where Γ is the coefficient of thermodynamic restoring force. This equation has been 

employed to investigate the switching characters of asymmetric ferroelectric films (Wang et 

al., 1999) and the effects of external stresses on the ferroelectric properties of Pb(Zr,Ti)TiO3 

thin films (Song et al., 2003). By inserting free energy (17) into Eq.(20), we have  

 ( ) 3 5
0 0 11 111x x x x

dP
T T P P P E

dt
⎡ ⎤= −Γ α − +α +α −⎣ ⎦   (21) 

From above equation, hysteresis loops at different temperature and frequency can be 
obtained with the electric field is in sine form, 

 ( )0 sinxE E t= ω  (22) 

The hysteresis loops showing in Fig. 4 are at Curie temperature Tc, T1, (T1+T2)/2, T2 and 

1.2T2 with frequency ω=0.001, E0=0.5 and Γ=2.0. At Curie temperature Tc, a normal 
ferroelectric hysteresis loop is obtained. At temperature T1, the hysteresis loop is pinched. 
Between T1 and T2, double hysteresis loop is obtained as expected, see the blue curve in Fig. 
4 for temperature T= (T1+T2)/2. However, at temperature T2, double hysteresis loop can be 

www.intechopen.com



Theories and Methods of First Order Ferroelectric Phase Transitions   

 

281 

still observed because of the finite value of relaxation time. Higher than T2, no hysteresis can 
be observed, but a non-linear P-E relation curve. Similar shapes of hysteresis loops have 
been observed in PbxSr1-xTiO3 ceramics recently(Chen et al., 2009).  

 

Fig. 4. Dynamic hysteresis loops at different temperatures with frequency ω=0.001. Dark 
loop is at Curie temperature Tc, red curve is for T1, blue curve for (T1+T2)/2, green curve for 
T2, and dark line for T=1.2T2. 

To get insight understanding of the influence of the frequency on the shape of the hysteresis, 

more hysteresis loops are presented in Fig. 5. The frequency is set as ω=0.001 for green 

curves, ω=0.01 for red curves and ω=0.03 for blue curves at Curie temperature Tc, T1, 
(T1+T2)/2 and at T2 respectively. At Curie temperature Tc, see Fig. 5(a), the coercive field 
increases with increasing of measure frequency, but the spontaneous polarization is less 
influenced by the frequency. At temperature T1, this temperature corresponding to the peak 
temperature of dielectric constant when measured in heating cycle, pinched hysteresis loop 
can be observed at low frequency, see the green curve in Fig. 5(b). At higher frequency, the 
loop behaves like a normal ferroelectric loop, see blue curve in Fig.5(b). When temperature 
is between T1 and T2, as shown in Fig. 5(c) for temperature at T=(T1+T2)/2, typical double 
hysteresis loop can be observed at low frequency. When the frequency is higher, it becomes 
a pinched loop. This trend of loop shape can be kept even when temperature is up to T2, see 
curves in Fig. 5(d). 
Temperature dependence of polarization at different temperature cycles can be also 
obtained from Eq.(21) with a constant electric field E=0.01. The results are shown in shown 

in Fig. 6 with different Γ, the coefficient of thermodynamic restore force. The dark line is for 
the static polarization, red curves are field heating, blue curves are field cooling. Solid lines 

are for Γ=100, and dash-dotted lines are for Γ=10. The temperature hysteresis from the static 
theory, as indicated by the two dark dash lines, is smaller than that from Landau-

Khalanitkov theory. In other words, temperature hysteresis ΔT measured experimentally 
would be usual larger than that from static Landau theory. Also the temperature hysteresis 

ΔT depends on Γ, since Γ is related with the relaxation time. A larger Γ represents small 
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relaxation time, or quick response of polarization with electric field. Hence ferroelectrics 

with long relaxation time, i.e., small Γ, would expect a very larger temperature hysteresis. 
 

 

Fig. 5. Hysteresis loops with frequency ω=0.001 for green curves, ω=0.01 for red curves and 

ω=0.03 for blue curves at temperature (a) Tc; (b) T1; (c) (T1+T2)/2, (d) T2 

 

Fig. 6. Temperature dependence of polarization at different temperature cycles. Dark line is for 
the static polarization. Red curves are field heating, blue curves are field cooling. Solid lines 

are for short relaxation time(larger Γ), and dash-dot lines are for lone relaxation time (small Γ). 
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3. Effective field approach 

The effective field approach has proved to be a simple statistic physics method but valuable 
way to describe phase transitions (Gonzalo, 2006). The main supposition of this model is 
that each individual dipole is influenced, not only by the applied electric field, but by every 
dipole of the system. In its simplest form, which takes into account only dipole interactions, 
describes fairly well the main features of continuous ferroelectric phase transitions, i.e. 
second order phase transition. The inclusion of quadrupolar and higher order terms into the 
effective field expression is necessary for describing the properties of discontinuous or first 
order phase transitions (Gonzalo et al., 1993; Noheda et al., 1993, 1994). The effective field 
approach has turned out to be successful explaining the composition dependence of the 
Curie temperature in mixed ferroelectrics systems (Ali et al., 2004; Arago et al., 2006). A 
quantum effective field approach has also been developed for phase transitions at very low 
temperature (Gonzalo, 1989; Yuan et al., 2003; Arago et al., 2004) in ferro-quantum 
paraelectric mixed systems. In this section, quantum effective field approach is adopted to 
reveal the influence of the zero point energy on first order phase transitions (Wang et al., 
2008). We can see that when the zero point energy of the system is large enough and the 
ferroelectric phase is suppressed, a phase transition-like temperature dependence of the 
polarization can be observed by applying an electric field.   
The effective field, as described in detail in Gonzalo’s book (Gonzalo, 2006), can be 
expressed as 

 3 5
effE E P P P= +β + γ + δ +A  (23) 

where E is the external electric field, and the following terms correspond to the dipolar, 
quadrupolar, octupolar, etc., interaction. By keeping the first two terms, i.e. dipolar and 
quadrupolar interaction, gives account of the first order transition. 
From statistical considerations, the equation of state is, 

 
3( )

tanh tanh
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P N N

k T k T

μ⎛ ⎞ ⎛ ⎞+β + γ μ
= μ = μ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (24) 

where N is the number of elementary dipoles per unit volume, μ is the electric dipole 
moment, kB is the Boltzmann constant, and T is the absolute temperature. The Curie 
temperature is given by 

2

C

B

N
T

k

β μ
=  

The explicit form of the equation of state can be rewritten from Eq.(24), 

 1 3tanhBk T P
E P P

N
− ⎛ ⎞

= −β − γ⎜ ⎟μ μ⎝ ⎠
 (25) 

In order to handle easier this expression, following normalization quantities are introduced, 
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so Eq. (25) is rewritten as 

 
3

tanh
e p g p

p
t

⎛ ⎞+ + ⋅
= ⎜ ⎟

⎝ ⎠
 (26) 

or 

 1 3tanhe t p p gp−= ⋅ − −   (27) 

and as in absence of external field e = 0,  p = pS 

 
3

1tanh
S S

S

p gp
t

p−

+
=  (28) 

Fig.7 shows the plot of the normalized spontaneous polarization pS versus normalized 
temperature t obtained from Eq. (28) for several values of the parameter g. As it is shown in 
the discussion of the role of the quadrupolar interaction in the order of the phase transition 
(see Gonzalo et al., 1993; Noheda et al., 1993; Gonzalo, 2006), values of g smaller than 1/3 
correspond to a second order, or continuous phase transition, and values larger than 1/3 
indicate that the transition is discontinuous, that is, first order. In this case, a spontaneous 

polarization pθ exists at temperature Tθ>TC, and then τθ>1, being Δt = tθ -1 the corresponding 
reduced thermal hysteresis, which is the signature of the first order transitions.  

 

Fig. 7. Temperature dependence of the spontaneous polarization for different quadrupolar 

interaction coefficient g. The inset shows the polarization discontinuity pθ(g) and the thermal 

hysteresis temperature Δt(g) in a first order transition.(Wang et al., 2008) 

In order to determine pθ(g),  deriving in Eq. (28),     

0
S p

t

p
Θ

∂
=

∂
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and pθ(g) can be obtained from 

 ( )( ) ( )2 2 1 31 1 3 tanh 0p gp p p gp−
θ θ θ θ θ− + − + =  (29) 

Substituting pθ(g) in Eq. (28) again we obtain tθ(g). The inset of Fig.7 shows pθ(g) and Δt(g) 

respectively. It can be seen that Δt grows almost linearly with g and that pθ approaches to a 

saturation value that, resolving Eq.(29), turns out to be pθ = 0.8894 when g→ ∞. 
When a phase transition takes place at very low temperature it is necessary to consider 
quantum effect. The energy of the system is no longer the classical thermal energy kBT, but 
the corresponding energy of the quantum oscillator, 

0

1

2
E n

⎛ ⎞= ω +⎜ ⎟
⎝ ⎠

¥  

being E0= ħω0/2 the zero point energy, and <n> the average number of states for a given 
temperature T. From this quantum energy expression we can obtain a new temperature 
scale TQ (see Arago et al., 2004) defined as,  

 
( )0

0
0 /

0

1 1

2 1 2 tanh /2B

Q Q
Bk T

B B

k T T
e k k Tω
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 (30) 

and then, the corresponding quantum normalized temperature,  tQ ≡ TQ/TC. If we introduce 
a new normalization for the zero point energy  

0 0
2

/2

B C

E

k T N

ω
Ω ≡ =

β μ
¥

 

so we can rewrite, 

 
( )tanh /

Qt
t

Ω
≡

Ω
  (31) 

and Eq. (27) and (28) become respectively, 

 1 3tanhQe t p p gp−= − −  (32) 

 
( )

3

1
,    e  0

tanh / tanh
Q S S

S

p gp
t

t p−

+Ω
≡ = =

Ω
  (33) 

The temperature dependence of the spontaneous polarization can be found from above 
equation for a given value of g and different values of the parameter Ω. Fig. 8 plots pS(t) with 
g = 0.8 to ensure it is a first order transition. The influence of the zero-point energy is quite 
obvious: when it is small, the phase transition is still of normal first order one. As the zero 
point energy increases, both the transition temperatures and the spontaneous polarization 

decrease. The Curie temperature goes to zero for Ω = 1, but no yet tθ, neither the saturation 
spontaneous polarization does. From the definition of the normalized zero point energy Ω, 
we can see then that the Curie temperature goes to zero when the zero point energy is the 
same as the classical thermal energy kBTC. Imposing again the condition of the zero slope, 

www.intechopen.com



 Ferroelectrics 

 

286 

(∂t/∂pS)pθ= 0, we can obtain pθ(Ω), and then tθ(Ω), which must be zero when the ferroelectric 
behavior will be completely depressed. In this way we work out the zero point energy 
critical value (Ωcf = 1.1236 for g=0.8) that would not allow any ordered state. Furthermore, 

from the condition tθ(Ωcf, g) = 0, we will find the relationship between the critical zero point 
energy Ωcf and the strength of the quadrupolar interaction given by the coefficient g. Fig. 9 
plots Ωcf (g) that indicates that Ωcf grows almost linearly with g, specially for larger values of 
g. This means that ferroelectrics with strong first order phase transition feature needs a 
relative large critical value of zero point energy to depress the ferroelectricity.  

 

Fig. 8. Temperature dependence of the spontaneous polarization at different zero point 
energy. All curves correspond to a quadrupolar interaction coefficient g=0.8. (Wang et al., 
2008) 

Above results prove that a ferroelectric material, with strong quadrupolar interaction, 
undergoes a first order transition (g>1/3) unless its zero point energy reaches a critical 

value, Ωcf, because in such case the phase transition is inhibited. However, an induced phase 
transition must be reached by applying an external electric field. Let be a system with g= 0.8, 

and Ω=1.6, that is a first order ferroelectric with a zero point energy above the critical value 
and, hence, no phase transition observed. And let us apply a normalized electric field e that 
will produce a polarization after Eq. (32). Fig. 10 plots p(t) for different values of the electric 
field. It can be seen that when it is weak (see curves corresponding to 0.01 and 0.02), the 
polarization attains quickly a saturation value, similar to what is found in quantum 
paraelectrics. The curve of e=0.03 (see the dashed line) is split into two parts. The lower part 
would represent a quantum paraelectric state, but the upper part stands for a kind of 
ferroelectric state. Therefore there exists a critical value between e=0.02 and 0.03, which is 
the minimum electric field for inducting a phase transition. For 0.04<e<0.06 the induced 
polarization curve  shows a discontinuous step, but as the electric field increases, 0.07, 0.08 
and so on, the polarization changes continuously from a large value at low temperature to a 
relative small value at high temperature, showing a continuous step. So there is another 
critical electric field somewhere in between 0.05<e<0.07, separates the discontinuous step 
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and the continuous step of the induced polarization. In fact, this tri-critical point would be 
around e=0.06. It is also important to remark that the above-mentioned features of the field 
induced phase transitions have been observed in lead magnesium niobate (Kutnjak et al., 
2006), which is a well-known ferroelectric relaxor. 
 

 

Fig. 9. Quadrupolar interaction dependence of the critical zero point energy Ωcf that depress 
ferroelectricity. (Wang et al., 2008) 

 

Fig. 10. Temperature dependence of the field induced polarization for Ω=1.15 and g=0.8. The 
parameter is the strength of the electric field. (Wang et al., 2008) 
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For further understanding the field induced phase transitions, Fig. 11 shows the hysteresis 
loops obtained numerically from Eq. (32) and corresponding to the curves displayed in Fig. 
10. Double hysteresis loops can be observed when the temperature is lower than a critical 
point, around t=0.6, suggesting that ferroelectricity can always be induced at very low 
temperature. When the temperature is higher than this critical value, there is no hysteresis 
loop and we can just observe a non-linear p–e behaviour (see for instance the case for t=0.7). 

However, when the electric field is lower than e≈0.025, as indicated by the dashed arrow in 
Fig. 11, no hysteresis loop can be observed. That is the case corresponding to the curves e 
=0.01 and 0.02 in Fig. 10. The critical electric field able to induce a phase transition logically 
increases with the increasing of temperature, so at lower temperature region in Fig. 10, we 
can always have field induced ferroelectricity when the applied electric field is strong 
enough.  

 

Fig. 11. Hysteresis loops at different temperatures for Ω=1.15 and g=0.8. The dashed arrow 
indicates the minimum electric field needed to induce a ferroelectric state at t=0. (Wang et 
al., 2008) 

To understand the influence of the zero point energy on the shape of hysteresis loop, here 
we take the case of  g=0.8 at t=0 as example. The corresponding quantum temperature, after 
Eq. (31), is 

( )0Qt t = = Ω  

and then, Eq. (32) becomes 

 1 3tanhe p p gp−= Ω − −   (34) 

Fig. 12 plots the hysteresis loops calculated after Eq. (34). When the zero point energy is 
smaller than the critical value Ωcf (Ωcf=1.1236, in this case) a normal hysteresis loop is 
obtained, where the coercive field decreases as zero point energy increases. For the critical 
value, a double hysteresis loop with zero coercive field is found. But if we continue 
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increasing the zero point energy, we arrive to a point where no hysteresis loop is found at 
all. That suggests that above this other critical value, be Ωcp, there is no way to induce a 
phase transition, even applying a strong field, and the system remains always in a 
paraelectric state. 

 

Fig. 12. Hysteresis loops at zero temperature for different zero point energy values. The 
critical value of Ωcf is the minimum zero point energy for the system to have ferroelectricity, 
while the critical value of Ωcp is the maximum zero point energy for the system to get field 
induced ferroelectricity. (Wang et al., 2008) 

From the analysis of the hysteresis loops in Fig.12 we can determine the critical electric field 
needed to induce phase transition imposing the conditions, 

2

2
0,        0

cp

e e

p p

⎛ ⎞ ⎛ ⎞∂ ∂
= >⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

and deriving in Eq. (34) we get, 

 
( )

2

22 2

2
1 3 0, 6 0

1 1
c c

c c

gp g p
p p

⎛ ⎞Ω Ω⎜ ⎟− − = − >
⎜ ⎟− −⎝ ⎠

 (35) 

hence we obtain, 

 
( ) ( ) ( )2

2
3 1 3 1 6 2

6
c

g g g
p

g

− + − Ω−
=   (36) 

Substituting pc (g, Ω) obtained after Eq. (36) into Eq. (34) we can get the coercive field ec (pc) 
at zero temperature. Besides, as it is showed in Fig. 12, when the zero point energy attains 
its critical value Ωcf, the coercive field turns out to be zero, so this is another way to check  
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the quadrupolar interaction dependence of the critical zero point energy Ωcf(g) as displayed 
in Fig.9.  It must be noted the full accordance between the two calculations.  
At the second critical value of the zero point energy, Ωcp, the hysteresis loop becomes an 
inflexion e-p curve as it can also be observed in Fig.12, so in this case both Eq. (35) must be 
equal to zero, and by solving the system of equations,  it results, 

 
( )2
3 1 3 1

,
12 6

cp cp

g g
p

g g

+ −
Ω = =  (37) 

The phase diagram at zero temperature is shown in Fig. 13. It displays the role of both the 
quadrupolar interaction strength and the zero point energy on first order phase transitions. 
On the top of this diagram we find just paraelectric state (PE), while on the bottom left it 
appears only second order phase transitions (FE: 2nd order) that correspond to g < 1/3 and 
Ω ≤ 1. On the bottom right (g > 1/3) there are the first order transitions (FE: 1st order) as the 
critical values of the zero point energy (Ωcf >1) that depress the ferroelectricity grow 
monotonously with g. Above the curve Ωcf(g) there are induced electric field phase 
transitions (first order also). They are limited by another curve Ωcp(g) given by Eq. (37) 
indicating that no phase transition can be observed when the zero point energy of the 
system is greater than this value. 

 

Fig. 13. Phase diagram of zero point energy critical value Ωc versus quadrupolar interaction 
coefficient g at zero temperature. The second order phase transition region is denoted as 
“FE:2nd order”, “FE:1st order” indicates a normal first order transition, “iFE” is the region 
of induced ferroelectric phase and on the top, “PE” corresponds to the paraelectric phase. 
(Wang et al., 2008) 

From above calculations in the framework of effective field approach, it can be seen that a 
phase transition can be induced by applying an electric field in a first order quantum 
paraelectric material. There exist two critical values of the zero point energy, one is Ωcf that 
depress ferroelectricity, and another is Ωcp above which it is impossible to induce any kind 
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of phase transition independently of the value of the electric field applied. Phase diagram is 
presented to display the role of both the quadrupolar interaction strength and the zero point 
energy on the phase transitions features. 

4. Ising model with a four-spin interaction 

Ising model in a transverse field with a four-spin interaction has been used to study the first-
order phase transition properties in many ferroelectric systems. Under the mean-field 
approximation, first-order phase transition in ferroelectric thin films (Wang et al., 1996; 
Jiang et al., 2005) or ferroelectric superlattices (Qu, Zhong & Zhang, 1997; Wang, Wang & 
Zhong, 2002) have been systematically studied. Using the Green’s function technique, the 
first-order phase transition properties in order-disorder ferroelectrics (Wang et al., 1989) and 
ferroelectric thin films (Wesselinowa, 2002) have been investigated. Adopting the higher-
order approximation to the Fermi-type Green’s function, the first-order phase transition 
properties have been studied in the parameter space with respect to the ratios of the 
transverse field and the four-spin interaction to the two-spin interaction for ferroelectric thin 
films with the uniform surface and bulk parameters (Teng & Sy,2005).  These works prove 
that Ising model with four-spin interaction is a successful model for studying first order 
phase transition of ferroelectrics. In the following, basic formulism under mean-field 
approximations and Monte Carlo simulation are presented, and the results are discussed. 

4.1 Mean field approximation 

The Hamiltonian of the transverse field Ising model with a four-spin interchange interaction 

term is (Wang et al., 1989; Teng & Sy, 2005): 

 ( ) ( )2 4

, , , ,

x z z z z z z
i i ij i j ijkl i j k l

i i j i j k l

H S J S S J S S S S= − Ω − −∑ ∑ ∑  (38) 

where  Ω is the transverse field, Sx  and Sz  are the x and z components of pseudospin-1/2 

operator, J(2) and J(4) are the two-spin and four-spin exchang interaction,  subscript i,j,k,l are 

site number, summation run over only the nearest-neighbor sites. Under the mean field 

approximation (Blinc  & Zeks ,1974), solutions of Hamiltonian Eq.(38) is, 
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For a homogenous system 
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z z z z z
i j k lS S S S S= = = =  

4, ' ,ij ijkl i
j jkl

J J J J F F= = =∑ ∑  

Therefore we have, 
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2 2

z
i

B

JR J R E F
R S

F k T

⎛ ⎞+ + μ
= = ⎜ ⎟

⎝ ⎠
 (39) 

 ( )22 3' 2F JR J R E= Ω + + + μ  (40) 

The polarization is related to the z-component spin average as,  

 2 2z
iP N S N R= μ = μ  (41) 

Following normalizations are introduced to handle easier this expression, 

4' 4
' , , , , , 2Bk TJ F E P
g t e p R

J J J J J N

Ω μ
= ω = = τ = = = =

μ
 

Eq.(39) and (40) can be rewritten as, 
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In the absence of transverse field, i.e., ω=0 in Eq.(43), and by defining quadrupolar 
contribution factor g as,  

4'

4 4

g J
g

J
= =

⋅
 

Eq.(42) can be rewritten in the same form in Eq. (26), which is obtained from effective field 
approach. The equivalence of effective field approach and Ising model with four spin 
couplings under mean field approximation is completely approved. Therefore the critical 
value of relative quadrupolar contribution is gc=1/3 under mean field approximation for 
occurrence of first order phase transition. 

4.2 Monte Carlo simulation 

A well known and useful method to study phase transitions is by means of the Monte Carlo 
simulations (Binder, 1984). In particular, phase transitions in Ising systems of relatively low 
dimensions are sufficient to carry out numerical simulations in the vicinity of the transition 
temperature, providing a good empirical basis to investigate the asymptotic behavior at the 
phase transition (Gonzalo & Wang, 2008). Here Monte Carlo simulation is applied to the 
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Ising model with four-spin coupling for studying the phase transition behavior, especially 
checking the critical value from the four-spin coupling strength, or quadrupolar 
contribution (Wang et al., 2010). 
Monte Carlo method with metropolis algorithm has been used to simulate 3D Ising cubic 
lattice. The Hamiltonian is same as in Eq.(38), but without the first term, i.e., without 
including the tunneling term. In this case, the critical value of the four-spin coupling 
contribution under mean field approximation is 

( )12 ' 2 ' 1
, '/ 1/6

3
c c

J J
g J J

J J
= = = =  

The critical four-spin coupling strength is J’/J=1/6 from mean field theory, which is a 
reference value for the Monte Carlo simulations. Periodic boundary condition has been used 

in the simulations. The lattice size is denoted as N=L×L×L, where L is edge length. In the 
Monte Carlo simulation, edge length L=20, 30, 100 are used. Monte Carlo steps are chosen 
different for different lattices size to achieve an adequate accurate of the results. 

 

Fig. 14. Temperature dependence of spin average (a) and reduced average energy of cubic 
lattice with edge length L=20 and 30 for different four-spin coupling strength J’/J. (Wang et 
al., 2010) 

Simulation is started with relative small lattice size, with edge length L=20 and 30. The 
temperature dependence of the spin average and the reduced average energy with different 
four-spin coupling strength are presented in Fig.14. The reduced average energy is defined 
as the energy with respective to the ground state energy E0 in the temperature of zero 
Kelvin. The curve for lattice size L=20 is marked by solid symbols, and that for L=30 is 
marked by open symbols. The temperature is in the scale of two-site coupling J. As the four-
spin coupling strength increases from J’/J =0 to J’/J =1, the transition temperature is shifted 
to higher temperature. The decreasing of the average spin and the increasing of the reduced 
average energy, with increasing temperature around the transition temperature becomes 
more rapidly as J’/J increases. The general difference between L=20 and that of L=30 is 
marginal except around the transition temperatures. Even though the four-spin coupling 
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strength (J’/J) is much larger than that of the mean field value 1/6, the first order transition 
characteristic is not such obvious in these two lattice sizes.  
The temperature dependence of spin average and the reduced average energy of lattice size 
100 is shown in Fig.15 for different four-spin coupling strength J’/J. The value of J’/J 
increases from 0.0 to 1.1 with increment of 0.1, corresponding the curves from left to right. 
The general behavior seems similar with that for L=20 and 30 as shown in Fig.14. However, 
with increasing of the four-spin coupling strength J’/J, as can be seen in the most right side 
curve of J’/J=1.1 in Fig.15(a), the spin average drops down around the transition 
temperature very quickly, showing a discontinuous feature. Similar discontinuous feature 
can be also seen in the reduced average energy curves in Fig.15(b). The reduced average 
energy goes up very sharply around the transition temperature for J’/J=1.1, as shown in the 
most right side curve in Fig.15(b). From Fig.15(b), we also notice that there is an inflexion 
point around the transition temperatures. The reduced average energy at this point is about 
1/3 of the ground state energy when J’/J is larger. This condition could supply a criterion 
for determine the transition temperature in the first order phase transition. 

 

Fig. 15. Temperature dependence of spin average (a) and reduced average energy (b) of 
lattice size L =100 for with different four-spin coupling strength J’/J. (Wang et al., 2010) 

To determine the transition temperature, we appeal the calculation of the Binder cumulant. 

The temperature dependence of the Binder cumulant for J’/J= 1.0 with different lattice size 

are shown in Fig.16. For lattice size of L=10, 20, 25, 30 and 40, the Binder cumulant does 

cross the point at Tc=8.148J. For lattice size L is larger, see L= 50, 70, 100 and 150, the Binder 

cumulant misses the cross point, and drops down from 2/3 to a very small value at higher 

temperatures. That means that the transition temperature can not be obtained from the 

Binder cumulant when the four-spin coupling strength J’/J is larger. It is believed that the 

Binder cumulants in Fig.16 suggesting the transition is of second order when the lattice size 

is smaller than L=40, and the transition is of first order when the lattice size is larger than 

L=40. The lattice size L=40 is around the critical lattice size for four-spin coupling strength 

J’/J =1. This also implies that the transition temperature of first order transition is lattice size 

dependent. 
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Fig. 16. Binder cumulants for J’/J= 1.0 with different lattice sizes. The circle indicates the 
cross point of the Binder cumulants for lattice size L<40. (Wang et al/, 2010) 
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Fig. 17. Temperature dependence of spin average of lattice sizes L=100 for different J’/J 
around the transition temperature. Temperature is scaled by the transition temperature 
determined by the criterion <E>/E0=1/3. (Wang et al., 2010) 

Fig.17 shows the temperature dependence of spin average and the reduced average energy 
of lattice size 100 as shown in Fig.15, but with temperature rescaled by the transition 
temperature TC. The transition temperature TC is determined by the criterion of the 
averaged energy being one third of the ground state energy, i.e., temperature at 
<E>/E0=1/3 being the transition temperature, as circled in Fig.17(b). 
Results from Monte Carlo simulations on Ising cubic lattices with four spin couplings 
suggest that, (1) critical value of four-spin coupling strength for occurrence of first order 
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phase transition is larger than that of mean field theory; (2) the critical value is lattice 
dependence. When lattice size is smaller, the phase transition is still of second order; (3) 
when the phase transition is of first order, the transition temperature can be determined by 
the average energy being a third of the ground state energy. However, this criterion has not 
been justified rigorously. 

5. Ferroelectric relaxors  

Ferroelectric relaxors have been drawn much attention because of their high electro- 
mechanical performance and unusual ferroelectric properties. Two review articles (Ye, 1998; 
Bokov & Ye, 2006) have summarized the achievements of recent researches on ferroelectric 
relaxors, especially for lead magnesium nibate (PMN). Basically, there are two categories of 
explanations about the fundamental physics of their unusual properties. One is based upon 
the randomness of their compositions and structures, such as Smolenskii’s theory and 
spherical random bond random field model. Another is presumably based upon the 
experimental phenomenon, such as macro-micro-domain and super-paraelectric model. In 
this section, a general explanation of the properties observed in ferroelectric relaxors is 
proposed after analysis of the later category models (Wang et al., 2009). Field induced phase 
transition and diffused phase transition are reproduced within the framework of effective 
field approach.   
Interpretation is started with the experimental results of field induced phase transition in 
PMN. The temperature dependence of the polarization under different electric field 
strengths has been obtained (Ye & Schmid, 1993; Ye, 1998). From this relation we can 
understand that (1) there is no ferroelectric phase transition in the whole temperature range, 
since there is no spontaneous polarization as the temperature goes down to zero Kelvin; (2) 
ferroelectricity can be induced by an external electric field. These imply that the phase 
transition in PMN is of first order, but the ferroelectricity is depressed in the whole 
temperature range.  To understand these characteristics of ferroelectric relaxors, we can 
recall the temperature dependence of the spontaneous polarization in a typical normal first 
order ferroelectric phase transition is shown in Fig. 2.  This implies that PMN is in a 
paraelectric state, but not far from the ferroelectric state. 
Apart from the field induced phase transition, the following features should be also found 
within this temperature range in a normal first order ferroelectric phase transition: (1) a very 
long relaxation time, because of the critical slow down as the temperature is near the critical 
temperature. (2) super-paraelectric behavior. Normally there should be a double hysteresis 
loop observed in this temperature range. However, the double hysteresis loop could be 
reduced to a super-paraelectric shape because of the long relaxation time of the critical slow 
down. (3) macro-micro-domain crossover. As the temperature is much lower than the 
critical temperature, single domain or macro-domain is expected since it is in ferroelectric 
state; as the temperature is much higher than the critical temperature, no domain will be 
observed as it is in paraelectric state. Around the critical temperature, macro-micro-domain 
crossover is expected, i.e., polar nano-regions are forming in this temperature range. All 
these features have been observed in the ferroelectric relaxors like PMN. 
The depression of the ferroelectricity in PMN reminds us of the case of quantum 
paraelectrics SrTiO3. Therefore the field induced phase transition in a first order phase 
transition depressed by quantum fluctuation has been investigated within the framework of 
effective field approach by inclusive of zero point energy (Wang et al., 2008). The 
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temperature dependence of the induced polarization under different electric field is shown 
in Fig.10. The polarization p and temperature t are in dimensionless unit, the numbers 
marked in the Fig.10 are the strength of electric field. 
The major difference between the temperature dependence of the polarization in PMN (Ye 
& Schmid, 1993; Ye, 1998) and Fig.10 appears at lower temperature range. The polarization 
of PMN is still difficult to recover by an external field. This suggests that the zero point 
energy at lower temperature could be much larger than that in the higher temperature. In 
other words, the zero point energy might be increased with decreasing of temperature.  
Another evidence of the existence of larger zero point energy can be found from the diffused 
phase transition in PMN. For the quantum temperature scale with constant zero point 
energy, the temperature dependence of the dielectric constant has been obtained from 
Monte Carlo simulation on a Ising model (Wang et al., 2002). As the zero point increases, the 
transition temperature or the peak temperature of the dielectric constant shifts to a lower 
temperature. As the zero point energy is larger than the critical value, quantum paraelectric 
feature is obtained. When the zero point energy increases further, the dielectric constant 
decreases at low temperature. Therefore if the zero point energy changes with temperature 
and has a larger value only at lower temperature, the dielectric constant will increase as the 
temperature increases at lower temperature side, and decreases as the temperature increases 
at higher temperature side. A round dielectric peak will be formed around the temperature 
of zero point energy dropping down. 
From above analysis, a temperature dependent form of zero point energy is proposed in the 
following form (Wang et al., 2009) 

 
0

( )1 XT Teα −

ω
ω =

+
¥¥  (44) 

where the zero point energy ω changes around temperature Tx from ω0 at lower temperature 

to a relative lower value with crossover rate α. By using the same technique of effective field 
approach as in Refs.(Wang et al., 2008; Yuan et al., 2003 Gonzalo, 2006), with the quantum 
temperature scale in Eq.(32) and the zero point energy in Eq.(44), the field induce phase 
transition and diffused phase transition are obtained and shown in Fig.18. All parameters 
are in dimensionless scale, e stands for the electric field, and k is for the dielectric constant. 
From Fig.18 we can see that the basic features of field induce phase transition and diffused 
phase transition observed in relaxor ferroelectric are reproduced.  

   

Fig. 18. (a) Field induced phase transition and (b) diffused phase transition. (Wang et al., 2009) 
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The dimensionless quantum temperature scale used in Fig.18 is shown in Fig.19. The solid 
line represents the quantum temperature scale, and the dashed line is for the real 
temperature scale. The phase transition temperature is marked by the arrow. That means 
that the state evolution of relaxor ferroelectric misses the phase transition temperature as the 
temperature decreases, and re-entry of the paraelectric state. The kind of non-ergodic 
behavior is schematically shown in Fig.19(b) for better understanding. 
 

  

Fig. 19. (a) Quantum temperature scale and (b) non-ergodic behavior. (Wang et al., 2009) 

Overall, relaxor ferroelectrics like PMN are in a tri-critical state of long range ferroelectric 
order, thermal fluctuations and quantum fluctuations. This critical state can be described by 
a quantum temperature scale. Following features can be understood from this issue: diffuse 
phase transition, field induced phase transition, long relaxation time, as well as super-
paraelectric state, micro-macro-domain crossover and nonergodic behavior. However, a 
more adequate expression of temperature dependence of zero point energy is still needed 
for better description of the physical behavior in the relaxor ferroelectrics. 

6. Final remarks 

Theoretical methods and models for studying ferroelectric with first order phase transition 
are definitely not limited to the contents in this chapter. Hopefully results from these 
theoretical techniques can provide useful information for understanding experimental 
observations. Heavy-computer relying methods, such as first-principle calculations and 
molecular dynamic simulations etc, have been applied to investigate the physical properties 
of ferroelectrics.  However, fully understanding of the origin of ferroelectrics might need 
more efforts from both theoretical and experimental side.   
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