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1. Introduction 

Wireless sensor networks (WSNs) have gained worldwide attention in recent years, 
particularly with the proliferation in Micro-Electro-Mechanical Systems (MEMS) technology 
which has facilitated the development of smart sensors (Akyildiz et al., 2006; Akyildiz et al., 
2007; Yick et al., 2008). Target tracking in WSNs is an important problem with a large 
spectrum of applications (Akyildiz et al., 2006; Zhao et al., 2002), such as surveillance 
(Valera & Velastin, 2005), natural disaster relief (Wang et al., 2003), traffic monitoring (Li et 
al., 2009), pursuit evasion games, etc.  

 
1.1 Opportunities and challenges 

A target tracking system through WSNs can have several advantages (Veeravalli & 
Chamberland, 2007): (i) qualitative and fidelity observations; (ii) signal processing 
accurately and timely; and (iii) increased system robustness and tracking accuracy. 
However, the use of sensor networks for target tracking presents a number of new 
challenges. These challenges include limited energy supply and communication bandwidth, 
distributed algorithms and control, and handling the fundamental performance limits of 
sensor nodes, especially as the size of the network becomes large. Unlike traditional 
networks, a WSN has its own design and resource constraints. Resource constraints include 
a limited amount of energy, short communication range, low bandwidth, and limited 
processing and storage in each node. Design constraints are application dependent and are 
based on the monitored environment. The environment plays a key role in determining the 
size of the network, the deployment scheme, and the network topology.  
Power consumption is the most important design factor for WSNs (Shorey et al., 2006). 
Commonly, saving power during the operation of the electronic device could be achieved 
on more than one protocol level. Plenty of research work is dedicated to the design of power 
efficient schemes for target tracking which try to explore good trade-off between power 
consumption and tracking accuracy (see e.g. Lee et al. 2007; Xu & Lee, 2003; Walchli et al., 
2007; Tsai et al., 2007, and the references therein).  
Besides, the traditional target tracking methodologies make use of a centralized approach. 
As the number of sensors rise in the network, more messages are passed on towards the sink 
and will consume additional bandwidth. Thus traditional approaches are not fault tolerant 
as there is single point of failure and does not scale well. However, in sensor networks, 
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hundreds, and in the extreme, hundreds of thousands of sensors are deployed in a large 
geographical area. In some cases dropped from airplanes, or deployed using artillery shells. 
Requiring that every node must work in order for the network to operate is difficult to 
achieve. The network must have a high level of fault tolerance in order to be of any practical 
value (Hoblos et al., 2000). 
In a word, target tracking algorithm considering the tradeoff between the tracking accuracy 
and network resources such as energy, bandwidth, and communication/computation 
burden is challenging. 

 
1.2 Contributions and chapter organization 
In this chapter, a self-contained overview of tracking approaches through a WSN is given 
according the architecture of the networks. As can be seen soon, WSNs are typically 
classified into two main categories (Sohraby et al., 2006): hierarchical network and peer-to-
peer network. For the former, naïve, tree, cluster, and hybrid network based methods are 
reviewed in detail. While for the latter, average consensus is usually adopted to achieve 
network-wide agreement on target estimate and two approaches commonly used including 
the dynamic consensus filter and alternating direction method. Then advantage and 
limitations of these approaches are compared. 
Considering the stringent energy and bandwidth limitation, quantized messages based 
tracking method is discussed separately. Local data quantization/compression is usually 
adopted so as to reduce the required expenditure of resources. Then the signal processing 
unit, i.e. the fusion center (FC), or cluster head (CH), or any node in the network, combines 
the quantized messages from local sensors to produce a final estimation of the target state. 
In the quantized scenario, Shannon’s “rate-distortion” bound that notionally is a curve of 
possible and impossible points on distortion (e.g. MSE versus bit-rate axes) is important and 
practical. In the literature, target tracking algorithms using quantized information can be 
categorized to mainly quantized measurement based and quantized innovation based 
tracking. Both categories will be overview in tail with the characteristics discussed.  
The remainder of this chapter is organized as follows. Section 2 gives a taxonomy on target 
tracking approaches through a WSN. In Section 3, details of target tracking approaches in 
hierarchical network are highlighted focusing on: naïve activation based tracking, tree-based 
tracking methods, cluster-based tracking approaches, and hybrid tracking methods. In 
Section 4, target tracking in peer-to-peer sensor networks are reviewed with both embedded 
filter based consensus and alternating direction based consensus methods discussed. 
Comparison criterions are given in Section 5 and the methods aforementioned are 
compared. Section 6 discusses the methods based on quantized information in detail, which 
followed by Section 7 that gives the future research directions and concluding remarks. 

 
2. A taxonomy on tracking methods 

In the literature, various algorithms and approaches for target tracking are presented but 
there is a deficiency of well defined classification of solutions of this well known application 
of WSN. This chapter presents a taxonomy of target tracking approaches as well as 
discussing each method under the appropriate category. 
The taxonomy on the tracking techniques presented is based on the network architecture. In 
this chapter, we classify the WSNs into two categories (Veeravalli & Chamberland, 2007): 
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hierarchical (category 1 WSNs) and peer-to-peer (category 2 WSNs). For the category 1 
WSNs (see Fig. 1 (a)), almost invariably mesh-based systems with multihop radio 
connectivity among or between wireless nodes are employed. The sensors in the vicinity of 
an event must be able to monitor the event of interest and report back to the sink. A sink 
sensor node has capability to communicate with outside world such as laptop, base station. 
The important characterizations of the category 1 WSNs are that (i) sensor nods can support 
communications on behalf of other sensor nodes by acting as repeaters; (ii) the forwarding 
node can support data processing or information fusion on behalf of the senor nodes. The 
category 2 WSNs (see Fig. 1 (b)), which are also referred as flat, or point-to-point network, 
generally are with single-hop radio connectivity to wireless nodes utilizing static routing 
over the wireless network. The main features of the category 2 WSNs are that (i) the 
forwarding node only supports static routing; (ii) each node only communicates with its 
neighbouring node(s) and network-wide consensus can be achieved through information 
exchange between neighbours. 
As illustrated in Fig. 2, we taxonomize the tracking algorithms into two aspects according to 
the aforementioned two categories of network architecture. One is hierarchical network 
based tracking, the other is peer-to-peer network based tracking. The former can be further 
classified into four schemes, which are: Naïve activation based tracking, tree-based tracking, 
cluster-based tracking, and hybrid methods. In tree-based target tracking, nodes in a 
network may be organized in a hierarchical tree or represented as a graph in which vertices 
represent sensor nodes and edges are links between nodes that can directly communicate 
with each other.  
The cluster-based methods provide scalability and better usage of bandwidth than other 
types of methods. If CH is formed via local network processing, extra messages are reduced 
and fewer messages are transmitted towards base station thus providing security as well as 
less usage of bandwidth (Rapaka & Madria, 2007). In the conventional cluster architecture, 
clusters are formed statistically at the time of network deployment and the properties of 
each cluster are fixed such as number of members, area covered, etc. Static clustering has 
several drawbacks regardless of its simplicity, for example, static membership is not robust 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Architecture of wireless sensor networks 
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from fault-tolerance point of view and it prevents sensor in different clusters from sharing 
information. In contrast, dynamic clustering offers several advantages where clusters are 
formed dynamically depending on occurrence of certain events, for instance, when a node 
with sufficient battery and computational power detects an event, it comes forward to act as 
a CH. To make sure only one CH remains active for target tracking, some decentralized 
mechanism is adapted. The CH invites nearby sensor nodes and makes them members of 
that cluster. Since sensors don’t statistically form a cluster, they may belong to altered 
cluster at different timings. As only one cluster is active at a time, redundant data and 
interference is reduced.  
According to the methods approaching consensus, the peer-to-peer networks based target 
tracking systems can be further classified into embedded filter based tracking and 
alternating-direction based tracking. Since network-wide consensus can be achieved 
through only information exchange between neighbours, considerable communication 
energy is reduced and this makes the peer-to-peer networks based tracking scalable for 
large-scale sensor network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Taxonomy of target tracking algorithms in WSNs. 

 
3. Tracking methods for hierarchical networks 

3.1 Naïve activation based tracking 

Naïve activation (or direct communication) based tracking scheme (Guo et al., 2003) is the 
simplest approach, for which all nodes are in tracking mode all the time. Each node sends 
the local measurement to the sink node or base station. Then the base station estimates and 
predicts the target state according to the received local measurements. Since it offers the best 
tracking results, it is a useful baseline for comparison. However, this strategy offers the 
worst energy efficiency and it inflects heavy communication and computation burden on 
the base station of sink node. This makes the naïve approach not robust against base station 
failure especially for the case of link failure and channel congestion.  
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3.2 Tree-based tracking 
Centralized target tracking approaches are both time and energy consuming, to avoid this 
limitation tree-based tracking methods are proposed, for example, Scalable Tracking Using 
Networked sensors (STUN) (Kung & Vlah, 2003), Dynamic Convoy Tree-Based 
Collaboration (DCTC) (Zhang & Cao, 2004a; Zhang & Cao, 2004b), Deviation Avoidance 
Tree (DAT) (Lin et al., 2004), and Dynamic Object Tracking (DOT) approach (Tsai et al., 
2007).  
Specifically, STUN (Kung & Vlah, 2003) is a tree-based approach in which a cost is assigned 
to each link calculated by Euclidean distance between the two nodes. The leaf nodes are 
used for tracking the moving object and then sending collected data to the sink through 
intermediate nodes. The intermediate nodes keep a record of detected object and whenever 
there is a change in that record, they send updated information to the sink. However, STUN 
has two drawbacks. First, drain and balance tree does not replicate physical sensor network 
as it is a logical tree, hence an edge may consist of multiple communication hops and may 
raise communication cost. Second, the construction of DAB tree does not consider query 
cost. 
In (Zhang & Cao, 2004a; Zhang & Cao, 2004b), a spanning tree rooted at the sensor node 
close to a target is used for target tracking, with the target position estimated by the location 
of the root sensor. More statistically-oriented algorithms for mobile target identification and 
localization are proposed therein, which allows the designer to directly model the 
distributional properties of sensor signals. 
A network aggregation model by organizing sensor nodes in logical tree is intended in (Lin 
et al., 2004). As physical topology of the network is considered, thus reducing the total 
communication cost. The object tracking involves two steps: update and query. In first step; 
location update cost is reduced by Deviation Avoidance Tree (DAT) algorithm and in 
second step; query cost is reduced by query cost reduction algorithm.  
DOT (Tsai et al., 2007), a unique protocol reports the tracking information of moving object 
to moving source. First of all, the face neighbours are identified by Gabriel graph. In target 
discovery step, source sends request to sensor nodes and the node close to the target replies 
back. To detect moving target continuously, the spatial neighbours of near sensor node are 
waken up. In target tracking step, source send query to beacon node (node keeping track 
information), which reply back target’s next location and the source moves towards next 
beacon node. The process is repeated until the source catches the target. 
Lin et al. propose a CLOUD framework to track the region-based event (Lin et al., 2005). The 
basic idea is to dynamically form a tree-based collective structure for each event region in 
each time slot. However, both of their approaches in (Lin et al., 2005; Jiang et al., 2004) are 
limited by the dependence on the tree structure for the network topology. 
In (Jin & Nittel, 2006), an R-tree sensor network topology is adopted for the detection and 
tracking of region-based targets. Two approaches: forward-all and forward-description 
methods are proposed for the detection of event regions. Furthermore, the authors describe 
three detailed algorithms: boundary detection algorithm, merging algorithm and 
description improvement algorithm to deal with the problems of how to detect an event 
boundary, how to merge the event region obtained from the child nodes in the R-tree, and 
how to simplify and smooth the event boundary.  
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3.3 Cluster-based tracking 
To facilitate collaborative data processing in target tracking-centric sensor networks, the 
cluster architecture is usually used in which sensors are organized into clusters, with each 
cluster consisting of a CH and several slave nodes (members). Hierarchical (clustering) 
techniques can aid in reducing useful energy consumption (Heinzelman et al., 2002). 
Clustering is particularly useful for applications that require scalability to hundreds or 
thousands of nodes. Scalability in this context implies the need for load balancing and 
efficient resource utilization. Clustering can be extremely effective in one-to-many, many-to-
one, one-to-any, or one-to-all (broadcast) communication. For example, in many-to-one 
communication, clustering can support data fusion and reduce communication interference 
(Younis & Fahmy, 2004). 

 
3.3.1 Static clustering  

Conventionally, clusters are formed statically at the time of network deployment. The 
attributes of each cluster, such as the size of a cluster, the area it covers, and the members it 
possesses, are static. In spite of its simplicity, the static cluster architecture suffers from 
several drawbacks. First, fixed membership is not robust from the perspective of fault 
tolerance. If a CH dies of power depletion, all the sensors in the cluster render useless. 
Second, fixed membership prevents sensor nodes in different clusters from sharing 
information and collaborating on data processing. Finally, fixed membership cannot adapt 
to highly dynamic scenarios in which sensors in the region of high (low) event concentration 
may be instrumented to stay awake (go to sleep). 

 
3.3.2 Dynamic clustering 

Dynamic cluster architectures, on the other hand, offer several desirable features (Chen et 
al., 2003). Formation of a cluster is triggered by certain events of interest (e.g., detection of 
an approaching target with acoustic sounds). When a sensor with sufficient battery and 
computational power detects (with a high signal-to-noise ratio, SNR) signals of interest, it 
volunteers to act as a CH. No explicit leader (CH) election is required and, hence, no 
excessive message exchanges are incurred. As more than one “powerful” sensors may detect 
the signal, multiple volunteers may exist. A judicious, decentralized approach has to be 
applied to ensure that only one CH is active in the vicinity of a target to be tracked with 
high probability. Sensors in the vicinity of the active CH are “invited” to become members 
of the cluster and report their measurements to the CH. Compared with the static clustering 
approaches, dynamic clustering networked sensors do not statically belong to a cluster and 
may support different clusters at different times. Moreover, as only one cluster is active in 
the vicinity of a target with high probability, redundant data is suppressed and potential 
interference and contention at the MAC level is mitigated. 
Examples of dynamic cluster-based tracking are information-driven sensor querying (IDSQ) 
(Zhao et al., 2002), DELTA (Walchli et al., 2007), and RARE (Olule et al., 2007).  
Zhao et al. addressed the dynamic sensor collaboration problem in distributed tracking to 
determine dynamically which sensor is most appropriate to perform the sensing, what 
needs to be sensed, and to whom to communicate the information (Zhao et al., 2002). They 
developed the IDSQ approach, enabling collaboration based on resource constraints and the 
const of transmitting information. Information utility functions employed include entropy, 
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Mahalanobis distance, and a measure on expected posterior distribution. This approach 
assumes that each node in the network can locally estimate the cost of sensing, processing 
and communicating data to another node. Although the approach is power efficient (since 
only few nodes are active at any given time), it is applied for tracking a single object only. 
Walchli et al. present DELTA (Walchli et al., 2007), a distributive algorithm for tracking a 
person moving at constant speed by dynamically making a cluster and selecting CH based 
on light measurement. The CH is responsible to reliably monitor moving object and 
collaborate with sensor nodes. The limitation of DELTA algorithm is that it can only deal 
with constant speed, whereas, varying speed is not considered. 
Energy aware probabilistic target localization algorithm for a single target using cluster-
based WSN is proposed in (Zou & Chakrabarty, 2003), where a two step protocol for 
communication between CH and sensors in the cluster is put forward. In the first step, 
sensors detecting the target report to the CH by a short message. Then the CH executes 
localization procedure to determine the subset of sensors in the vicinity of target and query 
detailed target information from them. 
Olule et al. investigate an energy efficient target tracking protocol based on two algorithms, 
ARE-Area (Reduced Area Reporting) and RARE-Node (Reduction of Active node 
Redundancy) via static clustering (Olule et al., 2007). RARE-Area reduces number of nodes 
participating in tracking by inhibiting far away nodes from taking part in tracking. RARE-
node reduces redundant information by identifying overlapping sensors. Cluster is formed 
dynamically by prediction during target tracking (Jin et al., 2006), thus reducing number of 
nodes involved in tracking. Although the method consumes low energy, the missing target 
recovery procedure is not well defined.  
Quantized measurements are usually adopted in such a network to attack the problem of 
limited power supply and communication bandwidth. Very recently, the problem of target 
tracking in a WSN that consists of randomly distributed range-only sensors is considered in 
(Zhou et al., 2010)). The posterior Cramér-Rao lower bounds (CRLB) on the mean squared 
error (MSE) on target tracking with quantized range-only measurements are derived. Due to 
the analytical difficulties, particle filter is applied to approximate the theoretical bounds. In 
this paper, recursion of posterior CRLB on tracking based on both constant velocity (CV) 
and constant acceleration (CA) model for target dynamics and a general range-only 
measuring model for local sensors are obtained. More details on tracking using quantized 
messages can be found in Section 6. 

 
3.3.3 Space-time clustering 
In order to present the event processing with high accuracy, Phoha et al. propose the 
dynamic space-time clustering (DSTC) (Phoha et al., 2003a). In this architecture, clusters of 
space-time neighbouring nodes are dynamically organized to present the event around by 
combining the local information among nodes in the inner space-time cluster. The type and 
track of the target then are estimated by the CH. 
Phoha et al. propose two methods by combining the DSTC and beamforming: one is DSTC 
beamforming controlled, the other is DSTC logic controlled beamforming (Phoha et al., 
2003b). The former is composed of hundreds of low-cost DSTC nodes and a few 
beamforming nodes, which estimate the target position through triangulation. In the case of 
failure of beamforming nodes, the DSTC nodes are activated to localize the target. The latter 
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determine a cluster to track the target according to DSTC logic, while the member nodes run 
the beamforming algorithm to estimate the target state. 

 
3.4 Hybrid method 

Hybrid methods are referred to the tracking algorithms that fulfill the requirements of more 
than one types of target tracking. Examples include distributed predictive tracking (DPT) 
(Yang & Sikdor, 2003), DCAT (Chen et al., 2003), and Hierarchical prediction strategy (HPS) 
(Wang et al., 2008).  
The DPT adopts a clustering based approach for scalability and a prediction based tracking 
mechanism to provide a distributed and energy efficient solution (Yang & Sikdor, 2003). The 
protocol is proven to be robust against node or prediction failures which may result in 
temporary loss of the target and recovers from such scenarios quickly and with very little 
additional energy use. 
A decentralized dynamic clustering algorithm for single target tracking (Here we referred as 
dynamic clustering for acoustic tracking, DCAT) is proposed in (Chen et al., 2003). Using 
Voronoi Diagrams, clusters are formed and only one CH becomes active when the acoustic 
signal strength detected by CH exceeds a pre-determined threshold. The CH then asks the 
sensors in its vicinity to join cluster by sending a broadcast packet. The sensor based on the 
probabilistic distance estimates between itself and target, decides whether it should reply to 
CH. Afterwards, CH executes a localization method to estimate location of target based on 
sensor replies and sends result to the sink. 
In HPS, cluster is formed using Voronoi division and a target next location is predicted via 
Least Square Method but overheads are not well defined. HVE protocol uses cluster 
structure and prediction for estimating shape and size of forwarding zone and delivering 
mobicast messages.  
A location model determines the granularity of location information and the prediction 
model processes the historical data to predict next movement of mobile object. An 
interesting example of multiple targets tracking using prediction is given in (Chong et al., 
2003). 

 
4. Tracking methods for peer-to-peer networks 

For the tree- or cluster-based methods, sensing task is usually performed by several nodes at 
a time and inflicts heavy computation burden on the root node or the CH. This makes the 
tree- or cluster-based WSN tracking systems lack of robustness in case of root node or the 
CH failures. On the contrary, another architecture for target tracking is the peer-to-peer 
WSN. As it can guarantee that sensors obtain the desired estimates and rely only on single-
hop communications between neighbouring nodes, the limitations mentioned above are not 
encountered in peer-to-peer WSN based target tracking systems. 
On the other hand, the well-known strategy concerning estimation and tracking is 
decentralized Kalman filtering or nonlinear filtering scheme, e.g. extended Kalman filtering 
(EKF), unscented Kalman filtering (UKF), and particle filtering (PF), which involve state 
estimation using a set of local filters that communicate with all other nodes (see e.g. Li & 
Wang, 2000; Mutambara, 1998; Vercauteren & Wang, 2005, and the references therein). The 
information flow in the traditional decentralized Kalman filtering (see e.g. Mutambara, 
1998) or unscented Kalman filtering scheme (Vercauteren & Wang, 2005) is all-to-all with 
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communication complexity of O(N2) (here N is the number of sensors in the network), 
which is not scalable for sensor networks (Speyer et al., 2004). On the contrary, the peer-to-
peer network tracking is usually based on average consensus algorithms that have proven to 
be effective tools for performing network-wide distributed computation task ranging from 
flocking to robot rendezvous as in the papers (Olfati-Saber & Murry, 2004; Tanner et al., 
2007; Kar & Moura, 2009), and the references therein. Hence, we refer this kind of methods 
as average consensus based tracking (AC tracking). 

 
4.1 Embedded filter based consensus 

Distributed estimation using peer-to-peer WSNs is based on successive refinements of local 
estimates maintained at individual sensors. In a nutshell, each iteration of the algorithm 
comprises a communication step where the sensors interchange information with their 
neighbours, and an update step where each sensor uses this information to refine its local 
estimate. In this context, estimation of deterministic parameters in linear data models, via 
decentralized computation of the BLUE or the sample average estimator, was considered in 
(Olfati-Saber & Murry, 2004; Scherber & Papadopoulos, 2005; Xiao & Boyd, 2004) using the 
notion of consensus averaging. Decentralized estimation of Gaussian random parameters 
was reported in (Delouille et al., 2004) for stationary environments, while the dynamic case 
was considered in (Spanos et al., 2005). 
Olfati-Saber introduces a distributed Kalman filtering (DKF) algorithm that uses dynamic 
consensus strategy in (Olfati-Saber, 2005; Olfati-Saber, 2007). The DKF algorithm consists of 
a network of micro-Kalman filters each embedded with a high-gain high-pass consensus 
filter (or consensus protocol). The role of consensus filters is to estimate of global 
information contribution using only local and neighbouring information. Recently, the 
problem of estimating a simpler scenario with a scalar state of a dynamical system from 
distributed noisy measurements based on consensus strategies is considered in (Carli et al., 
2006), the focuses are with the interaction between the consensus matrix, the number of 
messages exchanged per sampling time, and the Kalman gain for scalar systems. 
Very recently, the distributed and scalable robust filtering problem using average consensus 
strategy in a sensor network is investigated in (Zhou & Li, 2009a). Specifically, based on the 
information form robust filter, every node estimates the global average information 
contribution using local and neighbours’ information rather than using the information 
from whole network. Due to the adoption of iterations of robust filter, the proposed 
algorithm relaxes the necessity to have the prior knowledge of the noise statistics. Moreover, 
the proposed algorithm is applicable to large-scale sensor network since each node 
broadcasts message only to its neighbouring nodes. 
The aforementioned embedded filter based consensus for distributed target tracking is 
proposed for linear systems with Gaussian or energy bounded noises, there is little result on 
tracking algorithm for nonlinear dynamic systems and/or nonlinear observations. In (Zhou 
& Li, 2009b), a distributed scalable Sigma-Point Kalman filter (DS2PKF) is proposed for 
distributed target tracking in a sensor network based on the dynamic consensus strategy. 
The main idea is to use dynamic consensus strategy to the information form sigma-point 
Kalman filter (ISPKF) that derived from weighted statistical linearization perspective. Each 
node estimates the global average information contribution by using local and neighbours’ 
information rather than by the information from all nodes in the network. Therefore, the 
proposed DSPKF algorithm is completely distributed and applicable to large-scale sensor 
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network. A novel dynamic consensus filter is proposed, and its asymptotical convergence 
performance and stability are discussed. 

 
4.2 Alternating-direction based consensus 

Alternating-direction method of multipliers (Bertsekas & Tsitsiklis, 1999) is proven to be 
efficient in solving the distributed estimation (Schizas et al., 2008a; Schizas et al., 2008b). 
Recently, decentralized estimation of random signals in arbitrary nonlinear and non-
Gaussian setups was considered in (Schizas & Giannakis, 2006), while distributed estimation 
of stationary Markov random fields was pursued in (Dogandzic & Zhang, 2006). 
Adaptive algorithms based on in-network processing of distributed observations are well-
motivated for online parameter estimation and tracking of (non)stationary signals using 
peer-to-peer WSNs. To this end, a fully distributed least mean-square (D-LMS) algorithm is 
developed in (Schizas et al., 2009), offering simplicity and flexibility while solely requiring 
single-hop communications among sensors. The resultant estimator minimizes a pertinent 
squared-error cost by resorting to i) the alternating-direction method of multipliers so as to 
gain the desired degree of parallelization and ii) a stochastic approximation iteration to cope 
with the time-varying statistics of the process under consideration. Information is efficiently 
percolated across the WSN using a subset of “bridge” sensors, which further tradeoff 
communication cost for robustness to sensor failures. For a linear data model and under 
mild assumptions aligned with those considered in the centralized LMS, stability of the 
novel D-LMS algorithm is established to guarantee that local sensor estimation error norms 
remain bounded most of the time.  
Forero et al. develop a decentralized expectation-maximization (EM) algorithm to estimate 
the parameters of a mixture density model for use in distributed learning tasks performed 
with data collected at spatially deployed wireless sensors (Forero et al., 2008). The E-step in 
the novel iterative scheme relies on local information available to individual sensors, while 
during the M-step sensors exchange information only with their single hop neighbours to 
reach consensus and eventually percolate the global information needed to estimate the 
wanted parameters across the WSN. 

 
5. Analysis and comparison 

All the methods mentioned above are compared in Table 1 in terms of tracking accuracy, 
communicational burden, scalability, computational complexity, and fault tolerance, etc. In 
Table 1, we rate the method into four levels, i.e. A-D, according to the performance 
criterions mention above. We note that criterions, such as communicational burden, tracking 
accuracy and fault tolerance, are proportional to energy utilization for target tracking 
through WSNs. If communicational burden is high for cluster formation, more energy is 
consumed. High tracking accuracy demand will ultimately end with additional energy 
usage. Similarly fault tolerance will increase overheads and energy consumption. The total 
energy consumption and bandwidth usage during target tracking is the key concern in the 
majority of the methods since the network is with strictly limited energy and bandwidth. 
The energy consumption of a sensor node can be divided into three main domains, radio 
communication, sensing and data processing.  
It is also worth pointing out that all the rating levels are relative since different methods are 
proposed within different network scenarios. For example, the AC tracking is mainly for the 
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peer-to-peer network to improve the scalability. However, the cluster-based tracking such as 
IDSQ is mainly for the energy consumption and the lifetime.  

 

Method 
Tracking 
accuracy 

Scalability 
Computational 
complexity 

Communicational 
burden 

Fault 
tolerance 

DC A D B D A 

STUN C C C C B 

DCTC B C C B C 

DAT D C C C C 

DOT D C C C C 

R-tree B B D C C 

IDSQ C B A A B 

DELTA C B B B B 

RARE C B C B C 

DSTC B B B B B 

DPT D C B C C 

DCAT A C A C B 

HPS C C B C C 

AC 
tracking 

B A B A A 

Table 1. Comparison of target tracking methods in WSNs 

 
6. Quantized scenario 

In the WSN tracking system, ach sensor node acquires measurements which are noisy linear 
or nonlinear transformations of the target state. The sensors then transmit measurements to 
the fusion center (for the FC-based WSNs) or the neighbouring nodes (for the distributed 
peer-to-peer WSNs) in order to form a state estimate. If measurements were available at a 
common location, minimum mean-square error (MMSE) estimates could be obtained using 
a Kalman filter, or nonlinear estimation methods, such as UKF and PF. However, since 
measurements are distributed in space and there is limited communication bandwidth, the 
measurements have to be quantized before transmission. Thus, the original estimation 
problem is transformed into decentralized state estimation based on quantized 
measurements. The problem is further complicated by the harsh environment typical of 
WSNs; see e.g., Chong & Kumar, 2003, and Culler et al., 2004.  
The problem of decentralized estimation based on quantized measurements has been 
studied in early works such as Gubner, 1993, and Lam & Reibman, 1993. Recently, universal 
decentralized estimation taking into account local signal-to-noise ratio (SNR) and the 
channel path loss in sensor network is studied (Xiao et al., 2005). When the noise 
probabilistic density function (PDF) is unknown, the problem of estimation based on 
severely quantized data has been also addressed in (Luo, 2005). 
In this section, we category the tracking methods based on quantized information into 
quantized measurements and quantized innovations. The latter is usually with higher 
accuracy when using the same quantization bit rate. It is because that the range of 
innovations is commonly little that causes little quantization noise. 
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6.1 Quantized measurement based tracking 
Quantizing measurements to estimate a parameter of interest is not the same as quantizing a 
signal for later reconstruction (Gray, 2006). Instead of a reconstruction algorithm, the 
objective is finding, e.g., MMSE optimal, estimators using quantized observations 
(Papadopoulos et al., 2001; Ribeiro & Giannakis, 2006). Furthermore, optimal quantizers for 
reconstruction are, generally, different from optimal quantizers for estimation. State 
estimation using quantized observations is a nonlinear estimation problem that can be 
solved using e.g., EKF, UKF, or PF.  
From the measurement fusion perspective, the problem for target tracking using quantized 
information in WSNs is investigated in (Zhou & Li, 2009c) and (Zhou et al., 2009a). Due to 
the limited energy and bandwidth, each activated node quantizes and then transmits the 
local measurements by probabilistic quantization strategy. The FC estimates the target state 
in a dimension compression way instead of merging all the quantized messages to a vector 
(augmented scheme). A closed-form solution to the optimization problem for bandwidth 
scheduling is given, where the total energy consumption measure is minimized subject to a 
constraint on the mean square error (MSE) incurred by quasi-best linear unbiased estimation 
(Quasi-BLUE) fusion. The results are extended to the case of tracking maneuvering target 
and correlation noise in (Zhou & Li, 2009d) and (Zhou et al., 2009b), respectively. 
Quantizing measurements is an efficient way that gives tradeoff between the 
bandwidth/energy constraints and tacking accuracy. However, if the values of 
measurements are large, quantizing measurements will bring large information loss under 
the limited bandwidth, which means that the variance of the quantization noise is large. In 
this scenario, the quantized measurements based tracking will have a low filtering accuracy. 
To reduce the information loss and improve the filtering accuracy, quantized innovations 
based tracking has been extensively investigated recently. Since the values of innovation 
data are smaller than those of measured data, quantizing innovations will bring smaller 
information loss than quantizing measurements under the same bandwidth constraint. 

 
6.2 Quantized innovation based tracking 
Surprisingly, for the case where quantized observations are defined as the sign of the 
innovation (SOI) sequence, it is possible to derive a filter with complexity and performance 
very close to the clairvoyant KF based on the analog-amplitude observations (Ribeiro et al., 
2006). Even though promising, the approach of (Ribeiro et al., 2006) is limited to a particular 
1-bit per observation quantizer. Msechu et al. introduce two novel decentralized KF 
estimators based on quantized measurement innovations (Msechu et al., 2008). In the first 
quantization approach, the region of an observation is partitioned into contiguous, non-
overlapping intervals where each partition is binary encoded using a block of bits. Analysis 
and Monte Carlo simulations reveal that with minimal communication overhead, the mean-
square error (MSE) of a novel decentralized KF tracker based on 2-3 bits comes stunningly 
close to that of the clairvoyant KF. In the second quantization approach, if intersensor 
communications can afford bits at time , then the th bit is iteratively formed using the sign 
of the difference between the observation and its estimate based on past observations (up to 
time 1) along with previous bits (up to 1) of the current observation. 
Recently, by optimizing the filter with respect to the quantization levels, a multiple-level 
quantized innovation Kalman filter (MLQ-KF) for estimation of linear dynamic stochastic 
systems is proposed in (You et al., 2008). Furthermore, Sukhavasi and Hassibi propose a 
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particle filter that approximates the optimal nonlinear filer and observe that the error 
covariance of the particle filter follows the modified Riccati recursion (Sukhavasi, & Hassibi, 
2009). 
Very recently, Zhou et al. investigate the decentralized collaborative target tracking problem 
in a WSN from the fusion of quantized innovations perspective (Zhou et al., 2009c). A 
hierarchical fusion structure with feedback from the FC to each deployed sensor is proposed 
for tracking a target with nonlinear Gaussian dynamics. Probabilistic quantization strategy 
is employed in the local sensor node to quantize the innovation. After the FC received the 
quantized innovations, it estimates the state of the target using the Sigma-Point Kalman 
Filtering (SPKF). To attack the energy/power source and communication bandwidth 
constraints, the tradeoff between the communication energy and the global tracking 
accuracy is considered in (Zhou et al., 2009d). By Lagrange multiplier, a closed-form 
solution to the optimization problem for bandwidth scheduling is given, where the total 
energy consumption measure is minimized subject to a constraint on the covariance of the 
quantization noises. Simulation example is given to illustrate the proposed scheme obtains 
average percentage of communication energy saving up to 41.5% compared with the 
uniform quantization, while keeping tracking accuracy very closely to the clairvoyant UKF 
that relies on analog-amplitude measurements. In (Ozdemir et al., 2009), a new framework 
for target tracking in a wireless sensor network using particle filters is proposed. Under this 
framework, the imperfect nature of the wireless communication channels between sensors 
and the FC along with some physical layer design parameters of the network are 
incorporated in the tracking algorithm based on particle filters. It is call “channel-aware 
particle filtering” that derived for different wireless channel models and receiver 
architectures. Furthermore, the posterior CRLBs for the proposed channel-aware particle 
filters are also given. 

 
7. Concluding remarks and open research directions 

The extensively research of target tracking through WSNs inspired us to present a literature 
survey. In this chapter, we have explored the categories of target tracking methods, 
including tree-based, cluster-based, hybrid, and consensus-based tracking algorithm. 
Considering the stringent limitation on energy supply, the quantized messages based 
tracking has been discussed separately. 
The emergence of WSN in the variety of application areas brought many open issues to 
researchers. The open research issues for target tracking in WSNs include, channel-aware 
tracking, mobile node aided tracking, multitarget association & tracking, cross-layer design, 
and fault tolerant tracking methods, etc.  
First, wireless communication channels between sensors and the FC or base station are not 
perfect. Incorporating the statistics of the channel imperfection to the tracking algorithm is 
expected to improve the tracking accuracy. Second, the scenario becomes complicated in the 
presence of multiple targets and their tracking with mobile sensors which leads to intend 
more realistic solutions. Message transmission consumes more energy than local processing, 
thus, well organized computing and nominal transmission of messages without degradation 
of performance must be considered while designing a target tracking method (Rapaka & 
Madria, 2007). Data association is an important problem when multiple targets are present 
in a small region. Each node must associate its measurements of the environment with 
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individual targets. Combining the track association and tracking becomes more 
complicated, especially in circumstance of low cost sensor network with limited 
computation capacity and communication bandwidth (Li et al., 2010). 
Another interesting issue for target tracking is the consideration of node failure. The sensor 
nodes are usually deployed in harsh environments so various nodes may fail, may be 
attacked or node energy may be depleted due to obstacles. Therefore, fault tolerant target 
tracking algorithms and protocols must be designed for wireless sensor networks as the 
fault tolerant approaches developed for traditional wired or wireless networks are not well 
suited for WSN because of various differences between these networks (Ding & Cheng, 
2009). 
The cross-layered approach in WSN is more effective and energy efficient than in traditional 
layered approach. While traditional layered approach endures more transfer overhead, 
cross-layered approach minimizes these overhead by having data shared among layers 
(Melodia et al., 2006; Kwon et al., 2006; Song & Hatzinakos, 2007). In the cross-layered 
approach, the protocol stack is treated as a system and not individual layers, independent of 
each other. Layers share information from the system. The development of various protocols 
and services in a cross-layered approach is optimized and improved as a whole.  
In last decades, the problem of decentralized information fusion has been discussed 
extensively in the literature. However, the algorithms developed are free of energy and 
communication constraints, see e.g. Sun & Deng, 2004; Li & Wang, 2000; Zhou & Li, 2008a; 
Zhou & Li, 2008b. Novel fusion approaches include practical constraints in WSNs while 
keeping high fusion performance must be investigated (Ruan et al., 2008). Moreover, 
tracking with adaptive quantization thresholds and/or allocated bandwidth is another 
promising research direction since the communicational condition dependent quantization 
will definitely improve the estimation accuracy while using less communicational energy 
(Zhou et al., 2011; Xu & Li, 2010). 
Finally, WSNs have the potential to enhance and change the way people interact with 
technology and the world (Aboelaze & Aloul, 2005). The direction of future WSNs also lies 
in identifying real business and industry needs. Interactions between research and 
development are necessary to bridge the gap between existing technology and the 
development of business solutions. Applying sensor technology to different applications 
will improve business processes as well as open up more problems for researchers. 
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