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1. Introduction    

Aging is a physical phenomenon in many ferroelectric materials characterized by the 
spontaneous changes of dielectric, ferroelectric, and piezoelectric properties with time (Jaffe 
et al., 1971; Lambeek & Jonker, 1986; Schulze & Ogino, 1988; Uchino, 2000). Aging is 
generally considered to be detrimental because it tends to limit the application viability of 
ferroelectric materials in terms of reliability and stability. Recently, a series of studies show 
that aging is useful and valuable to intensionally induce anomalous double (or constricted) 
ferroelectric hysteresis (P–E) loops, and hence large recoverable electrostrain (S–E) curves, in 
impurity- or acceptor-doped tetragonal ferroelectric titanates, such as barium titanate 
(BaTiO3) (Lambeek & Jonker, 1986; Ren, 2004; Zhang & Ren, 2005; Zhang & Ren, 2006). 
Specifically, these aging effects can provide an alternative way of both physical interest and 
technological importance to modify or enhance the electromechanical properties of 
tetragonal ferroelectrics. From the phenomenological respects, the aging effects can be 
described by a gradual stabilization of ferroelectric domain structure by defects (i.e., dopant, 
vacancy or impurity) (Arlt & Rebels, 1993; Damjanovic, 1998; Hall & Ben-Omran, 1998). In 
fact, various stabilization theories, including the grain-boundary theory, surface-layer 
model, domain-wall theory, and volume theory, have been proposed over the past decades 
(Okasaki & Sakata, 1962; Takahashi, 1970; Carl & Hardtl, 1978; Lambeck & Jonker, 1978; 
Lambeek & Jonker, 1986; Robels & Arlt, 1993). Among them, the domain-wall-pinning effect 
has been accepted as a general mechanism of aging (Lambeek & Jonker, 1986; Ren, 2004). It 
is only quite recently that the volume effect based on the symmetry-conforming principle of 
point defects was proposed and recognized as the intrinsic governing mechanism of 
ferroelectric aging (Lambeek & Jonker, 1986; Zhang & Ren, 2006; Yuen et al. 2007). 
Compared to tetragonal ferroelectrics, orthorhombic ferroelectrics are as interesting and as 
important, since orthorhombic ferroelectric phase lies widely in ferroelectrics similar to 
tetragonal ferroelectric phase (Yamanouchi et al., 1997; Saito et al., 2004; Wang et al., 2006). 
In particuar, orthorhombic A+B5+O3 alkaline niobates (KNbO3) are promising candidates for 
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lead-free piezoelectric applications due to their good piezoelectric properties and high Curie 
temperatures (Yamanouchi et al., 1997; Saito et al., 2004). However, literature report on the 
aging effects in this class of (lead-free) ferroelectrics remains essentially insufficient till 
today (Feng & Or, 2009).  
More recently, we have investigated the aging effects in an Mn-doped orthorhombic KNbO3-
based [K(Nb0.90Ta0.10)O3] lead-free ceramic: K[(Nb0.90Ta0.10)0.99Mn0.01]O3 so as to provide a 
relatively complete picture about the aging on both orthorhombic and tetragonal ferroelectrics 
for the related communities (Feng & Or, 2009). In this work, we present the aging-induced 
double P–E loops and recoverable S-E curves in the ceramic, and show that aging in the 
orthorhombic ferroelectric state is capable of inducing an obvious double P–E loop 
accompanying a recoverable electrostrain as large as 0.15% at 5 kV/mm at room temperature. 
Such aging effects are interpreted by a point defect-mediated reversible domain switching 
mechanism of aging driven by a symmetry-conforming short-range ordering (SC-SRO) of point 
defects. Large nonlinear electrostrains in excess of 0.13% over a broad temerpature range of 25–
140 °C are also demonstrated, suggesting potential application of the aging effects to modify or 
enhance the electromechanical properties of environmentally-friendly (lead-free) ceramics. 

2. Ceramic preparation and property measurements 

2.1 Ceramic preparation 

The Mn-doped orthorhombic A+B5+O3 alkaline niobate (KNbO3)-based [K(Nb0.90Ta0.10)O3] lead-
free ceramic: K[(Nb0.90Ta0.10)0.99Mn0.01]O3 was synthesized using a conventional solid-state 
reaction technique (Yamanouchi et al., 1997; Saito et al., 2004). The parental compound 
K(Nb0.90Ta0.10)O3 was essentially based on KNbO3 but was modified by adding 10% Ta to the 
Nb site. As shown in Fig. 1, such modification served to shift the cubic (paraelectric)-tetragonal 
(ferroelectric) phase transition temperature TC and the tetragonal (ferroelectric)-orthorhombic 
(ferroelectric) phase transition temperature TO-T to the lower temperature side, besides making 
the “hard“ material to be relatively “soft” (Triebwasser, 1959). To formulate the ceramic, 1.0 
mol.% Mn was added to the B-site of K(Nb0.90Ta0.10)O3 as the acceptor dopant. 
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The starting chemicals were K2CO3 (99.5%), Nb2O5 (99.9%), Ta2O5 (99.9%), and MnO2 (99%). 
Calcination was done at 850 °C for 4 h in a K2O-rich atmosphere, while sintering was carried 
out at 1050 °C for 0.5 h in air. In order to remove the historical effect, all the as-prepared 
samples were deaged by holding them at 500 °C for 1 h followed by an air-quench to room 
temperature. The quenched and deaged samples are designated as “fresh samples”. Some 
fresh samples were aged at 130 °C for 5 days, and the resulting samples are denoted as 
“aged samples”. 

2.2 Property measurements 

The temperature dependence of dielectric constant of the fresh samples was evaluated at 
different frequencies using a LCR meter (HIOKI 3532) with a temperature chamber. The 
bipolar and unipolar ferroelectric hysteresis (P–E) loops and electrostrain (S-E) curves for 
the aged and fresh samples were measured at a frequency of 5 Hz using a precision 
ferroelectric test system (Radiant Workstation) and a photonic displacement sensor (MTI 
2000) under various temperatures in a temperature-controlled silicon oil bath (Fig. 2). 

 

 

Fig. 2. Experimental setup for measuring bipolar and unipolar ferroelectric hysteresis (P–E) 
loops and electrostrain (S–E) curves 

3. Results and discussion 

3.1 Temperature dependence of dielectric constant 

Fig. 3 shows the temperature dependence of dielectric constant for the fresh samples at three 
different frequencies of 0.1, 1, and 10 kHz. Three distinct dielectric peaks are observed at 
about 326, 148, and -15 °C, respectively. X-ray diffraction (XRD) characterization indicates 
that they correspond to the cubic (paraelectric)-tetragonal (ferroelectric) phase transition 
temperature TC, the tetragonal (ferroelectric)-orthorhombic (ferroelectric) phase transition 
temperature TO-T, and the orthorhombic (ferroelectric)-rhombohedral (ferroelectric) phase 
transition temperature TR-O, respectively (Triebwasser, 1959). Therefore, our samples have a 
rhombohedral (R) structure for temperatures below -15 °C, an orthorhombic (O) structure 
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for temperatures ranging from -15 to 148 °C, a tetragonal (T) structure for temperatures 
varying from 148 to 326 °C, and a cubic (C) structure for temperatures above 326 °C. 
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Fig. 3. Temperature dependence of dielectric constant for the fresh samples at three different 
frequencies of 0.1, 1, and 10 kHz. C=cubic, T=tetragonal, O=orthorhombic, and 
R=rhombohedral 

3.2 Room-temperature bipolar and unipolar ferroelectric hysteresis loops and 
electrostrain curves 

Fig. 4 illustrates the bipolar and unipolar ferroelectric hysteresis (P–E) loops and 
electrostrain (S-E) curves for the aged and fresh samples at room temperature. In contrast 
with the normal bipolar P–E loop for the fresh samples, the aged samples in Fig. 4(a) possess 
an interesting bipolar double P–E loop, very similar to that of the aged acceptor-doped 
tetragonal ferroelectrics such as the A2+B4+O3 system (Ren, 2004; Zhang & Ren, 2005; Zhang 
& Ren, 2006). Moreover, a large recoverable electrostrain of 0.15% at 5 kV/mm, 
accompanying the double P–E loop, is achieved in our aged samples. This recoverable S–E 
curve is indeed different from the butterfly irrecoverable S–E curve as obtained in the fresh 
samples due to the existence of a recoverable domain switching in the aged samples but an 
irrecoverable domain switching in the fresh samples. Fig. 4(b) shows the unipolar P–E loops 
and S–E curves for the aged and fresh samples. It is clear that a large polarization P of about 

22 μC/cm2 is obtained at 5 kV/mm for the aged samples compared to a much smaller P of 

about 6 μC/cm2 in the fresh samples at the same field level. With the large P, a large 
nonlinear electrostrain of 0.15% at 5 kV/mm is available for the aged samples owing to the 
reversible domain switching. It is noted that this electrostrain not only is 2.5 times larger 
than the fresh samples, but also exceeds the “hard” lead zirconate titanate (PZT) value of 
0.125% at 5 kV/mm (Park & Shrout, 1997). It is also noted that the electrostrain in our fresh 
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samples (having a small quantity of Mn acceptor dopant) is not obviously different from 
that in the undoped K(Nb0.90Ta0.10)O3 ceramic, and similarly large electrostrain has been 
reported recently on the aged tetragonal K(Nb0.65Ta0.35)O3-based ceramics (Feng & Ren, 
2007). 
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Fig. 4. (a) Bipolar and (b) unipolar ferroelectric hysteresis (P–E) loops and electrostrain (S-E) 
curves for the aged and fresh samples at room temperature 

3.3 Physical interpretation by a point defect-mediated reversible domain switching 
mechanism of aging 

Although our orthorhombic K[(Nb0.90Ta0.10)0.99Mn0.01]O3 ceramic has different crystal 
symmetry from tetragonal ferroelectric BaTiO3, they all belong to perovskite ABO3 structure. 
This lets us to believe that the observed aging effects in our aged orthorhombic samples can 
be explained according to a point defect-mediated reversible domain switching mechanism 
of aging driven by a symmetry-conforming short-range ordering (SC-SRO) of point defects 
(i.e., acceptor ions and vacancies) adopted successfully in BaTiO3 (Ren, 2004; Zhang & Ren, 
2005; Zhang & Ren, 2006). In fact, when acceptor dopant Mn4+/Mn3+ ions displace the 
central Nb5+/Ta5+ ions of the B-site in the aged K[(Nb0.90Ta0.10)0.99Mn0.01]O3 samples, oxygen 
vacancies VO form at the O2- sites to maintain the charge neutrality, resulting in point defects 
(i.e., defect dipoles) with the central acceptor dopants. Fig. 5 depicts how such aging effects 
are produced in a single-crystal grain of our aged samples. Some associated remarks are 
included as follows. 
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Fig. 5. Crystal and defect symmetries of a single-crystal grain in (a) a fresh 
K[(Nb0.90Ta0.10)0.99Mn0.01]O3 sample at T>TC, (b) the fresh sample at TO-T<T<TC, (c) the fresh 
sample at TR-O<T<TO-T, and (d) an aged sample at room temperature. (e) Electric field E-
induced switching of the 180°, 60°, and 120° ferroelectric domains in the aged sample at 
room temperature 

1. When the fresh samples are just sintered and their temperature T is still above the Curie 
point TC (i.e., T>TC), its single-crystal grain exhibits a cubic crystal symmetry m3m, and 
point defects naturally show a conforming cubic defect symmetry m3m, as shown in 
Fig. 5(a). 

2. At TO-T<T<TC, the single-crystal grain of the fresh samples shows a tetragonal crystal 
symmetry 4mm, due to the displacement of positive and negative ions along the [001] 
crystallographic axis, producing a nonzero spontaneous polarization PS as shown in Fig. 
5(b). However, the short-range ordering (SRO) distribution of point defects keeps the 
same cubic defect symmetry m3m as that in the cubic paraelectric phase because the 
diffusionless paraferroelectric transition cannot alter the original cubic SRO symmetry 
of point defects (Ren, 2004). 

3. At TR-O<T<TO-T, the single-crystal grain of the fresh samples exhibits an orthorhombic 
crystal symmetry mm2, owing to the ferroelectric-ferroelectric phase transition from the 
tetragonal to orthorhombic structure, producing a nonzero PS along the [110] 
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crystallographic axis as shown in Fig. 5(c). Again, the SRO distribution of point defects 
still keeps the same cubic defect symmetry m3m because of fast cooling. As a result, two 
unmatched symmetries (i.e., the orthorhombic crystal symmetry and the cubic defect 
symmetry) exist simultaneously in the fresh ferroelectric state [Fig. 5(c)]. According to 
the SC-SRO principle (Ren & Otsuka, 2000), such a state is energetically unstable and 
the samples tend to a symmetry-conforming state.  

4. After aging at 130 °C for 5 days in the ferroelectric state, the cubic defect symmetry m3m 
changes gradually into a polar orthorhombic defect symmetry mm2, while the single-
crystal grain of the aged samples has a polar orthorhombic crystal symmetry mm2, as 
shown in Fig. 5(d). Such a change is realized by the migration of VO during aging, and 
the polar orthorhombic defect symmetry creates a defect polarization PD, aligning along 
the spontaneous polarization PS direction [Fig. 5(d)]. 

5. When an electric field E is initially applied in opposition to PS of the aged orthorhombic 
samples [Fig. 5(e)], an effective switching of the available 180° ferroelectric domains is 
induced, contributing to a small polarization at low E (<1.5 kV/mm), as shown in Fig. 
4(b). Continuing a larger applied E (>1.5 kV/mm), non-180° domain switching (mainly 
60° and 120° domain switching according to the polar orthorhombic crystal symmetry) 
is induced, but the polar orthorhombic defect symmetry and the associated PD cannot 
have a sudden change [Fig. 5(e)]. Hence, the unchanged defect symmetry and the 
associated PD cause a reversible domain switching after removing E. Consequently, an 
interesting macroscopic double P–E loop and a large recoverable S–E curve are 
produced as in Fig. 4. For the fresh samples, since the defect symmetry is a cubic 
symmetry and cannot provide such an intrinsic restoring force, we can only observe a 
normal macroscopic P–E loop and a butterfly S–E curve due to the irreversible domain 
switching [Fig. 4(a)]. 

It should be noted that the microscopic description for the orthorhombic KNbO3-based 

ferroelectrics is very similar to that for acceptor-doped tetragonal ferroelectric titanates (Ren, 

2004; Zhang & Ren, 2005; Zhang & Ren, 2006). The observed aging effects originate 

essentially from the inconformity of the crystal symmetry with the defect symmetry after a 

structural transition. This may be the intrinsic reason why macroscopic double P-E loops 

and recoverable S–E curves are achieved in different ferroelectric phases and different 

ferroelectrics. Such aging mechanism, based on the SC-SRO principle of point defects, is 

insensitive to crystal symmetry and constituent ionic species, indicating a common physical 

origin of aging. 

3.4 Effect of temperature on ferroelectric hysteresis loops and electrostrain curves 

Fig. 6 plots the unipolar ferroelectric hysteresis (P–E) loops and electrostrain (S–E) curves for 

the aged samples at five different temperatures of 25, 80, 120, 140, and 160 °C in order to 

investigate their temperature stabilities for applications. The insets show the temperature 

dependence of maximum polarization Pmax and maximum strain Smax of the aged samples at 

5 kV/mm. It can be seen that the aging-induced high Pmax in excess of 19 μC/cm2 and large 

Smax in excess of 0.13% can be persisted up to 140 °C, reflecting a good temperature stability 

for the effects. Above 140 °C, both the unipolar P–E loop and S–E curve become normal, 

while Pmax and Smax decrease significantly. This can be ascribed to the destruction of defect 

symmetry and migration of VO as a result of the exposure to high temperature and the 

approach of the tetragonal phase (TO-T =148 °C). Thus, point defects cannot provide a 
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restoring force for a reversible domain switching so that the obvious P–E loop becomes a 

normal loop and the recoverable S–E curve vanishes. 
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Fig. 6. Unipolar ferroelectric hysteresis (P–E) loops and electrostrain (S–E) curves for the 

aged samples at five different temperatures of 25, 80, 120, 140, and 160 °C. The insets show 
the temperature dependence of maximum polarization Pmax and maximum strain Smax of the 
aged samples at 5 kV/mm 

4. Conclusion 

In summary, we have investigated the aging-induced double ferroelectric hysteresis (P–E) 

loops and recoverable electrostrain (S–E) curves in an Mn-doped orthorhombic KNbO3-

based [K(Nb0.90Ta0.10)O3] lead-free ceramic: K[(Nb0.90Ta0.10)0.99Mn0.01]O3. Obvious double P–E 

www.intechopen.com



Aging-Induced, Defect-Mediated Double Ferroelectric Hysteresis Loops and Large Recoverable 
Electrostrain Curves in Mn-Doped Orthorhombic KNbO3-Based Lead-Free Ceramics 

 

215 

loops and large recoverable S–E curves with amplitudes in excess of 0.13% at 5 kV/mm 

have been observed in the aged samples over a wide temperature range of 25–140 °C. The 

observations have been found to have striking similarities to tetragonal ferroelectrics, 

besides following a point defect-mediated reversible domain switching mechanism of aging 

driven by a symmetry-conforming short-range ordering (SC-SRO) of point defects. Such 

aging effects, being insensitive to crystal structure and constituent ionic species, provide a 

useful way to modify or enhance the electromechanical properties of lead-free ferroelectric 

material systems. 
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