
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Time Synchronization in Wireless Sensor Networks 253

Time Synchronization in Wireless Sensor Networks

Jonggoo Bae and Bongkyo Moon

X 
 

Time Synchronization in  
Wireless Sensor Networks 

 
Jonggoo Bae and Bongkyo Moon  

Dongguk University-Seoul 
South Korea  

 
1. Introduction     

Recently small smart devices start to be embedded into the various environments in order to 
monitor the events occurred in the areas such as homes, plantations, oceans, rivers, streets, 
and highways. These tiny and low power devices which enable sensing and communication 
tasks have made sensor networks emerged. In wireless sensor networks (WSNs), especially, 
wireless devices get together and spontaneously form a network without any infrastructure. 
Due to the absence of infrastructure such as router in traditional network, nodes in a sensor 
network have to cooperate for communication by forwarding each other's packets from a 
source to its destination. Thus this yields a multi-hop communication environment.  
Meanwhile, the knowledge of time between the sensor nodes is essential that detect the 
events such as target tracking, speed estimating, and ocean current monitoring. Hence, the 
sensed data often loses valuable context without accurate time information. With time 
synchronization, voice and video data from the different sensor nodes can be fused and 
displayed in a meaningful way at the sink. Time synchronization is a critical middleware 
service required for consistent distributed sensing and control in large-scale distributed 
systems such as sensor networks. That is, time synchronization in a WSN aims at providing 
a common time scale for local clocks of nodes in the network. Moreover, common services in 
WSNs, such as coordination, communication, security, power management and distributed 
logging also depend on the global time scale. 
The most widely adapted time synchronization protocol in the internet domain is the 
Network Time Protocol (NTP) devised by Mills (Mills, 1991). Nodes could also be equipped 
with a global positioning system (GPS) to synchronize them (Hofmann-Wellenhof et al. 
1997; Mannermaa et al. 1999). It is used to provide network-wide agreement among a large 
group of nodes in the Internet. NTP works well synchronizing the computers on the 
Internet, but is not designed with the energy and computation limitations of sensor nodes in 
mind. A GPS device may be too expensive to attach on cheap sensor devices, and GPS 
service may not be available everywhere, such as inside the buildings or under the water. 
Consequently, it may be useful to use NTP to discipline sensor nodes, but traditional 
synchronization schemes such as NTP or GPS are not suitable for use in sensor networks 
because of complexity and energy issues, cost and size factors. Therefore, without further 
adaptation, NTP is suitable only for WSN applications with low precision demands. 

15

www.intechopen.com



Smart Wireless Sensor Networks254

 

Time synchronization is a key service for many applications and operating systems in 
distributed computing environments. WSNs are large-scale distributed systems, but 
traditional distributed algorithms cannot be considered for problems due to their unique 
characteristics, especially the severe resource constraints. In this chapter, the mechanisms to 
synchronize the local clocks of the nodes in WSN have been extensively investigated.  

 
2. Backgrounds and Related Works 
 

A landmark study in computer clock synchronization is Lamport’s work that elucidates the 
importance of virtual clocks in systems where causality is more important than absolute time 
(Lamport, 1978). Though Lamport’s work focused on giving events a total order rather than 
quantifying the time difference between them, it has emerged as an important influence in 
sensor networks. Many sensor applications require only relative time, for example, timing 
the propagation delay of sound (Girod & Estrin, 2001), and thus absolute time may not be 
needed. Mills’ NTP (Mills, 1991) stands out by virtue of its scalability, self-configuration in 
large multi-hop networks, robustness to failures and sabotage, and ubiquitous deployment. 
NTP allows construction of a hierarchy of time servers, multiply rooted at canonical sources 
of external time. 
Post-facto synchronization was a pioneering work by Elson and Estrin (Elson & Estrin, 2001). 
In this approach, unlike in traditional synchronization schemes such as NTP, each node’s 
clock is normally unsynchronized with the rest of the network; a beacon node periodically 
broadcasts beacon messages to the sensor nodes in its wireless range. When an event is 
detected, each node records the time of the event (timestamp with its own local clock). After 
the event (hence the name), upon receiving the reference beacon message, nodes use it as 
time reference and adjust their event timestamps with respect to that reference. This 
synchronization scheme has led afterwards to their RBS (Reference Broadcast 
Synchronization) protocol. 
Elson et al. propose a scheme called Reference-Broadcast Synchronization (RBS), in which a 
node sends reference broadcast beacons to its neighbors using physical layer broadcasts 
(Elson et al., 2002). RBS gets around the non-determinism of packet send time, access time, 
and propagation time, while depending only on the packet receive time. Since the packet 
receive time is the same for all receivers, this reference broadcast packet can be used to 
synchronize a set of receivers with one another. This scheme can also be extended to a multi-
hop scenario. However, the impact of the translation errors and delays on the multi-hop 
synchronization, which can be provided by translating the time between different broadcast 
domains, still needs to be studied. In addition, they do not consider global synchronization 
over the entire network. 
A more recently developed Time-Sync protocol for Sensor Networks (TPSN) (Ganeriwal et al., 
2003) is based on similar methodology as the NTP, where the sensor nodes are organized 
into multiple levels and synchronized to the root node of the hierarchy. Unlike the Internet, 
the root node and nodes at different levels responsible for synchronization may fail often, 
which may cause synchronization problems. In addition, mobile nodes may disrupt the 
predefined level-by-level synchronization procedure. On typical WSN platforms using the 
TPSN protocol, such as the Mica2 mote, it is possible to access directly to the MAC layer, 
and message time-stamping can be performed during message transmission and reception. 
This immediately eliminates the same three main sources of uncertainties as in RBS. With a 

 

two-way handshake of synchronization messages, the TPSN protocol eliminates the 
unknown propagation time as well. Although the propagation time has been eliminated, the 
encoding and decoding times are not because they might not be the same on the sender and 
receiver side. It is important to point out that both the RBS and TPSN protocols suffer from 
the two largest sources of uncertainty of MAC layer time-stamping: the jitter of interrupt 
handling and decoding time.  
On the other hand, the flooding time synchronization protocol (FTSP) effectively reduces all 
sources of time stamping errors except for the propagation time. The FTSP (Maroti et al. 
2004) was designed for a sniper localization application requiring very high precision 
(Simon et al. 2004). FTSP achieves the required accuracy by utilizing a customized MAC-
layer time stamping and by using calibration to eliminate unknown delays. FTSP is robust 
to network failures, as it uses flooding both for pair-wise and global synchronization. Linear 
regression from multiple timestamps is used to estimate the clock drift and offset. The main 
drawback of FTSP is that it requires calibration on the hardware actually used in the 
deployment (thus is not a software solution purely independent of the hardware). FTSP also 
requires intimate access to the MAC layer for multiple timestamps. However, if well-
calibrated, the FTSP’s precision is impressive (less than 2μs).  
Su and Akyildiz proposed the time-diffusion synchronization protocol (TDP) for network-
wide time synchronization (Su & Akyildiz, 2005). The main idea of TDP is to start from a 
master node, adjust the clocks of its neighbors, and diffuse this clock adjustment to other 
nodes. TDP maintains global time synchronization within an adjustable bound based on the 
application requirements. One of the benefits of TDP is that the performance of voice and 
video applications can be improved when multiple sources send data back to the sink 
through flooding or directed diffusion (Intanagonwiwat et al. 2003). It achieves global 
synchronization by multi-hop flooding: The base station initiates the protocol by sending a 
special timing message to the entire network. Some of the nodes, upon receiving the 
message, become masters by using a leader election procedure. The master nodes start the 
time-diffusion procedure involving electing diffused leaders, multi-hop flooding, and 
iterative weighted averaging of timings from different master nodes. TDP handles node 
mobility and failures by using a peer evaluation procedure.  

 
3. Time Synchronization 
 

3.1 Clocks and Synchronization  
 

3.1.1 Sensor Node Clock  
Every sensor node maintains its own clock and this is the only notion of time that a node 
has. The clock is an ensemble of hardware and software components; it is essentially a timer 
that counts the oscillations of a quartz crystal running at a particular frequency. Computing 
devices are mostly equipped with a hardware oscillator assisted computer clock, which 
implements an approximation C(t) of real-time t. Let us represent the clock for node A by 

)(tCA . The difference in the clocks of two sensor nodes (i.e., A and B) is referred as the offset 
error between them. There are three reasons for the nodes to be representing different times 
in their respective clocks (Ganeriwal et al. 2008): 1) The nodes might have been started at 
different times, 2) the quartz crystals at each of these nodes might be running at slightly 
different frequencies, causing the clock values to gradually diverge from each other (termed 

www.intechopen.com



Time Synchronization in Wireless Sensor Networks 255

 

Time synchronization is a key service for many applications and operating systems in 
distributed computing environments. WSNs are large-scale distributed systems, but 
traditional distributed algorithms cannot be considered for problems due to their unique 
characteristics, especially the severe resource constraints. In this chapter, the mechanisms to 
synchronize the local clocks of the nodes in WSN have been extensively investigated.  

 
2. Backgrounds and Related Works 
 

A landmark study in computer clock synchronization is Lamport’s work that elucidates the 
importance of virtual clocks in systems where causality is more important than absolute time 
(Lamport, 1978). Though Lamport’s work focused on giving events a total order rather than 
quantifying the time difference between them, it has emerged as an important influence in 
sensor networks. Many sensor applications require only relative time, for example, timing 
the propagation delay of sound (Girod & Estrin, 2001), and thus absolute time may not be 
needed. Mills’ NTP (Mills, 1991) stands out by virtue of its scalability, self-configuration in 
large multi-hop networks, robustness to failures and sabotage, and ubiquitous deployment. 
NTP allows construction of a hierarchy of time servers, multiply rooted at canonical sources 
of external time. 
Post-facto synchronization was a pioneering work by Elson and Estrin (Elson & Estrin, 2001). 
In this approach, unlike in traditional synchronization schemes such as NTP, each node’s 
clock is normally unsynchronized with the rest of the network; a beacon node periodically 
broadcasts beacon messages to the sensor nodes in its wireless range. When an event is 
detected, each node records the time of the event (timestamp with its own local clock). After 
the event (hence the name), upon receiving the reference beacon message, nodes use it as 
time reference and adjust their event timestamps with respect to that reference. This 
synchronization scheme has led afterwards to their RBS (Reference Broadcast 
Synchronization) protocol. 
Elson et al. propose a scheme called Reference-Broadcast Synchronization (RBS), in which a 
node sends reference broadcast beacons to its neighbors using physical layer broadcasts 
(Elson et al., 2002). RBS gets around the non-determinism of packet send time, access time, 
and propagation time, while depending only on the packet receive time. Since the packet 
receive time is the same for all receivers, this reference broadcast packet can be used to 
synchronize a set of receivers with one another. This scheme can also be extended to a multi-
hop scenario. However, the impact of the translation errors and delays on the multi-hop 
synchronization, which can be provided by translating the time between different broadcast 
domains, still needs to be studied. In addition, they do not consider global synchronization 
over the entire network. 
A more recently developed Time-Sync protocol for Sensor Networks (TPSN) (Ganeriwal et al., 
2003) is based on similar methodology as the NTP, where the sensor nodes are organized 
into multiple levels and synchronized to the root node of the hierarchy. Unlike the Internet, 
the root node and nodes at different levels responsible for synchronization may fail often, 
which may cause synchronization problems. In addition, mobile nodes may disrupt the 
predefined level-by-level synchronization procedure. On typical WSN platforms using the 
TPSN protocol, such as the Mica2 mote, it is possible to access directly to the MAC layer, 
and message time-stamping can be performed during message transmission and reception. 
This immediately eliminates the same three main sources of uncertainties as in RBS. With a 

 

two-way handshake of synchronization messages, the TPSN protocol eliminates the 
unknown propagation time as well. Although the propagation time has been eliminated, the 
encoding and decoding times are not because they might not be the same on the sender and 
receiver side. It is important to point out that both the RBS and TPSN protocols suffer from 
the two largest sources of uncertainty of MAC layer time-stamping: the jitter of interrupt 
handling and decoding time.  
On the other hand, the flooding time synchronization protocol (FTSP) effectively reduces all 
sources of time stamping errors except for the propagation time. The FTSP (Maroti et al. 
2004) was designed for a sniper localization application requiring very high precision 
(Simon et al. 2004). FTSP achieves the required accuracy by utilizing a customized MAC-
layer time stamping and by using calibration to eliminate unknown delays. FTSP is robust 
to network failures, as it uses flooding both for pair-wise and global synchronization. Linear 
regression from multiple timestamps is used to estimate the clock drift and offset. The main 
drawback of FTSP is that it requires calibration on the hardware actually used in the 
deployment (thus is not a software solution purely independent of the hardware). FTSP also 
requires intimate access to the MAC layer for multiple timestamps. However, if well-
calibrated, the FTSP’s precision is impressive (less than 2μs).  
Su and Akyildiz proposed the time-diffusion synchronization protocol (TDP) for network-
wide time synchronization (Su & Akyildiz, 2005). The main idea of TDP is to start from a 
master node, adjust the clocks of its neighbors, and diffuse this clock adjustment to other 
nodes. TDP maintains global time synchronization within an adjustable bound based on the 
application requirements. One of the benefits of TDP is that the performance of voice and 
video applications can be improved when multiple sources send data back to the sink 
through flooding or directed diffusion (Intanagonwiwat et al. 2003). It achieves global 
synchronization by multi-hop flooding: The base station initiates the protocol by sending a 
special timing message to the entire network. Some of the nodes, upon receiving the 
message, become masters by using a leader election procedure. The master nodes start the 
time-diffusion procedure involving electing diffused leaders, multi-hop flooding, and 
iterative weighted averaging of timings from different master nodes. TDP handles node 
mobility and failures by using a peer evaluation procedure.  

 
3. Time Synchronization 
 

3.1 Clocks and Synchronization  
 

3.1.1 Sensor Node Clock  
Every sensor node maintains its own clock and this is the only notion of time that a node 
has. The clock is an ensemble of hardware and software components; it is essentially a timer 
that counts the oscillations of a quartz crystal running at a particular frequency. Computing 
devices are mostly equipped with a hardware oscillator assisted computer clock, which 
implements an approximation C(t) of real-time t. Let us represent the clock for node A by 

)(tCA . The difference in the clocks of two sensor nodes (i.e., A and B) is referred as the offset 
error between them. There are three reasons for the nodes to be representing different times 
in their respective clocks (Ganeriwal et al. 2008): 1) The nodes might have been started at 
different times, 2) the quartz crystals at each of these nodes might be running at slightly 
different frequencies, causing the clock values to gradually diverge from each other (termed 

www.intechopen.com



Smart Wireless Sensor Networks256

 

as the skew error), or 3) the frequency of the clocks can change differently over time because 
of aging or ambient conditions such as temperature (termed as the drift error). These errors 
can be summarized as follows: 
 

Offset: )()( tCtC BA                      (1) 

Skew:  
t
tC

t
tC BA










)()(               (2)  

Drift:  
2

2

2

2 )()(
 

t
tC

t
tC BA








              (3)  

 
The angular frequency of the hardware oscillator determines the rate at which the clock 
runs. The rate of a perfect clock, which can be denoted as dtdC , would equal 1, however, all 
clocks are subject to a clock drift; oscillator frequency will vary unpredictably due to various 
physical effects. Even though the frequency of a clock changes over time, it can be 
approximated with good accuracy by an oscillator with fixed frequency (Sichitiu & 
Veerarittiphan, 2003). Then, for some node i in the network, we can approximate its local 
clock as: 
 

iii btatC     )(           (4) 
where )(tai  is the clock drift, and )(tbi is the offset of node i’s clock. Drift denotes the rate 
(frequency) of the clock, and offset is the difference in value from real time t. Using equation 
(4), we can compare the local clocks of two nodes in a network, say node i and node j as: 
 

ijjiji btCatC  )(     )(       (5) 

We call ija the relative drift, and ijb  the relative offset between the clocks of node i and node j. 

If two clocks are perfectly synchronized, then their relative drift is i (meaning the clocks 
have the same rate) and their relative offset is zero (meaning they have the same value at 
that instant). Some studies in the literature use “skew” instead of “drift”, defining it as the 
difference (as opposed to ratio) between clock rates. Also, the “offset” may equivalently be 
mentioned as “phase offset”.  Fig. 1 shows the relationship between relative drift and offset. 
 

)(tCi

)(tC j

ijb

ija

 
Fig. 1. The relation between relative drift and offset 
 
Although each sensor node is equipped with a hardware clock, these hardware clocks can 
usually not be used directly, as they suffer from severe drift. No matter how well the 

 

hardware clocks will be calibrated at deployment, the clocks will ultimately exhibit a large 
skew. Since all hardware clocks are imperfect, local clocks of nodes may drift away from 
each other in time, hence observed time or durations of time intervals may differ for each 
node in the network. To allow for an accurate common time, nodes need to exchange 
messages from time to time, constantly adjusting their clock values. Furthermore, nodes can 
convert the current hardware clock reading into a logical clock value and vice versa 
(Sommer & Wattenhofer, 2009). 
 
- Hardware Clock 
Each sensor node i is equipped with a hardware clock )(iH . The clock value at time t is 
defined as 

 )()()( 0
0

tdhtH i

t

t ii   
 

where )(ih is the hardware clock rate at time τ and )( 0ti is the hardware clock offset at time 

0t . It is assumed that hardware clocks have bounded drift, i.e., there exists a constant 0 ≤ ρ < 
1 such that 1 − ρ ≤ h(t) ≤ 1 + ρ for all times t. This implies that the hardware clock never stops 
and always makes progress with at least a rate of 1 − ρ. This is a reasonable assumption 
since common sensor nodes are equipped with external crystal oscillators which are used as 
clock source for a counter register of the microcontroller. These oscillators exhibit drift 
which is only gradually changing depending on the environmental conditions such as 
ambient temperature or battery voltage and on oscillator aging. This allows assuming the 
oscillator drift to be relatively constant over short time periods. Crystal oscillators used in 
sensor nodes normally exhibit a drift between 30 and 100 ppm (Sommer & Wattenhofer, 
2009). 
 
- Logical Clock 
Since other hardware components may depend on a continuously running hardware clock, 
its value should not be adjusted manually. Instead, a logical clock value )(iL is computed as 
a function of the current hardware clock. The logical clock value )(tLi represents the 
synchronized time of node i. It is calculated as follows: 

)()()()( 0
0

tdlhtL ii

t

t ii     
where )(il is the relative logical clock rate and )( 0ti  is the clock offset between the hardware 

clock and the logical clock at the reference time 0t . The logical clock is maintained as a 
software function and is only calculated on request based on a given hardware clock 
reading (Sommer & Wattenhofer, 2009). 

 
3.1.2 Definition of Clock Synchronization 
The synchronization problem on a network of n devices corresponds to the problem of 
equalizing the computer clocks of the different devices. The synchronization can be either 
global; trying to equalize )(tCi  for all i = 1::n or it can be local; trying to equalize )(tCi  for some 
set of the nodes that are spatially close. Equalizing just the instantaneous values of clocks by 
correcting the offsets is not enough for synchronization since the clocks will drift away 

www.intechopen.com



Time Synchronization in Wireless Sensor Networks 257

 

as the skew error), or 3) the frequency of the clocks can change differently over time because 
of aging or ambient conditions such as temperature (termed as the drift error). These errors 
can be summarized as follows: 
 

Offset: )()( tCtC BA                      (1) 

Skew:  
t
tC

t
tC BA










)()(               (2)  

Drift:  
2

2

2

2 )()(
 

t
tC

t
tC BA








              (3)  

 
The angular frequency of the hardware oscillator determines the rate at which the clock 
runs. The rate of a perfect clock, which can be denoted as dtdC , would equal 1, however, all 
clocks are subject to a clock drift; oscillator frequency will vary unpredictably due to various 
physical effects. Even though the frequency of a clock changes over time, it can be 
approximated with good accuracy by an oscillator with fixed frequency (Sichitiu & 
Veerarittiphan, 2003). Then, for some node i in the network, we can approximate its local 
clock as: 
 

iii btatC     )(           (4) 
where )(tai  is the clock drift, and )(tbi is the offset of node i’s clock. Drift denotes the rate 
(frequency) of the clock, and offset is the difference in value from real time t. Using equation 
(4), we can compare the local clocks of two nodes in a network, say node i and node j as: 
 

ijjiji btCatC  )(     )(       (5) 

We call ija the relative drift, and ijb  the relative offset between the clocks of node i and node j. 

If two clocks are perfectly synchronized, then their relative drift is i (meaning the clocks 
have the same rate) and their relative offset is zero (meaning they have the same value at 
that instant). Some studies in the literature use “skew” instead of “drift”, defining it as the 
difference (as opposed to ratio) between clock rates. Also, the “offset” may equivalently be 
mentioned as “phase offset”.  Fig. 1 shows the relationship between relative drift and offset. 
 

)(tCi

)(tC j

ijb

ija

 
Fig. 1. The relation between relative drift and offset 
 
Although each sensor node is equipped with a hardware clock, these hardware clocks can 
usually not be used directly, as they suffer from severe drift. No matter how well the 

 

hardware clocks will be calibrated at deployment, the clocks will ultimately exhibit a large 
skew. Since all hardware clocks are imperfect, local clocks of nodes may drift away from 
each other in time, hence observed time or durations of time intervals may differ for each 
node in the network. To allow for an accurate common time, nodes need to exchange 
messages from time to time, constantly adjusting their clock values. Furthermore, nodes can 
convert the current hardware clock reading into a logical clock value and vice versa 
(Sommer & Wattenhofer, 2009). 
 
- Hardware Clock 
Each sensor node i is equipped with a hardware clock )(iH . The clock value at time t is 
defined as 

 )()()( 0
0

tdhtH i

t

t ii   
 

where )(ih is the hardware clock rate at time τ and )( 0ti is the hardware clock offset at time 

0t . It is assumed that hardware clocks have bounded drift, i.e., there exists a constant 0 ≤ ρ < 
1 such that 1 − ρ ≤ h(t) ≤ 1 + ρ for all times t. This implies that the hardware clock never stops 
and always makes progress with at least a rate of 1 − ρ. This is a reasonable assumption 
since common sensor nodes are equipped with external crystal oscillators which are used as 
clock source for a counter register of the microcontroller. These oscillators exhibit drift 
which is only gradually changing depending on the environmental conditions such as 
ambient temperature or battery voltage and on oscillator aging. This allows assuming the 
oscillator drift to be relatively constant over short time periods. Crystal oscillators used in 
sensor nodes normally exhibit a drift between 30 and 100 ppm (Sommer & Wattenhofer, 
2009). 
 
- Logical Clock 
Since other hardware components may depend on a continuously running hardware clock, 
its value should not be adjusted manually. Instead, a logical clock value )(iL is computed as 
a function of the current hardware clock. The logical clock value )(tLi represents the 
synchronized time of node i. It is calculated as follows: 

)()()()( 0
0

tdlhtL ii

t

t ii     
where )(il is the relative logical clock rate and )( 0ti  is the clock offset between the hardware 

clock and the logical clock at the reference time 0t . The logical clock is maintained as a 
software function and is only calculated on request based on a given hardware clock 
reading (Sommer & Wattenhofer, 2009). 

 
3.1.2 Definition of Clock Synchronization 
The synchronization problem on a network of n devices corresponds to the problem of 
equalizing the computer clocks of the different devices. The synchronization can be either 
global; trying to equalize )(tCi  for all i = 1::n or it can be local; trying to equalize )(tCi  for some 
set of the nodes that are spatially close. Equalizing just the instantaneous values of clocks by 
correcting the offsets is not enough for synchronization since the clocks will drift away 

www.intechopen.com



Smart Wireless Sensor Networks258

 

afterwards. Therefore a synchronization scheme should either equalize the clock rates as 
well as offsets, or it should repeatedly correct the offsets in order to keep the clocks 
synchronized over a time period (Sivrikaya &  Yener, 2004) . 
The above definition of synchronization actually defines the strictest form of 
synchronization, where one seeks perfect matching of time on different clocks, but this 
definition can be relaxed to different degrees according to the needs of an application. In 
general, the synchronization problem can be classified into three basic types (Ganeriwal et al. 
2003). First form of synchronization deals only with ordering of events or messages. The aim 
of such an algorithm is to be able to tell whether an event E1 has occurred before or after 
another event E2, i.e. just to compare the local clocks for order rather than having them 
synchronized. The algorithm proposed in (Romer, 2003) is an example to this type of 
synchronization. Second type of synchronization algorithms targets maintaining relative 
clocks. In this scheme, nodes run their local clocks independently, but they keep information 
about the relative drift and offset of their clock to other clocks in the network, so that at any 
instant, the local time of the node can be converted to some other node's local time and vice 
versa. Most of the synchronization schemes proposed for sensor networks use this model 
(Elson et al. 2002; Sichitiu & Veerarittiphan, 2003). The third form of synchronization is the 
“always on” model where all nodes maintain a clock that is synchronized to a reference 
clock in the network. The goal of this type of synchronization algorithms is to preserve a 
global timescale throughout the network. The synchronization scheme of (Ganeriwal et al. 
2003) conforms to this model, but the use of “always on” mode is not mandatory in the 
scheme. 

 
3.2 Design Factors for Time Synchronization 
Some of the factors influencing time synchronization in wireless sensor networks are 
temperature, phase noise, frequency noise, asymmetric delays, and clock glitches (Su & 
Akyildiz, 2005).  
 

• Temperature: Since sensor nodes are deployed in various places, the temperature 
variations throughout the day may cause the clock to speed up or slow down. For a 
typical sensor node, the clock drifts few parts per million (ppm) during the day (Mills, 
1998). For low-end sensor nodes, the drifting may be even worse. 

 

• Phase noise: Some of the causes of phase noise are access fluctuations at the 
hardware interface, response variation of the operating system to interrupts, and 
jitter in the network delay. The jitter in the network delay may be due to medium 
access and queueing delays. 

 

• Frequency noise: The frequency noise is due to the unstability of the clock crystal. 
A low-end crystal may experience large frequency fluctuation, because the 
frequency spectrum of the crystal has large sidebands on adjacent frequencies. 

 

• Asymmetric delay: Since sensor nodes communicate with each other through the 
wireless medium, the delay of the path from one node to another may be different 
than the return path. As a result, an asymmetric delay may cause an offset to the 
clock that cannot be detected by a variance type method (Levine, 1999). If the 
asymmetric delay is static, the time offset between any two nodes is also static. The 

 

asymmetric delay is bounded by one-half the round trip time between the two 
nodes (Levine, 1999).  

 

• Clock glitches: Clock glitches are sudden jumps in time. This may be caused by 
hardware or software anomalies such as frequency and time steps. Besides dealing 
with these factors, a time synchronization protocol for sensor networks should be 
automatically self-configured and be sensitive to energy requirement. 

 
3.3 Synchronization Problems in WSNs 
Network time protocol (NTP) (Mills 1991) has been widely used in the Internet for decades. 
The NTP clients synchronize their clocks to the NTP time servers with accuracy in the order 
of milliseconds by statistical analysis of the round-trip time. The time servers are 
synchronized by external time sources, typically using GPS. The NTP has been widely 
deployed and proved to be effective, secure and robust in the internet. However, traditional 
synchronization schemes and GPS-equipped systems are not suitable for use in WSNs due 
to the specific requirements of those networks (Yoon et al. 2007): 
 

• Precision: WSNs may require much higher precision than traditional networks 
depending on the deployed applications. For example, a precision of a few 
milliseconds is satisfactory for NTP in the Internet, while microsecond precision 
may be required in order to significantly improve the performance of the WSN 
beam-forming application. 

 

• Cost: Nodes in WSNs typically have limited batteries, computational resources, 
and storage capacity. However, most of the protocols designed for wired 
environments need to exchange many messages and also store them for statistical 
processing.  

 

The problem in a modern sensor network scenario is that nodes can only communicate 
locally to their neighbors. The localized communication makes the problem much harder in 
that: 1) a valid consensus has to be computed locally and 2) the local consensus must be 
conveyed to other parts of the network; this is even harder because the relay nodes may be 
faulty or malicious. In order to provide network-wide time synchronization, the time 
differences among the sensor nodes must be minimized before protocols requiring time-
stamps (e.g., security applications, flow control protocols, target tracking, voice fusion, 
video fusion, and environmental data fusion) are realizable. In addition, the time 
synchronization protocol must be robust to node failures as well as energy consumption in 
the network . 
Typically the synchronization problems in wireless sensor networks need to be addressed 
for the following reasons (Sivrikaya &  Yener, 2004). First, sensor nodes need to coordinate 
their operations and collaborate each other in order to achieve a complex sensing task. That 
is, data fusion is made through aggregating data collected from different nodes for a 
meaningful result. Second, power saving function requires synchronization for increasing 
network lifetime. For power saving, sensors may sleep by turning off their sensors and/or 
transceivers at appropriate times, and wake up at coordinated times. However, the radio 
receiver of a sensor node is not turned off in the case that there are some data directed to it. 
This requires a precise timing between sensor nodes. Third, scheduling algorithms in WSNs 
are used to share the transmission medium in the time domain to eliminate transmission 

www.intechopen.com



Time Synchronization in Wireless Sensor Networks 259

 

afterwards. Therefore a synchronization scheme should either equalize the clock rates as 
well as offsets, or it should repeatedly correct the offsets in order to keep the clocks 
synchronized over a time period (Sivrikaya &  Yener, 2004) . 
The above definition of synchronization actually defines the strictest form of 
synchronization, where one seeks perfect matching of time on different clocks, but this 
definition can be relaxed to different degrees according to the needs of an application. In 
general, the synchronization problem can be classified into three basic types (Ganeriwal et al. 
2003). First form of synchronization deals only with ordering of events or messages. The aim 
of such an algorithm is to be able to tell whether an event E1 has occurred before or after 
another event E2, i.e. just to compare the local clocks for order rather than having them 
synchronized. The algorithm proposed in (Romer, 2003) is an example to this type of 
synchronization. Second type of synchronization algorithms targets maintaining relative 
clocks. In this scheme, nodes run their local clocks independently, but they keep information 
about the relative drift and offset of their clock to other clocks in the network, so that at any 
instant, the local time of the node can be converted to some other node's local time and vice 
versa. Most of the synchronization schemes proposed for sensor networks use this model 
(Elson et al. 2002; Sichitiu & Veerarittiphan, 2003). The third form of synchronization is the 
“always on” model where all nodes maintain a clock that is synchronized to a reference 
clock in the network. The goal of this type of synchronization algorithms is to preserve a 
global timescale throughout the network. The synchronization scheme of (Ganeriwal et al. 
2003) conforms to this model, but the use of “always on” mode is not mandatory in the 
scheme. 

 
3.2 Design Factors for Time Synchronization 
Some of the factors influencing time synchronization in wireless sensor networks are 
temperature, phase noise, frequency noise, asymmetric delays, and clock glitches (Su & 
Akyildiz, 2005).  
 

• Temperature: Since sensor nodes are deployed in various places, the temperature 
variations throughout the day may cause the clock to speed up or slow down. For a 
typical sensor node, the clock drifts few parts per million (ppm) during the day (Mills, 
1998). For low-end sensor nodes, the drifting may be even worse. 

 

• Phase noise: Some of the causes of phase noise are access fluctuations at the 
hardware interface, response variation of the operating system to interrupts, and 
jitter in the network delay. The jitter in the network delay may be due to medium 
access and queueing delays. 

 

• Frequency noise: The frequency noise is due to the unstability of the clock crystal. 
A low-end crystal may experience large frequency fluctuation, because the 
frequency spectrum of the crystal has large sidebands on adjacent frequencies. 

 

• Asymmetric delay: Since sensor nodes communicate with each other through the 
wireless medium, the delay of the path from one node to another may be different 
than the return path. As a result, an asymmetric delay may cause an offset to the 
clock that cannot be detected by a variance type method (Levine, 1999). If the 
asymmetric delay is static, the time offset between any two nodes is also static. The 

 

asymmetric delay is bounded by one-half the round trip time between the two 
nodes (Levine, 1999).  

 

• Clock glitches: Clock glitches are sudden jumps in time. This may be caused by 
hardware or software anomalies such as frequency and time steps. Besides dealing 
with these factors, a time synchronization protocol for sensor networks should be 
automatically self-configured and be sensitive to energy requirement. 

 
3.3 Synchronization Problems in WSNs 
Network time protocol (NTP) (Mills 1991) has been widely used in the Internet for decades. 
The NTP clients synchronize their clocks to the NTP time servers with accuracy in the order 
of milliseconds by statistical analysis of the round-trip time. The time servers are 
synchronized by external time sources, typically using GPS. The NTP has been widely 
deployed and proved to be effective, secure and robust in the internet. However, traditional 
synchronization schemes and GPS-equipped systems are not suitable for use in WSNs due 
to the specific requirements of those networks (Yoon et al. 2007): 
 

• Precision: WSNs may require much higher precision than traditional networks 
depending on the deployed applications. For example, a precision of a few 
milliseconds is satisfactory for NTP in the Internet, while microsecond precision 
may be required in order to significantly improve the performance of the WSN 
beam-forming application. 

 

• Cost: Nodes in WSNs typically have limited batteries, computational resources, 
and storage capacity. However, most of the protocols designed for wired 
environments need to exchange many messages and also store them for statistical 
processing.  

 

The problem in a modern sensor network scenario is that nodes can only communicate 
locally to their neighbors. The localized communication makes the problem much harder in 
that: 1) a valid consensus has to be computed locally and 2) the local consensus must be 
conveyed to other parts of the network; this is even harder because the relay nodes may be 
faulty or malicious. In order to provide network-wide time synchronization, the time 
differences among the sensor nodes must be minimized before protocols requiring time-
stamps (e.g., security applications, flow control protocols, target tracking, voice fusion, 
video fusion, and environmental data fusion) are realizable. In addition, the time 
synchronization protocol must be robust to node failures as well as energy consumption in 
the network . 
Typically the synchronization problems in wireless sensor networks need to be addressed 
for the following reasons (Sivrikaya &  Yener, 2004). First, sensor nodes need to coordinate 
their operations and collaborate each other in order to achieve a complex sensing task. That 
is, data fusion is made through aggregating data collected from different nodes for a 
meaningful result. Second, power saving function requires synchronization for increasing 
network lifetime. For power saving, sensors may sleep by turning off their sensors and/or 
transceivers at appropriate times, and wake up at coordinated times. However, the radio 
receiver of a sensor node is not turned off in the case that there are some data directed to it. 
This requires a precise timing between sensor nodes. Third, scheduling algorithms in WSNs 
are used to share the transmission medium in the time domain to eliminate transmission 

www.intechopen.com



Smart Wireless Sensor Networks260

 

collisions and conserve energy. However, non-determinism in transmission time caused by 
the Media Access Channel (MAC) layer of the radio stack can introduce several hundreds of 
milliseconds delay at each hop. Thus, synchronization is an essential part of transmission 
scheduling. 

 
3.4 Uncertainties and Errors in Time Synchronization 
Time synchronization schemes rely on some sort of message exchange between nodes in 
WSN. Non-determinism in the network dynamics such as propagation time or physical 
channel access time makes the synchronization task a big challenge in many systems. Note 
that in short distance multi-hop broadcast, the data processing time and its variation 
contribute the most to time fluctuations and differences in the path delays. Also, the time 
difference between two sensor nodes may become large over time due to the wandering 
effect of the local clocks. Latency estimates are actually confounded by random events that 
lead to asymmetric round-trip message delivery delays; this delay prevents the receiver 
from exactly comparing the local clocks of the two nodes and accurately synchronizing to 
the sender node. To better understand the source of these errors, it is useful to decompose 
the source of a message’s latency. Kopetz and Ochsenreiter (Kopetz & Ochsenreiter, 1987) 
introduced firstly four distinct components for analyzing the sources of the message 
delivery delays and later extended in (Ganeriwal et al. 2003). 
 

• Send Time: The time spent at the sender to construct the message. This includes 
kernel protocol processing and variable delays introduced by the operating system 
(e.g., context switches and system call overhead occurred by the synchronization 
application), and the time to transfer the message from the host to its network 
interface for transmission. 

 

• Access Time: Each packet faces some delay at the MAC (Medium Access Control) 
layer before actual transmission. This delay is specific to the MAC protocol in use, 
but some typical reasons for delay are waiting for the channel to be idle or waiting 
for the TDMA slot for transmission. 

 

• Propagation Time: This is the time spent in propagation of the message between 
the network interfaces of the sender and the receiver. When the sender and receiver 
share access to the same physical media (e.g., neighbors in an ad-hoc wireless 
network, or on a LAN), this delay is very small as it is simply the physical 
propagation time of the message through the media.  

 

• Receive Time: This is the processing time required for the receiver’s network 
interface to receive the message from the channel and notify the host of its arrival. 
This is typically the time required for the network interface to generate a message 
reception signal. If the arrival time is time-stamped at a enough low level in the 
host’s operating system kernel, this delay does not include the overhead of system 
calls, context switches, or even the message transfer from the network interface to 
the host.  

 

• Transmission Time: The time it takes for the sender to transmit the message. This 
time is in the order of tens of milliseconds depending on the length of the message 
and the speed of the radio. 

 

 

• Reception Time: The time it takes for the receiver to receive the message. It is the 
same as the transmission time. The transmission and reception times overlap in 
WSN as pictured in Fig. 2. 

 
send access transmission

receivereception

propagation

sender :  

receiver : 
 

Fig. 2. Decomposition of the message delivery delay over a wireless link (Maroti, et al. 2004) 
 
• Interrupt Handling Time: The delay between the radio chip raising and the 
microcontroller responding to an interrupt. This time is mostly less than a few 
microsecond (waiting for the microcontroller to finish the currently executed 
instruction), however, when interrupts are disabled this delay can grow large. 

 

• Encoding Time: The time it takes for the radio chip to encode and transform a part 
of the message to electromagnetic waves starting from the point when it raised an 
interrupt indicating the reception of the idealized point from the microcontroller. 
This time is deterministic and is in the order of a hundred microseconds. 

 

• Decoding Time: The time it takes for the radio chip on the receiver side to 
transform and decode the message from electromagnetic waves to binary data. It 
ends when the radio chip raises an interrupt indicating the reception of the idealized 
point. This time is mostly deterministic and is in the order of hundred 
microseconds. However, signal strength fluctuations and bit synchronization errors 
can introduce jitter. 

 

• Byte Alignment Time: The delay incurred because of the different byte alignment 
of the sender and receiver. This time is deterministic and can be computed on the 
receiver side from the bit offset and the speed of the radio. 

 
Fig. 3 summarizes the decomposition of delivery delay of the idealized point of the message 
as it traverses over a wireless channel. Each line represents the time line of the layer as 
measured by an ideal clock. The dots represent the time instance when the idealized point of 
the message crosses the layers. The triangles on the first and last line represent the time 
when the CPU makes the time-stamps. Depending on the specific hardware the time stamp 
is usually recorded by the microcontroller when it handles the radio chip interrupts both on 
the sender and receiver sides. Alternatively, capture registers provided by some hardware 
can be employed to eliminate the interrupt handling time (Maroti, et al. 2004). 

www.intechopen.com



Time Synchronization in Wireless Sensor Networks 261

 

collisions and conserve energy. However, non-determinism in transmission time caused by 
the Media Access Channel (MAC) layer of the radio stack can introduce several hundreds of 
milliseconds delay at each hop. Thus, synchronization is an essential part of transmission 
scheduling. 

 
3.4 Uncertainties and Errors in Time Synchronization 
Time synchronization schemes rely on some sort of message exchange between nodes in 
WSN. Non-determinism in the network dynamics such as propagation time or physical 
channel access time makes the synchronization task a big challenge in many systems. Note 
that in short distance multi-hop broadcast, the data processing time and its variation 
contribute the most to time fluctuations and differences in the path delays. Also, the time 
difference between two sensor nodes may become large over time due to the wandering 
effect of the local clocks. Latency estimates are actually confounded by random events that 
lead to asymmetric round-trip message delivery delays; this delay prevents the receiver 
from exactly comparing the local clocks of the two nodes and accurately synchronizing to 
the sender node. To better understand the source of these errors, it is useful to decompose 
the source of a message’s latency. Kopetz and Ochsenreiter (Kopetz & Ochsenreiter, 1987) 
introduced firstly four distinct components for analyzing the sources of the message 
delivery delays and later extended in (Ganeriwal et al. 2003). 
 

• Send Time: The time spent at the sender to construct the message. This includes 
kernel protocol processing and variable delays introduced by the operating system 
(e.g., context switches and system call overhead occurred by the synchronization 
application), and the time to transfer the message from the host to its network 
interface for transmission. 

 

• Access Time: Each packet faces some delay at the MAC (Medium Access Control) 
layer before actual transmission. This delay is specific to the MAC protocol in use, 
but some typical reasons for delay are waiting for the channel to be idle or waiting 
for the TDMA slot for transmission. 

 

• Propagation Time: This is the time spent in propagation of the message between 
the network interfaces of the sender and the receiver. When the sender and receiver 
share access to the same physical media (e.g., neighbors in an ad-hoc wireless 
network, or on a LAN), this delay is very small as it is simply the physical 
propagation time of the message through the media.  

 

• Receive Time: This is the processing time required for the receiver’s network 
interface to receive the message from the channel and notify the host of its arrival. 
This is typically the time required for the network interface to generate a message 
reception signal. If the arrival time is time-stamped at a enough low level in the 
host’s operating system kernel, this delay does not include the overhead of system 
calls, context switches, or even the message transfer from the network interface to 
the host.  

 

• Transmission Time: The time it takes for the sender to transmit the message. This 
time is in the order of tens of milliseconds depending on the length of the message 
and the speed of the radio. 

 

 

• Reception Time: The time it takes for the receiver to receive the message. It is the 
same as the transmission time. The transmission and reception times overlap in 
WSN as pictured in Fig. 2. 

 
send access transmission

receivereception

propagation

sender :  

receiver : 
 

Fig. 2. Decomposition of the message delivery delay over a wireless link (Maroti, et al. 2004) 
 
• Interrupt Handling Time: The delay between the radio chip raising and the 
microcontroller responding to an interrupt. This time is mostly less than a few 
microsecond (waiting for the microcontroller to finish the currently executed 
instruction), however, when interrupts are disabled this delay can grow large. 

 

• Encoding Time: The time it takes for the radio chip to encode and transform a part 
of the message to electromagnetic waves starting from the point when it raised an 
interrupt indicating the reception of the idealized point from the microcontroller. 
This time is deterministic and is in the order of a hundred microseconds. 

 

• Decoding Time: The time it takes for the radio chip on the receiver side to 
transform and decode the message from electromagnetic waves to binary data. It 
ends when the radio chip raises an interrupt indicating the reception of the idealized 
point. This time is mostly deterministic and is in the order of hundred 
microseconds. However, signal strength fluctuations and bit synchronization errors 
can introduce jitter. 

 

• Byte Alignment Time: The delay incurred because of the different byte alignment 
of the sender and receiver. This time is deterministic and can be computed on the 
receiver side from the bit offset and the speed of the radio. 

 
Fig. 3 summarizes the decomposition of delivery delay of the idealized point of the message 
as it traverses over a wireless channel. Each line represents the time line of the layer as 
measured by an ideal clock. The dots represent the time instance when the idealized point of 
the message crosses the layers. The triangles on the first and last line represent the time 
when the CPU makes the time-stamps. Depending on the specific hardware the time stamp 
is usually recorded by the microcontroller when it handles the radio chip interrupts both on 
the sender and receiver sides. Alternatively, capture registers provided by some hardware 
can be employed to eliminate the interrupt handling time (Maroti, et al. 2004). 

www.intechopen.com



Smart Wireless Sensor Networks262

 

cpu : 

radio : 

antenna : 

antenna : 

radio : 

radio : 

cpu : 

interrupt handling

encoding

propagation

decoding

(byte alignment)

interrupt handling

se
nd

er
re

ce
iv

er

 
Fig. 3. The timing of the transmission of an idealized point in the software (cpu), hardware 
(radio chip) and physical (antenna) layers of the sender and the receiver (Maroti, et al. 2004) 
 
Table 1 summarizes the magnitudes and distribution of the various delays in message 
transmissions on the Mica2 platform. The block codes are used, and the idealized point of 
the message can also be assumed to be at a block boundary (Maroti, et al. 2004). 
 

Time Magnitude Distribution 

Send & Receive 0 – 100 ms nondeterministic, depends on the 
processor load 

Access 10 – 500 ms nondeterministic, depends on the 
channel contention 

Transmission & 
Reception 

10 – 20 ms deterministic, depends on message 
length 

Propagation < 1μs for distances up to 
300 meters 

deterministic, depends on the 
distance between sender and 
receiver 

Interrupt 
Handling 

< 5μs in most cases, but 
can be as high as 30μs 

nondeterministic, depends on 
interrupts being disabled 

Encoding plus 
Decoding 

100 – 200 μs < 2 μs 
variance 

deterministic, depends on radio 
chipset and settings 

Byte Alignment 0 – 400μs deterministic, can be calculated 
Table 1. The sources of delays in message transmissions (Maroti, et al. 2004) 

 
3.5 Metrics for Evaluating Time Synchronization Schemes 
The requirements for the synchronization problem can be regarded as the metrics for 
evaluating synchronization schemes on wireless sensor networks. Combining with the 
criteria that sensor nodes have to be energy efficient, low-cost, and small in a multi-hop 
environment, this requirement becomes a challenging problem to solve. However, a single 
synchronization scheme may not satisfy them all together since there are actually tradeoffs 
between the requirements of an efficient solution (Sivrikaya & Yener, 2004). 
 

 

• Energy Efficiency: As with all of the protocols designed for sensor networks, 
synchronization schemes should take into account the limited energy resources 
contained in sensor nodes. 

 

• Scalability: Most sensor network applications need deployment of a large number 
of sensor nodes. A synchronization scheme should scale well with increasing 
number of nodes and/or high density in the network. 

 

• Precision: The need for precision, or accuracy, may vary significantly depending 
on the specific application and the purpose of synchronization. For some 
applications, even a simple ordering of events and messages may suffice whereas 
for some others, the requirement for synchronization accuracy may be on the order 
of a few ¹secs. 

 

• Robustness: A sensor network is typically left unattended for long times of 
operation in possibly hostile environments. In case of the failure of a few sensor 
nodes, the synchronization scheme should remain valid and functional for the rest 
of the network. 

 

• Lifetime: The synchronized time among sensor nodes provided by a 
synchronization algorithm may be instantaneous, or may last as long as the 
operation time of the network. 

 

• Scope: The synchronization scheme may provide a global time-base for all nodes 
in the network, or provide local synchronization only among spatially close nodes. 
Because of the scalability issues, global synchronization is difficult to achieve or too 
costly (considering energy and bandwidth usage) in large sensor networks. On the 
other hand, a common time-base for a large number of nodes might be needed for 
aggregating data collected from distant nodes, dictating a global synchronization. 

 

• Cost and Size: Wireless sensor nodes are very small and inexpensive devices. 
Therefore, as noted earlier, attaching a relatively large or expensive hardware (such 
as a GPS receiver) on a small, cheap device is not a logical option for synchronizing 
sensor nodes. The synchronization method for sensor networks should be 
developed with limited cost and size issues in mind. 

 

• Immediacy: Some sensor network applications such as emergency detection (e.g. 
gas leak detection, intruder detection) require the occurring event to be 
communicated immediately to the sink node. In this kind of applications, the 
network cannot tolerate any kind of delay when such an emergency situation is 
detected. This is called the immediacy requirement, and might prevent the protocol 
designer from relying on excessive processing after such an event of interest occurs, 
which in turn requires that nodes be pre-synchronized at all times. 

 
4. Time Synchronization Methods 

Time synchronization has been a seminal topic in distributed systems (Dolev et al. 1984; 
Halpern et al. 1984; Lundelius et al. 1984; Lamport et al. 1985), but designing clock 
synchronization algorithms in the context of a sensor network is challenging for several 
reasons. First, traditional distributed systems assume that all the nodes in a network can 
communicate directly with each other. A sensor network, however, is subject to spatial 

www.intechopen.com



Time Synchronization in Wireless Sensor Networks 263

 

cpu : 

radio : 

antenna : 

antenna : 

radio : 

radio : 

cpu : 

interrupt handling

encoding

propagation

decoding

(byte alignment)

interrupt handling

se
nd

er
re

ce
iv

er

 
Fig. 3. The timing of the transmission of an idealized point in the software (cpu), hardware 
(radio chip) and physical (antenna) layers of the sender and the receiver (Maroti, et al. 2004) 
 
Table 1 summarizes the magnitudes and distribution of the various delays in message 
transmissions on the Mica2 platform. The block codes are used, and the idealized point of 
the message can also be assumed to be at a block boundary (Maroti, et al. 2004). 
 

Time Magnitude Distribution 

Send & Receive 0 – 100 ms nondeterministic, depends on the 
processor load 

Access 10 – 500 ms nondeterministic, depends on the 
channel contention 

Transmission & 
Reception 

10 – 20 ms deterministic, depends on message 
length 

Propagation < 1μs for distances up to 
300 meters 

deterministic, depends on the 
distance between sender and 
receiver 

Interrupt 
Handling 

< 5μs in most cases, but 
can be as high as 30μs 

nondeterministic, depends on 
interrupts being disabled 

Encoding plus 
Decoding 

100 – 200 μs < 2 μs 
variance 

deterministic, depends on radio 
chipset and settings 

Byte Alignment 0 – 400μs deterministic, can be calculated 
Table 1. The sources of delays in message transmissions (Maroti, et al. 2004) 

 
3.5 Metrics for Evaluating Time Synchronization Schemes 
The requirements for the synchronization problem can be regarded as the metrics for 
evaluating synchronization schemes on wireless sensor networks. Combining with the 
criteria that sensor nodes have to be energy efficient, low-cost, and small in a multi-hop 
environment, this requirement becomes a challenging problem to solve. However, a single 
synchronization scheme may not satisfy them all together since there are actually tradeoffs 
between the requirements of an efficient solution (Sivrikaya & Yener, 2004). 
 

 

• Energy Efficiency: As with all of the protocols designed for sensor networks, 
synchronization schemes should take into account the limited energy resources 
contained in sensor nodes. 

 

• Scalability: Most sensor network applications need deployment of a large number 
of sensor nodes. A synchronization scheme should scale well with increasing 
number of nodes and/or high density in the network. 

 

• Precision: The need for precision, or accuracy, may vary significantly depending 
on the specific application and the purpose of synchronization. For some 
applications, even a simple ordering of events and messages may suffice whereas 
for some others, the requirement for synchronization accuracy may be on the order 
of a few ¹secs. 

 

• Robustness: A sensor network is typically left unattended for long times of 
operation in possibly hostile environments. In case of the failure of a few sensor 
nodes, the synchronization scheme should remain valid and functional for the rest 
of the network. 

 

• Lifetime: The synchronized time among sensor nodes provided by a 
synchronization algorithm may be instantaneous, or may last as long as the 
operation time of the network. 

 

• Scope: The synchronization scheme may provide a global time-base for all nodes 
in the network, or provide local synchronization only among spatially close nodes. 
Because of the scalability issues, global synchronization is difficult to achieve or too 
costly (considering energy and bandwidth usage) in large sensor networks. On the 
other hand, a common time-base for a large number of nodes might be needed for 
aggregating data collected from distant nodes, dictating a global synchronization. 

 

• Cost and Size: Wireless sensor nodes are very small and inexpensive devices. 
Therefore, as noted earlier, attaching a relatively large or expensive hardware (such 
as a GPS receiver) on a small, cheap device is not a logical option for synchronizing 
sensor nodes. The synchronization method for sensor networks should be 
developed with limited cost and size issues in mind. 

 

• Immediacy: Some sensor network applications such as emergency detection (e.g. 
gas leak detection, intruder detection) require the occurring event to be 
communicated immediately to the sink node. In this kind of applications, the 
network cannot tolerate any kind of delay when such an emergency situation is 
detected. This is called the immediacy requirement, and might prevent the protocol 
designer from relying on excessive processing after such an event of interest occurs, 
which in turn requires that nodes be pre-synchronized at all times. 

 
4. Time Synchronization Methods 

Time synchronization has been a seminal topic in distributed systems (Dolev et al. 1984; 
Halpern et al. 1984; Lundelius et al. 1984; Lamport et al. 1985), but designing clock 
synchronization algorithms in the context of a sensor network is challenging for several 
reasons. First, traditional distributed systems assume that all the nodes in a network can 
communicate directly with each other. A sensor network, however, is subject to spatial 

www.intechopen.com



Smart Wireless Sensor Networks264

 

constraints. Nodes only communicate directly with their neighbors. Communication 
between two remote nodes is accomplished by message relay using intermediate nodes. 
Second, nodes in a sensor network generally rely on less information about the system than 
traditional distributed systems, where nodes have access to the clock values of all the other 
members of the system, including the faulty nodes. Third, a sensor node has only limited 
processing capability. The computation intensive signature algorithms, such as RSA, are not 
suitable for sensor networks. Instead, some light-weight algorithms (such as using a one-
way key chain or a key management scheme) are more suitable. The spatial constraints, the 
communication cost and delay, and the diminished computational capability are key 
reasons why localized algorithms that involve lightweight computations are preferred for 
sensor networks. 

 
4.1 RBS(Reference Broadcast Synchronization)  
The main advantage of RBS is that it eliminates transmitter-side non-determinism. The 
disadvantage of the approach is that additional message exchange is necessary to 
communicate the local time-stamps between the nodes. Eventually the RBS approach 
completely eliminates the send and access times, and with minimal OS modifications it is 
also possible to remove the receive time uncertainty. This leaves the mostly deterministic 
propagation and reception time in wireless networks as the sole source of error. The main 
strength of RBS is its broad applicability to commodity hardware and existing software in 
sensor networks as it does not need access to the low levels of the operating system (Elson et 
al. 2002). 
The novel idea in RBS scheme is to use a third party for synchronization instead of 
synchronizing the sender with a receiver. This scheme synchronizes a set of receivers with 
one another. Although its application in sensor networks is novel, the idea of receiver-receiver 
synchronization was previously proposed for synchronization in broadcast environments. In 
RBS scheme, nodes send reference beacons to their neighbors. A reference beacon does not 
include a timestamp, but instead, its time of arrival is used by receiving nodes as a reference 
point for comparing clocks (Sivrikaya & Yener, 2004). 
 

NIC

Critical Path

Sender

Receiver

NIC

Critical Path

Sender

Receiver 1

Receiver 2

 
Fig. 4. Critical path analysis between traditional time synchronization protocol (left) and RBS 
(right) (Elson et al. 2002) 
 
By removing the sender's non-determinism from the critical path (Fig. 4), RBS scheme 
achieves much better precision compared to traditional synchronization methods that use 
two-way message exchanges between synchronizing nodes. As the sender's non-
determinism has no effect on RBS precision, the only sources of error can be the non-

 

determinism in propagation time and receive time. In this scheme, a single broadcast will 
propagate to all receivers at essentially the same time, and hence the propagation error is 
negligible. This is especially true when the radio ranges are relatively small (compared to 
speed of light times the required synchronization precision), as is the case for sensor 
networks. So the only receive time errors are handled when the accuracy of RBS model is 
analyzed (Elson et al. 2002; Sivrikaya & Yener, 2004) . 
In the simplest form of RBS, a node broadcasts a single pulse to two receivers. The receivers, 
upon receiving the pulse, exchange their receiving times of the pulse, and try to estimate 
their relative phase offsets. This basic RBS scheme can be extended in two ways: 1) allowing 
synchronization between n receivers by a single pulse, where n may be larger than two, 2) 
increasing the number of reference pulses to achieve higher precision.  

 
4.2 TPSN (Timing-Sync Protocol for Sensor Network) 
The TPSN algorithm first creates a spanning tree of the network and then performs pair-
wise synchronization along the edges. Each node gets synchronized by exchanging two 
synchronization messages with its reference node one level higher in the hierarchy. The 
TPSN achieves two times better performance than RBS by time-stamping the radio messages 
in the Medium Access Control (MAC) layer of the radio stack (Ganeriwal et al., 2003) and by 
relying on a two-way message exchange. The shortcoming of TPSN is that it does not 
estimate the clock drift of nodes, which limits its accuracy, and does not handle dynamic 
topology changes.  
The first step of the algorithm is to create a hierarchical topology in the network. Every node 
is assigned a level in this hierarchical structure, and a node belonging to level i can 
communicate with at least one node belonging to level i-1. Only one node is assigned to 
level 0, which is called the “root node”. This stage of the algorithm is called as the “level 
discovery phase”. Once the hierarchical structure has been established, the root node 
initiates the second stage of the algorithm, which is called the “synchronization phase”. In 
this phase, a node belonging to level i synchronize to a node belonging to level i-1. 
Eventually every node is synchronized to the root node and network-wide time 
synchronization is achieved (Ganeriwal et al., 2003). 

 
4.2.1 Level Discovery Phase 
This phase of the algorithm occurs at the onset, when the network is deployed. The root 
node is assigned a level 0 and it initiates this phase by broadcasting a level_discovery packet. 
The level_discovery packet contains the identity and the level of the sender. The immediate 
neighbors of the root node receive this packet and assign themselves a level, one greater 
than the level they have received i.e., level 1. After establishing their own level, they 
broadcast a new level_discovery packet containing their own level. This process is continued 
and eventually every node in the network is assigned a level. On being assigned a level, a 
node neglects any such future packets. This makes sure that no flooding congestion takes 
place in this phase. Thus a hierarchical structure is created with only one node, root node, at 
level 0. A node might not receive any level_discovery packets owing to MAC layer collisions 
(Ganeriwal et al., 2003).  
 

www.intechopen.com



Time Synchronization in Wireless Sensor Networks 265

 

constraints. Nodes only communicate directly with their neighbors. Communication 
between two remote nodes is accomplished by message relay using intermediate nodes. 
Second, nodes in a sensor network generally rely on less information about the system than 
traditional distributed systems, where nodes have access to the clock values of all the other 
members of the system, including the faulty nodes. Third, a sensor node has only limited 
processing capability. The computation intensive signature algorithms, such as RSA, are not 
suitable for sensor networks. Instead, some light-weight algorithms (such as using a one-
way key chain or a key management scheme) are more suitable. The spatial constraints, the 
communication cost and delay, and the diminished computational capability are key 
reasons why localized algorithms that involve lightweight computations are preferred for 
sensor networks. 

 
4.1 RBS(Reference Broadcast Synchronization)  
The main advantage of RBS is that it eliminates transmitter-side non-determinism. The 
disadvantage of the approach is that additional message exchange is necessary to 
communicate the local time-stamps between the nodes. Eventually the RBS approach 
completely eliminates the send and access times, and with minimal OS modifications it is 
also possible to remove the receive time uncertainty. This leaves the mostly deterministic 
propagation and reception time in wireless networks as the sole source of error. The main 
strength of RBS is its broad applicability to commodity hardware and existing software in 
sensor networks as it does not need access to the low levels of the operating system (Elson et 
al. 2002). 
The novel idea in RBS scheme is to use a third party for synchronization instead of 
synchronizing the sender with a receiver. This scheme synchronizes a set of receivers with 
one another. Although its application in sensor networks is novel, the idea of receiver-receiver 
synchronization was previously proposed for synchronization in broadcast environments. In 
RBS scheme, nodes send reference beacons to their neighbors. A reference beacon does not 
include a timestamp, but instead, its time of arrival is used by receiving nodes as a reference 
point for comparing clocks (Sivrikaya & Yener, 2004). 
 

NIC

Critical Path

Sender

Receiver

NIC

Critical Path

Sender

Receiver 1

Receiver 2

 
Fig. 4. Critical path analysis between traditional time synchronization protocol (left) and RBS 
(right) (Elson et al. 2002) 
 
By removing the sender's non-determinism from the critical path (Fig. 4), RBS scheme 
achieves much better precision compared to traditional synchronization methods that use 
two-way message exchanges between synchronizing nodes. As the sender's non-
determinism has no effect on RBS precision, the only sources of error can be the non-

 

determinism in propagation time and receive time. In this scheme, a single broadcast will 
propagate to all receivers at essentially the same time, and hence the propagation error is 
negligible. This is especially true when the radio ranges are relatively small (compared to 
speed of light times the required synchronization precision), as is the case for sensor 
networks. So the only receive time errors are handled when the accuracy of RBS model is 
analyzed (Elson et al. 2002; Sivrikaya & Yener, 2004) . 
In the simplest form of RBS, a node broadcasts a single pulse to two receivers. The receivers, 
upon receiving the pulse, exchange their receiving times of the pulse, and try to estimate 
their relative phase offsets. This basic RBS scheme can be extended in two ways: 1) allowing 
synchronization between n receivers by a single pulse, where n may be larger than two, 2) 
increasing the number of reference pulses to achieve higher precision.  

 
4.2 TPSN (Timing-Sync Protocol for Sensor Network) 
The TPSN algorithm first creates a spanning tree of the network and then performs pair-
wise synchronization along the edges. Each node gets synchronized by exchanging two 
synchronization messages with its reference node one level higher in the hierarchy. The 
TPSN achieves two times better performance than RBS by time-stamping the radio messages 
in the Medium Access Control (MAC) layer of the radio stack (Ganeriwal et al., 2003) and by 
relying on a two-way message exchange. The shortcoming of TPSN is that it does not 
estimate the clock drift of nodes, which limits its accuracy, and does not handle dynamic 
topology changes.  
The first step of the algorithm is to create a hierarchical topology in the network. Every node 
is assigned a level in this hierarchical structure, and a node belonging to level i can 
communicate with at least one node belonging to level i-1. Only one node is assigned to 
level 0, which is called the “root node”. This stage of the algorithm is called as the “level 
discovery phase”. Once the hierarchical structure has been established, the root node 
initiates the second stage of the algorithm, which is called the “synchronization phase”. In 
this phase, a node belonging to level i synchronize to a node belonging to level i-1. 
Eventually every node is synchronized to the root node and network-wide time 
synchronization is achieved (Ganeriwal et al., 2003). 

 
4.2.1 Level Discovery Phase 
This phase of the algorithm occurs at the onset, when the network is deployed. The root 
node is assigned a level 0 and it initiates this phase by broadcasting a level_discovery packet. 
The level_discovery packet contains the identity and the level of the sender. The immediate 
neighbors of the root node receive this packet and assign themselves a level, one greater 
than the level they have received i.e., level 1. After establishing their own level, they 
broadcast a new level_discovery packet containing their own level. This process is continued 
and eventually every node in the network is assigned a level. On being assigned a level, a 
node neglects any such future packets. This makes sure that no flooding congestion takes 
place in this phase. Thus a hierarchical structure is created with only one node, root node, at 
level 0. A node might not receive any level_discovery packets owing to MAC layer collisions 
(Ganeriwal et al., 2003).  
 

www.intechopen.com



Smart Wireless Sensor Networks266

 

SINK NODE SINK NODE

LEVEL 1

LEVEL 1

LEVEL 1

SINK

LEVEL 1

LEVEL 1

LEVEL 1

LEVEL 2

LEVEL 2

LEVEL 2

LEVEL 2

LEVEL 2

LEVEL 3

LEVEL 3

LEVEL 3

LEVEL 3

LEVEL 3LEVEL 3

LEVEL 3

LEVEL 3

LEVEL 3

LEVEL 4

(B)

(C) (D)

SINK

LEVEL 1

LEVEL 1

LEVEL 1

LEVEL 2

LEVEL 2

LEVEL 2

LEVEL 2

LEVEL 2

(A)

 

 Fig. 5. The Process of level discovery phase for hierarchical topology organization in TPSN  

 
4.2.2 Synchronization Phase 
In this phase, pair wise synchronization is performed along the edges of the hierarchical 
structure established in the earlier phase. The classical approach of sender-receiver 
synchronization (Mills, 1991) is used for doing this handshake between a pair of nodes. Fig. 
6 shows this message-exchange between nodes ‘A’ and ‘B’. Here, T1, T4 represent the time 
measured by local clock of ‘A’. Similarly T2, T3 represent the time measured by local clock 
of ‘B’. At time T1, ‘A’ sends a synchronization_pulse packet to ‘B’. The synchronization_pulse 
packet contains the level number of ‘A’ and the value of T1. Node B receives this packet at 
T2, where T2 is equal to T1 + D + d. Here D and d represents the clock drift between the two 
nodes and propagation delay respectively. At time T3, ‘B’ sends back an acknowledgement 
packet to ‘A’. The acknowledgement packet contains the level number of ‘B’ and the values of 
T1, T2 and T3. Node A receives the packet at T4. Assuming that the clock drift and the 
propagation delay do not change in this small span of time, ‘A’ can calculate the clock drift 
and propagation delay as (Ganeriwal et al., 2003) : 
 

)
2

)34()12( TTTT 
  ; )

2
)34()12( TTTTd 

      (6) 

Knowing the drift, node A can correct its clock accordingly, so that it synchronizes to node 
B. This is a sender initiated approach, where the sender synchronizes its clock to that of the 
receiver. 

 

T1

T2 T3

T4

Node B

Node A

Local Time

Local Time
 

Fig. 6. Two way message exchange between a pair of nodes (Ganeriwal et al., 2003) 
 
This message exchange at the network level begins with the root node initiating the phase 
by broadcasting a time_sync packet. On receiving this packet, nodes belonging to level 1 wait 
for some random time before they initiate the two-way message exchange with the root 
node. This randomization is to avoid the contention in medium access. On receiving back an 
acknowledgment, these nodes adjust their clock to the root node. The nodes belonging to 
level 2 will overhear this message exchange. This is based on the fact that every node in 
level 2 has at least one node of level 1 in its neighbor set. On hearing this message, nodes in 
level 2 back off for some random time, after which they initiate the message exchange with 
nodes in level 1 (Ganeriwal et al., 2003). 
This randomization is to ensure that nodes in level 2 start the synchronization phase after 
nodes in level 1 have been synchronized. Note that a node sends back an acknowledgement to 
a synchronization_pulse, provided that it has synchronized itself. This ensures that no 
multiple levels of synchronization are formed in the network. This process is carried out 
throughout the network and eventually every node is synchronized to the root node. In a 
sensor network, packet collisions can take place quite often. To handle such scenario a node 
waiting for an acknowledgement, timeouts after some random time and retransmits the 
synchronization_pulse. This process is continued until a successful two-way message 
exchange has been done (Ganeriwal et al., 2003). 

 
4.3 FTSP(Flooding Time Synchronization Protocol) 
The goal of the FTSP is to achieve a network wide synchronization of the local clocks of the 
participating nodes. In this protocol, each node has a local clock exhibiting the typical 
timing errors of crystals and can communicate over an unreliable but error corrected 
wireless link to its neighbors. The FTSP synchronizes the time of a sender to possibly 
multiple receivers utilizing a single radio message time-stamped at both the sender and the 
receiver sides. MAC layer time-stamping can eliminate many of the errors, as observed in 
many previous protocols (Ganeriwal et al., 2003; Woo & Culler, 2001). However, accurate 
time-synchronization at discrete points in time is a partial solution only. Compensation for 
the clock drift of the nodes is inevitable to achieve high precision between synchronization 
points and to keep the communication overhead low. Linear regression is used in FTSP to 
compensate for clock drift as suggested in (Elson et al., 2002). 
Typical WSN operate in areas larger than the broadcast range of a single node; therefore, the 
FTSP provides multi-hop synchronization. The root of the network, a dynamically elected 
single node, maintains the global time and all other nodes synchronize their clocks to that of 
the root. The nodes form an ad-hoc structure to transfer the global time from the root to all 
the nodes, as opposed to a fixed spanning-tree based approach proposed in (Ganeriwal et al., 

www.intechopen.com



Time Synchronization in Wireless Sensor Networks 267

 

SINK NODE SINK NODE

LEVEL 1

LEVEL 1

LEVEL 1

SINK

LEVEL 1

LEVEL 1

LEVEL 1

LEVEL 2

LEVEL 2

LEVEL 2

LEVEL 2

LEVEL 2

LEVEL 3

LEVEL 3

LEVEL 3

LEVEL 3

LEVEL 3LEVEL 3

LEVEL 3

LEVEL 3

LEVEL 3

LEVEL 4

(B)

(C) (D)

SINK

LEVEL 1

LEVEL 1

LEVEL 1

LEVEL 2

LEVEL 2

LEVEL 2

LEVEL 2

LEVEL 2

(A)

 

 Fig. 5. The Process of level discovery phase for hierarchical topology organization in TPSN  

 
4.2.2 Synchronization Phase 
In this phase, pair wise synchronization is performed along the edges of the hierarchical 
structure established in the earlier phase. The classical approach of sender-receiver 
synchronization (Mills, 1991) is used for doing this handshake between a pair of nodes. Fig. 
6 shows this message-exchange between nodes ‘A’ and ‘B’. Here, T1, T4 represent the time 
measured by local clock of ‘A’. Similarly T2, T3 represent the time measured by local clock 
of ‘B’. At time T1, ‘A’ sends a synchronization_pulse packet to ‘B’. The synchronization_pulse 
packet contains the level number of ‘A’ and the value of T1. Node B receives this packet at 
T2, where T2 is equal to T1 + D + d. Here D and d represents the clock drift between the two 
nodes and propagation delay respectively. At time T3, ‘B’ sends back an acknowledgement 
packet to ‘A’. The acknowledgement packet contains the level number of ‘B’ and the values of 
T1, T2 and T3. Node A receives the packet at T4. Assuming that the clock drift and the 
propagation delay do not change in this small span of time, ‘A’ can calculate the clock drift 
and propagation delay as (Ganeriwal et al., 2003) : 
 

)
2

)34()12( TTTT 
  ; )

2
)34()12( TTTTd 

      (6) 

Knowing the drift, node A can correct its clock accordingly, so that it synchronizes to node 
B. This is a sender initiated approach, where the sender synchronizes its clock to that of the 
receiver. 

 

T1

T2 T3

T4

Node B

Node A

Local Time

Local Time
 

Fig. 6. Two way message exchange between a pair of nodes (Ganeriwal et al., 2003) 
 
This message exchange at the network level begins with the root node initiating the phase 
by broadcasting a time_sync packet. On receiving this packet, nodes belonging to level 1 wait 
for some random time before they initiate the two-way message exchange with the root 
node. This randomization is to avoid the contention in medium access. On receiving back an 
acknowledgment, these nodes adjust their clock to the root node. The nodes belonging to 
level 2 will overhear this message exchange. This is based on the fact that every node in 
level 2 has at least one node of level 1 in its neighbor set. On hearing this message, nodes in 
level 2 back off for some random time, after which they initiate the message exchange with 
nodes in level 1 (Ganeriwal et al., 2003). 
This randomization is to ensure that nodes in level 2 start the synchronization phase after 
nodes in level 1 have been synchronized. Note that a node sends back an acknowledgement to 
a synchronization_pulse, provided that it has synchronized itself. This ensures that no 
multiple levels of synchronization are formed in the network. This process is carried out 
throughout the network and eventually every node is synchronized to the root node. In a 
sensor network, packet collisions can take place quite often. To handle such scenario a node 
waiting for an acknowledgement, timeouts after some random time and retransmits the 
synchronization_pulse. This process is continued until a successful two-way message 
exchange has been done (Ganeriwal et al., 2003). 

 
4.3 FTSP(Flooding Time Synchronization Protocol) 
The goal of the FTSP is to achieve a network wide synchronization of the local clocks of the 
participating nodes. In this protocol, each node has a local clock exhibiting the typical 
timing errors of crystals and can communicate over an unreliable but error corrected 
wireless link to its neighbors. The FTSP synchronizes the time of a sender to possibly 
multiple receivers utilizing a single radio message time-stamped at both the sender and the 
receiver sides. MAC layer time-stamping can eliminate many of the errors, as observed in 
many previous protocols (Ganeriwal et al., 2003; Woo & Culler, 2001). However, accurate 
time-synchronization at discrete points in time is a partial solution only. Compensation for 
the clock drift of the nodes is inevitable to achieve high precision between synchronization 
points and to keep the communication overhead low. Linear regression is used in FTSP to 
compensate for clock drift as suggested in (Elson et al., 2002). 
Typical WSN operate in areas larger than the broadcast range of a single node; therefore, the 
FTSP provides multi-hop synchronization. The root of the network, a dynamically elected 
single node, maintains the global time and all other nodes synchronize their clocks to that of 
the root. The nodes form an ad-hoc structure to transfer the global time from the root to all 
the nodes, as opposed to a fixed spanning-tree based approach proposed in (Ganeriwal et al., 

www.intechopen.com



Smart Wireless Sensor Networks268

 

2003). This saves the initial phase of establishing the tree and is more robust against node 
and link failures and dynamic topology changes. 

 
4.3.1 Time-stamping 
The FTSP utilizes a radio broadcast to synchronize the possibly multiple receivers to the 
time provided by the sender of the radio message. The broadcasted message contains the 
sender’s time stamp which is the estimated global time at the transmission of a given byte. 
The receivers obtain the corresponding local time from their respective local clocks at 
message reception. Consequently, one broadcast message provides a synchronization point (a 
global-local time pair) to each of the receivers (Maroti et al. 2004). The difference between 
the global and local time of a synchronization point estimates the clock offset of the receiver. 
As opposed to the RBS protocol, the time stamp of the sender must be embedded in the 
currently transmitted message. Therefore, the time-stamping on the sender side must be 
performed before the bytes containing the time stamp are transmitted. 
 

propagation delay

sender :  

receiver : 

preamble sync data data

preamble sync data data

byte alignment  
Fig. 7. Data packets transmitted over the radio channel. Solid lines represent the bytes of the 
buffer and the dashed lines are the bytes of packets (Maroti et al. 2004) 
 
Message broadcast starts with the transmission of preamble bytes, followed by SYNC bytes, 
then with a message descriptor followed by the actual message data, and ends with CRC 
bytes. During the transmission of the preamble bytes the receiver radio synchronizes itself 
to the carrier frequency of the incoming signal. From the SYNC bytes the receiver can 
calculate the bit offset it needs to reassemble the message with the correct byte alignment. 
The message descriptor contains the target, the length of the data and other fields, such as 
the identifier of the application layer that needs to be notified on the receiver side. The CRC 
bytes are used to verify that the message was not corrupted. The message layout is 
summarized in Fig. 7. 
The FTSP time-stamping effectively reduces the jitter of the interrupt handling and 
encoding/decoding times by recording multiple time stamps both on the sender and 
receiver sides. The time stamps are made at each byte boundary after the SYNC bytes as 
they are transmitted or received. First, these time stamps are normalized by subtracting an 
appropriate integer multiple of the nominal byte transmission time, the time it takes to 
transmit a byte. The jitter of interrupt handling time is mainly due to program sections 
disabling interrupts on the microcontroller for short amounts of time. This error is not 
Gaussian, but can be eliminated with high probability by taking the minimum of the 
normalized time stamps. The jitter of encoding and decoding time can be reduced by taking 
the average of these interrupt error corrected normalized time stamps. On the receiver side 
this final averaged time stamp must be further corrected by the byte alignment time that can 
be computed from the transmission speed and the bit offset (Maroti et al. 2004).  

 

4.3.2 Clock drift management 
If the local clocks had the exact same frequency and, hence, the offset of the local times were 
constant, a single synchronization point would be sufficient to synchronize two nodes. 
However, the frequency differences of the crystals used in Mica2 motes introduce drifts up 
to 40μs per second. This would mandate continuous re-synchronization with a period of less 
than one second to keep the error in the micro-second range, which is a significant overhead 
in terms of bandwidth and energy consumption (Maroti et al. 2004). Therefore, it is 
necessary to estimate the drift of the receiver clock with respect to the sender clock. The 
offset between the two clocks changes in a linear fashion provided the short term stability of 
the clocks is good. In this scheme, the stability of the 7.37 MHz Mica2 clock is verified by 
periodically sending a reference broadcast message that was received by two different 
motes. The two motes time-stamped the reference message using the FTSP time-stamping 
described in the previous section with their local time of arrival and reported the time-stamp 
(Maroti et al. 2004). 

 
4.4 Tiny-Sync and Mini-Sync  
Tiny-Sync and Mini-Sync are the two lightweight synchronization algorithms, proposed 
mainly for sensor networks, by Sichitiu and Veerarittiphan (Sichitiu & Veerarittiphan, 2003). 
The authors assume that each clock can be approximated by an oscillator with fixed 
frequency. As argued in previous section, two clocks, )(1 tC  and )(2 tC , can be linearly related 
under this assumption as: 
 

122121 )(     )( btCatC          (7)  

where 12a  is the relative drift, and 12b  is the relative offset between the two clocks. Both 
algorithms use the conventional two-way messaging scheme to estimate the relative drift 
and offset between the clocks of two nodes; node 1 sends a probe message to node 2, time 
stamped with ot , the local time just before the message is sent. Node 2 generates a timestamp 

when it gets the message at bt , and immediately sends back a reply message. Finally, node 1 

generates a timestamp rt  when it gets this reply message. Using the absolute order between 
these timestamps and equation (7), the following inequalities can be obtained: 

        12b12o btat           (8) 

        12b12r btat           (9) 
 
The 3-tuple of the timestamps  )  , ,( rbo ttt is called a “data point”. Tiny-sync and mini-sync 
works with some set of data points, each collected by a two-way message exchange as 
explained. As the number of data points increases, the precision of the algorithms increases 
(Sichitiu & Veerarittiphan, 2003). Each data point corresponds to two constraints on the 
relative drift and relative offset (equations 8, 9). The constraints imposed by data points are 
depicted in Fig. 8. Note that the line corresponding to equation (9) must lie between the 
vertical intervals created by each data point. One of the dashed lines in Fig. 8 represent the 
steepest possible such line, satisfying equation (7). This line gives the upper bound for the 
relative drift (slope of the line,

12a ), and the lower bound for the relative offset (y-intercept 

www.intechopen.com



Time Synchronization in Wireless Sensor Networks 269

 

2003). This saves the initial phase of establishing the tree and is more robust against node 
and link failures and dynamic topology changes. 

 
4.3.1 Time-stamping 
The FTSP utilizes a radio broadcast to synchronize the possibly multiple receivers to the 
time provided by the sender of the radio message. The broadcasted message contains the 
sender’s time stamp which is the estimated global time at the transmission of a given byte. 
The receivers obtain the corresponding local time from their respective local clocks at 
message reception. Consequently, one broadcast message provides a synchronization point (a 
global-local time pair) to each of the receivers (Maroti et al. 2004). The difference between 
the global and local time of a synchronization point estimates the clock offset of the receiver. 
As opposed to the RBS protocol, the time stamp of the sender must be embedded in the 
currently transmitted message. Therefore, the time-stamping on the sender side must be 
performed before the bytes containing the time stamp are transmitted. 
 

propagation delay

sender :  

receiver : 

preamble sync data data

preamble sync data data

byte alignment  
Fig. 7. Data packets transmitted over the radio channel. Solid lines represent the bytes of the 
buffer and the dashed lines are the bytes of packets (Maroti et al. 2004) 
 
Message broadcast starts with the transmission of preamble bytes, followed by SYNC bytes, 
then with a message descriptor followed by the actual message data, and ends with CRC 
bytes. During the transmission of the preamble bytes the receiver radio synchronizes itself 
to the carrier frequency of the incoming signal. From the SYNC bytes the receiver can 
calculate the bit offset it needs to reassemble the message with the correct byte alignment. 
The message descriptor contains the target, the length of the data and other fields, such as 
the identifier of the application layer that needs to be notified on the receiver side. The CRC 
bytes are used to verify that the message was not corrupted. The message layout is 
summarized in Fig. 7. 
The FTSP time-stamping effectively reduces the jitter of the interrupt handling and 
encoding/decoding times by recording multiple time stamps both on the sender and 
receiver sides. The time stamps are made at each byte boundary after the SYNC bytes as 
they are transmitted or received. First, these time stamps are normalized by subtracting an 
appropriate integer multiple of the nominal byte transmission time, the time it takes to 
transmit a byte. The jitter of interrupt handling time is mainly due to program sections 
disabling interrupts on the microcontroller for short amounts of time. This error is not 
Gaussian, but can be eliminated with high probability by taking the minimum of the 
normalized time stamps. The jitter of encoding and decoding time can be reduced by taking 
the average of these interrupt error corrected normalized time stamps. On the receiver side 
this final averaged time stamp must be further corrected by the byte alignment time that can 
be computed from the transmission speed and the bit offset (Maroti et al. 2004).  

 

4.3.2 Clock drift management 
If the local clocks had the exact same frequency and, hence, the offset of the local times were 
constant, a single synchronization point would be sufficient to synchronize two nodes. 
However, the frequency differences of the crystals used in Mica2 motes introduce drifts up 
to 40μs per second. This would mandate continuous re-synchronization with a period of less 
than one second to keep the error in the micro-second range, which is a significant overhead 
in terms of bandwidth and energy consumption (Maroti et al. 2004). Therefore, it is 
necessary to estimate the drift of the receiver clock with respect to the sender clock. The 
offset between the two clocks changes in a linear fashion provided the short term stability of 
the clocks is good. In this scheme, the stability of the 7.37 MHz Mica2 clock is verified by 
periodically sending a reference broadcast message that was received by two different 
motes. The two motes time-stamped the reference message using the FTSP time-stamping 
described in the previous section with their local time of arrival and reported the time-stamp 
(Maroti et al. 2004). 

 
4.4 Tiny-Sync and Mini-Sync  
Tiny-Sync and Mini-Sync are the two lightweight synchronization algorithms, proposed 
mainly for sensor networks, by Sichitiu and Veerarittiphan (Sichitiu & Veerarittiphan, 2003). 
The authors assume that each clock can be approximated by an oscillator with fixed 
frequency. As argued in previous section, two clocks, )(1 tC  and )(2 tC , can be linearly related 
under this assumption as: 
 

122121 )(     )( btCatC          (7)  

where 12a  is the relative drift, and 12b  is the relative offset between the two clocks. Both 
algorithms use the conventional two-way messaging scheme to estimate the relative drift 
and offset between the clocks of two nodes; node 1 sends a probe message to node 2, time 
stamped with ot , the local time just before the message is sent. Node 2 generates a timestamp 

when it gets the message at bt , and immediately sends back a reply message. Finally, node 1 

generates a timestamp rt  when it gets this reply message. Using the absolute order between 
these timestamps and equation (7), the following inequalities can be obtained: 

        12b12o btat           (8) 

        12b12r btat           (9) 
 
The 3-tuple of the timestamps  )  , ,( rbo ttt is called a “data point”. Tiny-sync and mini-sync 
works with some set of data points, each collected by a two-way message exchange as 
explained. As the number of data points increases, the precision of the algorithms increases 
(Sichitiu & Veerarittiphan, 2003). Each data point corresponds to two constraints on the 
relative drift and relative offset (equations 8, 9). The constraints imposed by data points are 
depicted in Fig. 8. Note that the line corresponding to equation (9) must lie between the 
vertical intervals created by each data point. One of the dashed lines in Fig. 8 represent the 
steepest possible such line, satisfying equation (7). This line gives the upper bound for the 
relative drift (slope of the line,

12a ), and the lower bound for the relative offset (y-intercept 

www.intechopen.com



Smart Wireless Sensor Networks270

 

of the line,
12b ) between the two clocks. Similarly, the other dashed line gives the lower 

bound for relative drift (
12a ) and the upper bound for relative offset (

12b ). Then the relative 

drift 12a  and the relative offset 
12b  can be bounded as: 

 

121212             aaa                        (10) 

121212             bbb                           (11) 

 
)(1 tC

)(2 tC1b
t

1r
t

1o
t

12b

12b

12b 12a

12a

12a

 
Fig. 8. The constraints imposed on 12a and 12b by data points (Sivrikaya & Yener, 2004) 
 
The exact drift and offset values can not be determined by this method (or any other method 
- as long as message delays are unknown), but they can be well estimated. The tighter the 
bounds get, the higher the chance that the estimates will be good, i.e. the precision of 
synchronization will be higher. In order to tighten the bounds, one can solve the linear 
programming problem consisting of the constraints dictated by all data points in order to 
get the optimal bounds resulting from the data points. However, this approach is quite 
complex for sensor networks, since it requires high computation and storage for keeping all 
data points in memory (Sichitiu & Veerarittiphan, 2003; Sivrikaya & Yener, 2004).  
The basic intuition behind tiny-sync and mini-sync algorithms is the observation that not all 
data points are useful. Consider, for example, the three data points in Fig. 8 the intervals 
[

12a 12, a ] and [
12b 12,b ] are only bounded by data points 1 and 3. Therefore data point 2 is 

useless in this example. Following this intuition, Tiny-sync keeps only the four constraints -
the ones which yield the best bounds on the estimates- among all data points. The resulting 
algorithm is much simpler than solving a linear programming problem. However, the 
authors argue, by a counter example, that this scheme does not always give the optimal 
solution for the bounds: The algorithm may eliminate some data point, considering it 
useless, although it would actually give a better bound together with another data point that 
is yet to occur.  
Mini-sync is an extension of Tiny-sync, such that it founds the optimal solution with an 
increase in complexity. The idea is to prevent the algorithm of tiny-sync for eliminating 
constraints that might be used by some future data points to give tighter bounds. We skip 

 

the details here, but the authors basically define a criteria to determine if there is a chance 
that a constraint might be useful. A constraint is eliminated (discarded) only if it is definitely 
useless. The solutions found by Mini-sync are optimal (Sivrikaya & Yener, 2004). 

 
5. Global Time Synchronization Algorithms 

Li and Rus (Li & Rus, 2006) presented a high-level framework for global synchronization. 
The three methods are proposed for global synchronization in WSNs. The first two methods, 
all-node-based and cluster-based synchronization, use global information but are not 
suitable for large WSNs. In the third approach, diffusion method, each node sets its clock to 
the average clock time of its neighbors. The diffusion method thus converges to a global 
average value. A drawback of this approach is the potentially large number of messages 
exchanged between neighbor nodes, especially in dense networks. 

 
5.1 All-Node-based Synchronization 
This method is used on all the nodes in the system and it is most effective when the size of 
the sensor network is relatively small. In future sections of this paper, they describe ways to 
address scalability. They assume the clock cycle on each node is the same. They believe this 
is a reasonable assumption since most sensors are programmed with the same parameters 
prior to deployment. They also assume the clock tick time is much longer than the packet 
transmission time. Finally, they assume that the message transmission time over each link 
and handling time on each node are roughly the same. This time can be obtained when the 
network traffic is small. That is, upon its initial deployment, a sensor network allows 
sufficient time solely for clock synchronization. The key idea is to send a message along a 
loop and record the initial time and the end time of the message. Then, by using the message 
traveling time, they can average the time to different segments of the loop and smooth over 
the error of the clocks. Algorithm 1 (Li & Rus, 2006) summarizes this method. 

 
Algorithm 1 All-Node-Based Synchronization Algorithms in a Sensor Network  

1: Find a ring that passes each node at least once that need to be synchronized (suppose 
the ring is composed of k nodes) 

2: A message is passed along the ring starting from an initiating node 
3: Upon receipt of the message, each node records its current local time ( it ) and its order 

( i ) in the ring. If the node receives messages more than once, it chooses one arbitrarily  
4: After initiating node receives the message, it sends out another message informing each 

node on the ring the start time ( st ) and the end time ( et ) of the previous message 

5: for each node, to adjust its local time t  do 

6:    if 


 i
se ti
k
ttmm )1(11, mi

k
tt se 

 )1(  then 

7:       node
in adjusts its time to mttt si   

8:    if 


 i
se ti
k
ttmm )1(11, 1)1( 

 mi
k
tt se  then 

9:       node
in adjusts its time to mttt si   

 

www.intechopen.com



Time Synchronization in Wireless Sensor Networks 271

 

of the line,
12b ) between the two clocks. Similarly, the other dashed line gives the lower 

bound for relative drift (
12a ) and the upper bound for relative offset (

12b ). Then the relative 

drift 12a  and the relative offset 
12b  can be bounded as: 

 

121212             aaa                        (10) 

121212             bbb                           (11) 

 
)(1 tC

)(2 tC1b
t

1r
t

1o
t

12b

12b

12b 12a

12a

12a

 
Fig. 8. The constraints imposed on 12a and 12b by data points (Sivrikaya & Yener, 2004) 
 
The exact drift and offset values can not be determined by this method (or any other method 
- as long as message delays are unknown), but they can be well estimated. The tighter the 
bounds get, the higher the chance that the estimates will be good, i.e. the precision of 
synchronization will be higher. In order to tighten the bounds, one can solve the linear 
programming problem consisting of the constraints dictated by all data points in order to 
get the optimal bounds resulting from the data points. However, this approach is quite 
complex for sensor networks, since it requires high computation and storage for keeping all 
data points in memory (Sichitiu & Veerarittiphan, 2003; Sivrikaya & Yener, 2004).  
The basic intuition behind tiny-sync and mini-sync algorithms is the observation that not all 
data points are useful. Consider, for example, the three data points in Fig. 8 the intervals 
[

12a 12, a ] and [
12b 12,b ] are only bounded by data points 1 and 3. Therefore data point 2 is 

useless in this example. Following this intuition, Tiny-sync keeps only the four constraints -
the ones which yield the best bounds on the estimates- among all data points. The resulting 
algorithm is much simpler than solving a linear programming problem. However, the 
authors argue, by a counter example, that this scheme does not always give the optimal 
solution for the bounds: The algorithm may eliminate some data point, considering it 
useless, although it would actually give a better bound together with another data point that 
is yet to occur.  
Mini-sync is an extension of Tiny-sync, such that it founds the optimal solution with an 
increase in complexity. The idea is to prevent the algorithm of tiny-sync for eliminating 
constraints that might be used by some future data points to give tighter bounds. We skip 

 

the details here, but the authors basically define a criteria to determine if there is a chance 
that a constraint might be useful. A constraint is eliminated (discarded) only if it is definitely 
useless. The solutions found by Mini-sync are optimal (Sivrikaya & Yener, 2004). 

 
5. Global Time Synchronization Algorithms 

Li and Rus (Li & Rus, 2006) presented a high-level framework for global synchronization. 
The three methods are proposed for global synchronization in WSNs. The first two methods, 
all-node-based and cluster-based synchronization, use global information but are not 
suitable for large WSNs. In the third approach, diffusion method, each node sets its clock to 
the average clock time of its neighbors. The diffusion method thus converges to a global 
average value. A drawback of this approach is the potentially large number of messages 
exchanged between neighbor nodes, especially in dense networks. 

 
5.1 All-Node-based Synchronization 
This method is used on all the nodes in the system and it is most effective when the size of 
the sensor network is relatively small. In future sections of this paper, they describe ways to 
address scalability. They assume the clock cycle on each node is the same. They believe this 
is a reasonable assumption since most sensors are programmed with the same parameters 
prior to deployment. They also assume the clock tick time is much longer than the packet 
transmission time. Finally, they assume that the message transmission time over each link 
and handling time on each node are roughly the same. This time can be obtained when the 
network traffic is small. That is, upon its initial deployment, a sensor network allows 
sufficient time solely for clock synchronization. The key idea is to send a message along a 
loop and record the initial time and the end time of the message. Then, by using the message 
traveling time, they can average the time to different segments of the loop and smooth over 
the error of the clocks. Algorithm 1 (Li & Rus, 2006) summarizes this method. 

 
Algorithm 1 All-Node-Based Synchronization Algorithms in a Sensor Network  

1: Find a ring that passes each node at least once that need to be synchronized (suppose 
the ring is composed of k nodes) 

2: A message is passed along the ring starting from an initiating node 
3: Upon receipt of the message, each node records its current local time ( it ) and its order 

( i ) in the ring. If the node receives messages more than once, it chooses one arbitrarily  
4: After initiating node receives the message, it sends out another message informing each 

node on the ring the start time ( st ) and the end time ( et ) of the previous message 

5: for each node, to adjust its local time t  do 

6:    if 


 i
se ti
k
ttmm )1(11, mi

k
tt se 

 )1(  then 

7:       node
in adjusts its time to mttt si   

8:    if 


 i
se ti
k
ttmm )1(11, 1)1( 

 mi
k
tt se  then 

9:       node
in adjusts its time to mttt si   

 

www.intechopen.com



Smart Wireless Sensor Networks272

 

5.2 Cluster-based Synchronization 
The synchronization method presented in Algorithm 1 has a provable bound, but it requires 
all the nodes to participate in one single synchronization session. This can be mitigated 
using a hierarchical approach. More specifically, if the network can be organized into 
clusters, we propose to synchronize the whole network using Algorithm 2 (Li & Rus, 2006). 
In Algorithm 2, the same method as in Algorithm 1 is firstly used to synchronize all the 
cluster heads by designing a message path that contains all the cluster heads (they are called 
the initiators base). Then, in the second step, the nodes in each cluster can be synchronized 
with their head.  
 

Algorithm 2 The Cluster-Based Synchronization Algorithm 

1: Run any clustering algorithm to organize the network into clusters 
2: Synchronize the cluster heads with a base using Alg. 1 
3: for each cluster do 
4:   Synchronize the cluster members with the cluster head 

 
This method can adapt to different clustering schemes. A cluster can be composed of the 
nodes within the transmission range of the cluster head; it can also be comprised of the 
nodes within some geographical area called a zone. For the first type of clustering, 
synchronization can be done with RBS. First, a reference broadcast is sent by the head to 
synchronize all the other cluster members. Then, any other node in the cluster sends out 
another reference broadcast to synchronize. The clock difference can be calculated with 
these two broadcasts and all the non head members can adjust their clocks according to the 
head’s clock. In a zone clustering, the same method as Algorithm 1 is used to first design a 
cycle that includes all the nodes of the cluster and synchronize them all. The head of the 
cluster will be the initiator of the intra cluster synchronization (Li & Rus, 2006). 

 
5.3 Diffusion-based Synchronization 
The previous presented methods (cluster-based or all-node-based synchronization) use 
global time information sent to all the nodes and are not scalable for very large networks. 
The initiating node may encounter failure and, thus, the approach is not fault-tolerant. The 
nodes that participate in the synchronization must execute the related code approximately 
at the same time, which may be too hard in a large system. Now a diffusion method that is 
fully distributed and localized is introduced. In this method, synchronization is done locally, 
without a global synchronization initiator. It can also be done at arbitrary points in time as 
opposed to the strict timing requirements of the previous methods (Li & Rus, 2006). 
The diffusion method achieves global synchronization by spreading the local 
synchronization information to the entire system. The algorithm can choose various global 
values to synchronize the network provided that each node in the network agrees to change 
its clock reading to the consensus value. An easy option is to choose the highest or lowest 
reading over the network. Synchronization to the highest or lowest value entails a simple 
algorithm (Li & Rus, 2006).  
However, if there are faulty or malicious nodes, such a node may impose an abnormally 
high or low clock reading, which is likely to ruin the synchronization. To make the 

 

algorithms more robust and reasonable, the following algorithms use the global average 
value as the ultimate synchronization clock reading. The main idea of the algorithms is to 
average all the clock time readings and set each clock to the average time. A node with high 
clock time reading diffuses that time value to its neighbors and levels down its clock time. A 
node with low time reading absorbs some of the values from its neighbors and increases its 
value. After a certain number of rounds of diffusion, the clock in each sensor will have the 
same value (Li & Rus, 2006). 
There are two typical basic operations in diffusion-based synchronization scheme: 1) the 
neighboring nodes compare their clock readings at a certain time point and 2) the nodes 
change their clock accordingly. This, however, may be a problem because the clock 
comparison and the clock update cannot be done simultaneously (especially when clock 
comparison may take several steps). The clock updates based on the clock readings of the 
comparison time will be incorrect. The solution is to ask each node to keep a record of how 
much time elapses after the clock comparison on each node and use this time in the clock 
update (Li & Rus, 2006). 

 
5.3.1 Synchronous Diffusion 
Algorithm 3 (Li & Rus, 2006) shows the diffusion method. Synchronization between a sensor 
node and its neighbors is done by clock comparison and update operations. Because this 
algorithm only consider the time difference between two sensor nodes instead of the 
absolute clock time value, it is not required that all the sensors must do this local 
synchronization at the same time. In line 6, the exchanged value between sensor in and its 
neighbor 

jn is proportional to the time difference between them. 
 

Algorithm 3 Diffusion Algorithm to synchronize the whole network  

1: for each sensor in in the network do 

2:    Exchange clock times with sni '  neighbors  

3:    for each neighbor 
jn  

do 

4:       Let the times of in  
and 

jn  
be ic  

and 
jc   

5:       Change snj '  time to )(, jijii ccrc   

6:    Change sni '  
time to )(, jijii ccrc   

 
5.3.2 Asynchronous Diffusion 
In the previous section, a synchronous diffusion-based algorithm is presented. The 
synchronous algorithm is localized, but it requires a set order for all the node operations. In 
order to remove this constraint, the extension of the diffusion synchronization algorithm is 
here introduced. In this algorithm, all the nodes can perform operations in any order as long 
as each node is involved in the operations with nonzero probability. The following 
asynchronous averaging algorithm (Algorithm 4) (Li & Rus, 2006) gives a very simple 
average operation of a node over its neighbors. Each node tries to compute the local average 

www.intechopen.com



Time Synchronization in Wireless Sensor Networks 273

 

5.2 Cluster-based Synchronization 
The synchronization method presented in Algorithm 1 has a provable bound, but it requires 
all the nodes to participate in one single synchronization session. This can be mitigated 
using a hierarchical approach. More specifically, if the network can be organized into 
clusters, we propose to synchronize the whole network using Algorithm 2 (Li & Rus, 2006). 
In Algorithm 2, the same method as in Algorithm 1 is firstly used to synchronize all the 
cluster heads by designing a message path that contains all the cluster heads (they are called 
the initiators base). Then, in the second step, the nodes in each cluster can be synchronized 
with their head.  
 

Algorithm 2 The Cluster-Based Synchronization Algorithm 

1: Run any clustering algorithm to organize the network into clusters 
2: Synchronize the cluster heads with a base using Alg. 1 
3: for each cluster do 
4:   Synchronize the cluster members with the cluster head 

 
This method can adapt to different clustering schemes. A cluster can be composed of the 
nodes within the transmission range of the cluster head; it can also be comprised of the 
nodes within some geographical area called a zone. For the first type of clustering, 
synchronization can be done with RBS. First, a reference broadcast is sent by the head to 
synchronize all the other cluster members. Then, any other node in the cluster sends out 
another reference broadcast to synchronize. The clock difference can be calculated with 
these two broadcasts and all the non head members can adjust their clocks according to the 
head’s clock. In a zone clustering, the same method as Algorithm 1 is used to first design a 
cycle that includes all the nodes of the cluster and synchronize them all. The head of the 
cluster will be the initiator of the intra cluster synchronization (Li & Rus, 2006). 

 
5.3 Diffusion-based Synchronization 
The previous presented methods (cluster-based or all-node-based synchronization) use 
global time information sent to all the nodes and are not scalable for very large networks. 
The initiating node may encounter failure and, thus, the approach is not fault-tolerant. The 
nodes that participate in the synchronization must execute the related code approximately 
at the same time, which may be too hard in a large system. Now a diffusion method that is 
fully distributed and localized is introduced. In this method, synchronization is done locally, 
without a global synchronization initiator. It can also be done at arbitrary points in time as 
opposed to the strict timing requirements of the previous methods (Li & Rus, 2006). 
The diffusion method achieves global synchronization by spreading the local 
synchronization information to the entire system. The algorithm can choose various global 
values to synchronize the network provided that each node in the network agrees to change 
its clock reading to the consensus value. An easy option is to choose the highest or lowest 
reading over the network. Synchronization to the highest or lowest value entails a simple 
algorithm (Li & Rus, 2006).  
However, if there are faulty or malicious nodes, such a node may impose an abnormally 
high or low clock reading, which is likely to ruin the synchronization. To make the 

 

algorithms more robust and reasonable, the following algorithms use the global average 
value as the ultimate synchronization clock reading. The main idea of the algorithms is to 
average all the clock time readings and set each clock to the average time. A node with high 
clock time reading diffuses that time value to its neighbors and levels down its clock time. A 
node with low time reading absorbs some of the values from its neighbors and increases its 
value. After a certain number of rounds of diffusion, the clock in each sensor will have the 
same value (Li & Rus, 2006). 
There are two typical basic operations in diffusion-based synchronization scheme: 1) the 
neighboring nodes compare their clock readings at a certain time point and 2) the nodes 
change their clock accordingly. This, however, may be a problem because the clock 
comparison and the clock update cannot be done simultaneously (especially when clock 
comparison may take several steps). The clock updates based on the clock readings of the 
comparison time will be incorrect. The solution is to ask each node to keep a record of how 
much time elapses after the clock comparison on each node and use this time in the clock 
update (Li & Rus, 2006). 

 
5.3.1 Synchronous Diffusion 
Algorithm 3 (Li & Rus, 2006) shows the diffusion method. Synchronization between a sensor 
node and its neighbors is done by clock comparison and update operations. Because this 
algorithm only consider the time difference between two sensor nodes instead of the 
absolute clock time value, it is not required that all the sensors must do this local 
synchronization at the same time. In line 6, the exchanged value between sensor in and its 
neighbor 

jn is proportional to the time difference between them. 
 

Algorithm 3 Diffusion Algorithm to synchronize the whole network  

1: for each sensor in in the network do 

2:    Exchange clock times with sni '  neighbors  

3:    for each neighbor 
jn  

do 

4:       Let the times of in  
and 

jn  
be ic  

and 
jc   

5:       Change snj '  time to )(, jijii ccrc   

6:    Change sni '  
time to )(, jijii ccrc   

 
5.3.2 Asynchronous Diffusion 
In the previous section, a synchronous diffusion-based algorithm is presented. The 
synchronous algorithm is localized, but it requires a set order for all the node operations. In 
order to remove this constraint, the extension of the diffusion synchronization algorithm is 
here introduced. In this algorithm, all the nodes can perform operations in any order as long 
as each node is involved in the operations with nonzero probability. The following 
asynchronous averaging algorithm (Algorithm 4) (Li & Rus, 2006) gives a very simple 
average operation of a node over its neighbors. Each node tries to compute the local average 

www.intechopen.com



Smart Wireless Sensor Networks274

 

value directly by asking all its neighbors about their values; it then sends out the computed 
average value to all its neighbors so they can update their values.  
 

Algorithm 4 Asynchronous Averaging Algorithm in a Sensor Network  

1: for each sensor in with uniform probability do 

2: Ask its neighbors the clock readings (read values from in  and its 

neighbors)  
3: Average the readings (compute) 
4: Send back to the neighbors the new value (write values to in  and its 

neighbors) 

 
6. FAD(Fast Asynchronous Diffusion) Scheme 

Several time synchronization algorithms have some problems when the algorithms escape 
their assumption and disconnection occurs in their network topology. For example, 
hierarchical topology has severe disadvantage when the network connection is broken. That 
is, all sensor nodes have to reorganize network connection and then time synchronization 
should be performed. Hence, asynchronous diffusion algorithm suggests new operation for 
global time synchronization among all the nodes in sensor networks. 

     






 
 2

)(neighborji
adjusti

CC
C                          (12) 

In equation (12), 
adjustiC 

 presents an adjusted clock value, and 
)(neighborjC  is a clock value 

among neighbor sensor nodes. In asynchronous diffusion algorithm, a node in  might have 
several clock values adjusted by algorithm 4 since all sensor nodes are assumed to be 
connected. In this case, a node in  adjusts its local clock with the most recently received 
average clock value among a series of average clock values. 

 
6.1 FAD Algorithm  
Recently J. Bae and B. Moon (Bae & Moon, 2009) proposed a Fast Asynchronous Diffusion 
(FAD) clock synchronization algorithm in order to improve the diffusion-based 
asynchronous averaging algorithm (Algorithm 4). In this section, the different points about 
comparing asynchronous diffusion algorithm with the proposed FAD algorithm are 
presented. In asynchronous diffusion algorithm (Algorithm 4), each node uses the most 
recently received average clock value for adjusting its local clock when getting a series of 
average clock values. Meanwhile, the proposed scheme takes the mean of a series of average 
clock values received from all the neighbors under threshold for fast convergence. That is, a 
node adjusts its clock value with the mean of its neighbors’ average clock values. 
Consequently the proposed algorithm (Algorithm 5) converges faster than asynchronous 
diffusion algorithm. The idea of FAD algorithm is expressed in equation (13). 
 

 

















 





 N

CC

C

N

j

neighborji

adjusti
1

)(

2                            (13) 

[ N = number of neighbors ] 
 
FAD algorithm assumes that all the nodes in network have the same topology as 
asynchronous diffusion algorithm, but FAD algorithm differs from asynchronous diffusion 
in the process of getting average values. In other words, asynchronous diffusion scheme 
assumes that operating event must occurs in regular sequence, which uses average value 
received most recently. However, FAD algorithm doesn’t consider operating sequence since 
it uses all the received average values (Bae & Moon, 2009). 
 

Algorithm 5 Fast Asynchronous Diffusion(FAD) Algorithm in Sensor Network 

1: for each node 
in  with uniform probability do 

2: Ask its neighbors the clock reading (read values from 
in and its neighbors) 

3:    if neighbor’s clock < threshold  
Average the reading(compute) 
Send back to the neighbors the new value (write values to 

in and its 

neighbors) 
4:    else drop the received value 
5: Each node 

in  
performs average operation again with all adjusted values 

received from its neighbors (write value to 
in ) 

 
In comparing FAD scheme with asynchronous diffusion scheme, there is actually no big 
difference in that more operations are required when the number of data increases in the 
viewpoint of algorithm complexity. But threre is an essential difference in the number of 
rounds needed for convergence. In next section, this difference is presented with the results 
of NS-2 simulation. Actually FAD has less number of rounds than asynchronous diffusion 
until convergence achievement is done. That is, FAD converges faster than asynchronous 
diffusion scheme. Generally, FAD seems to show less performce in the aspect of energy 
efficiency because FAD spends more time than asynchronous diffusion in getting average 
value. However, the time for synchronizing all the nodes in a sensor network is reduced 
since FAD achieves faster time synchronization than asynchronous diffusion scheme.  

 
6.2 Performance Evaluation  
The FAD scheme (Algorithm 5) is evaluated with NS-2 simulator (version 2.30) based on 
IEEE 802.15.4 module. The parameters such as propagation delay, collision, packet loss, and 
so on are considered. The simulation also includes asynchronous diffusion scheme for 
comparing FAD scheme with it. The simulation for time synchronization algorithms is 
performed within relative error of 0.01, and all nodes are assumed to have uniform 
distribution. The detail simulation parameters are summarized in Table 2. 

www.intechopen.com



Time Synchronization in Wireless Sensor Networks 275

 

value directly by asking all its neighbors about their values; it then sends out the computed 
average value to all its neighbors so they can update their values.  
 

Algorithm 4 Asynchronous Averaging Algorithm in a Sensor Network  

1: for each sensor in with uniform probability do 

2: Ask its neighbors the clock readings (read values from in  and its 

neighbors)  
3: Average the readings (compute) 
4: Send back to the neighbors the new value (write values to in  and its 

neighbors) 

 
6. FAD(Fast Asynchronous Diffusion) Scheme 

Several time synchronization algorithms have some problems when the algorithms escape 
their assumption and disconnection occurs in their network topology. For example, 
hierarchical topology has severe disadvantage when the network connection is broken. That 
is, all sensor nodes have to reorganize network connection and then time synchronization 
should be performed. Hence, asynchronous diffusion algorithm suggests new operation for 
global time synchronization among all the nodes in sensor networks. 

     






 
 2

)(neighborji
adjusti

CC
C                          (12) 

In equation (12), 
adjustiC 

 presents an adjusted clock value, and 
)(neighborjC  is a clock value 

among neighbor sensor nodes. In asynchronous diffusion algorithm, a node in  might have 
several clock values adjusted by algorithm 4 since all sensor nodes are assumed to be 
connected. In this case, a node in  adjusts its local clock with the most recently received 
average clock value among a series of average clock values. 

 
6.1 FAD Algorithm  
Recently J. Bae and B. Moon (Bae & Moon, 2009) proposed a Fast Asynchronous Diffusion 
(FAD) clock synchronization algorithm in order to improve the diffusion-based 
asynchronous averaging algorithm (Algorithm 4). In this section, the different points about 
comparing asynchronous diffusion algorithm with the proposed FAD algorithm are 
presented. In asynchronous diffusion algorithm (Algorithm 4), each node uses the most 
recently received average clock value for adjusting its local clock when getting a series of 
average clock values. Meanwhile, the proposed scheme takes the mean of a series of average 
clock values received from all the neighbors under threshold for fast convergence. That is, a 
node adjusts its clock value with the mean of its neighbors’ average clock values. 
Consequently the proposed algorithm (Algorithm 5) converges faster than asynchronous 
diffusion algorithm. The idea of FAD algorithm is expressed in equation (13). 
 

 

















 





 N

CC

C

N

j

neighborji

adjusti
1

)(

2                            (13) 

[ N = number of neighbors ] 
 
FAD algorithm assumes that all the nodes in network have the same topology as 
asynchronous diffusion algorithm, but FAD algorithm differs from asynchronous diffusion 
in the process of getting average values. In other words, asynchronous diffusion scheme 
assumes that operating event must occurs in regular sequence, which uses average value 
received most recently. However, FAD algorithm doesn’t consider operating sequence since 
it uses all the received average values (Bae & Moon, 2009). 
 

Algorithm 5 Fast Asynchronous Diffusion(FAD) Algorithm in Sensor Network 

1: for each node 
in  with uniform probability do 

2: Ask its neighbors the clock reading (read values from 
in and its neighbors) 

3:    if neighbor’s clock < threshold  
Average the reading(compute) 
Send back to the neighbors the new value (write values to 

in and its 

neighbors) 
4:    else drop the received value 
5: Each node 

in  
performs average operation again with all adjusted values 

received from its neighbors (write value to 
in ) 

 
In comparing FAD scheme with asynchronous diffusion scheme, there is actually no big 
difference in that more operations are required when the number of data increases in the 
viewpoint of algorithm complexity. But threre is an essential difference in the number of 
rounds needed for convergence. In next section, this difference is presented with the results 
of NS-2 simulation. Actually FAD has less number of rounds than asynchronous diffusion 
until convergence achievement is done. That is, FAD converges faster than asynchronous 
diffusion scheme. Generally, FAD seems to show less performce in the aspect of energy 
efficiency because FAD spends more time than asynchronous diffusion in getting average 
value. However, the time for synchronizing all the nodes in a sensor network is reduced 
since FAD achieves faster time synchronization than asynchronous diffusion scheme.  

 
6.2 Performance Evaluation  
The FAD scheme (Algorithm 5) is evaluated with NS-2 simulator (version 2.30) based on 
IEEE 802.15.4 module. The parameters such as propagation delay, collision, packet loss, and 
so on are considered. The simulation also includes asynchronous diffusion scheme for 
comparing FAD scheme with it. The simulation for time synchronization algorithms is 
performed within relative error of 0.01, and all nodes are assumed to have uniform 
distribution. The detail simulation parameters are summarized in Table 2. 

www.intechopen.com



Smart Wireless Sensor Networks276

 

Parameter values 

Number of Nodes 75, 90, 100, 125, 150, 200, 300, 
400, 500 

Sensor Field 100m    100m 

Transmission Range 15m 

Physical Layer & MAC Layer 802.15.4 

Routing Protocol AODV 

Relative Error 0.01 

Uniform Probability (Mean) 0.5  

Threshold (Percentage of Drift) 100%, 80%, 60%, 40% 
 

Table 2. The Parameters for Simulation 

 
6.3 Results and Discussions 
In this simulation, the round is the number of the given algorithm performed at once. The 
number of operation is the sum of average operation from all nodes. In more detail, the 
operation ranges between zero and number of nodes participating in one round, and 
threshold is drift rate between received clock value and local clock value in one tick. Fig. 9 
represents the comparison between asynchronous diffusion (left) and FAD (right) in the 
number of rounds with threshold value 40%. In this figure, the number of rounds decreases 
when the number of nodes increases. Each data point (*) represents the number of rounds 
when relative error becomes 0.01, and a line represents average value in each simulation 
condition.  
Under this simulation, when the number of nodes is 500, FAD achieves time 
synchronization in average 31.7 rounds while asynchronous diffusion achieves it in average 
35.8 rounds. When the number of sensor node is under 175, the time efficiency of FAD is 
better by 19% than asynchronous diffusion. When the number of sensor nodes is over 175, 
the time efficiency of FAD is better by 12% than asynchronous diffusion.  
Fig. 10 shows the comparison between asynchronous diffusion (left) and FAD (right) with 
threshold value 40% in the number of operations. This figure represents that there is no big 
difference between FAD and asynchronous diffusion, and the number of total operations 
increases when the number of nodes increases. The reason can be explained from the results 
in Fig. 9. The number of rounds has exponential shape even thought the number of wireless 
sensor nodes increases. It means that these algorithms have to operate even though some 
additional rounds are not related with increasing the number of sensor nodes. That is, when 
the number of nodes is especially over the specific value, the number of rounds for time 
synchronization are not related with the number of nodes. Moreover, the number of 
operations increases when the number of nodes increases since the number of rounds is 
similar.  
 

 

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

number of nodes

nu
m

be
r 

of
 ro

un
d

 

 
average value
data point

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

number of nodes

nu
m

be
r 

of
 ro

un
d

 

 
average value
data point

 
Fig. 9. Comparison between asynchronous diffusion (left) and FAD (right) in the number of 
rounds with threshold value 40%  
 

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

number of nodes

nu
m

be
r 

of
 o

pe
ra

tio
n

 

 
average value
data point

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

number of nodes

nu
m

be
r o

f o
pe

ra
tio

n

 

 
average value
data point

 
Fig. 10. Comparison between asynchronous diffusion (left) and FAD (right) with threshold 
value 40% in the number of operations 
 
Fig. 11 represents the comparison between asynchronous diffusion and FAD in the average 
number of operations (left) and the average number of rounds (right) with threshold 
value(log scale). Fig. 11 (left) depicts the number of average operation in this simulation. Fig. 
11 (right) shows average value of rounds. When the number of nodes is over 175, FAD uses 
the fewer number of operations than asynchronous diffusion. When the number of nodes is 
over 175, it is impossible for this simulation to compare FAD with asynchronous diffusion. 
However, when the number of nodes is under 175, FAD has better performance than 
asynchronous diffusion. 
 

www.intechopen.com



Time Synchronization in Wireless Sensor Networks 277

 

Parameter values 

Number of Nodes 75, 90, 100, 125, 150, 200, 300, 
400, 500 

Sensor Field 100m    100m 

Transmission Range 15m 

Physical Layer & MAC Layer 802.15.4 

Routing Protocol AODV 

Relative Error 0.01 

Uniform Probability (Mean) 0.5  

Threshold (Percentage of Drift) 100%, 80%, 60%, 40% 
 

Table 2. The Parameters for Simulation 

 
6.3 Results and Discussions 
In this simulation, the round is the number of the given algorithm performed at once. The 
number of operation is the sum of average operation from all nodes. In more detail, the 
operation ranges between zero and number of nodes participating in one round, and 
threshold is drift rate between received clock value and local clock value in one tick. Fig. 9 
represents the comparison between asynchronous diffusion (left) and FAD (right) in the 
number of rounds with threshold value 40%. In this figure, the number of rounds decreases 
when the number of nodes increases. Each data point (*) represents the number of rounds 
when relative error becomes 0.01, and a line represents average value in each simulation 
condition.  
Under this simulation, when the number of nodes is 500, FAD achieves time 
synchronization in average 31.7 rounds while asynchronous diffusion achieves it in average 
35.8 rounds. When the number of sensor node is under 175, the time efficiency of FAD is 
better by 19% than asynchronous diffusion. When the number of sensor nodes is over 175, 
the time efficiency of FAD is better by 12% than asynchronous diffusion.  
Fig. 10 shows the comparison between asynchronous diffusion (left) and FAD (right) with 
threshold value 40% in the number of operations. This figure represents that there is no big 
difference between FAD and asynchronous diffusion, and the number of total operations 
increases when the number of nodes increases. The reason can be explained from the results 
in Fig. 9. The number of rounds has exponential shape even thought the number of wireless 
sensor nodes increases. It means that these algorithms have to operate even though some 
additional rounds are not related with increasing the number of sensor nodes. That is, when 
the number of nodes is especially over the specific value, the number of rounds for time 
synchronization are not related with the number of nodes. Moreover, the number of 
operations increases when the number of nodes increases since the number of rounds is 
similar.  
 

 

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

number of nodes

nu
m

be
r 

of
 ro

un
d

 

 
average value
data point

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

number of nodes

nu
m

be
r 

of
 ro

un
d

 

 
average value
data point

 
Fig. 9. Comparison between asynchronous diffusion (left) and FAD (right) in the number of 
rounds with threshold value 40%  
 

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

number of nodes

nu
m

be
r 

of
 o

pe
ra

tio
n

 

 
average value
data point

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

number of nodes

nu
m

be
r o

f o
pe

ra
tio

n

 

 
average value
data point

 
Fig. 10. Comparison between asynchronous diffusion (left) and FAD (right) with threshold 
value 40% in the number of operations 
 
Fig. 11 represents the comparison between asynchronous diffusion and FAD in the average 
number of operations (left) and the average number of rounds (right) with threshold 
value(log scale). Fig. 11 (left) depicts the number of average operation in this simulation. Fig. 
11 (right) shows average value of rounds. When the number of nodes is over 175, FAD uses 
the fewer number of operations than asynchronous diffusion. When the number of nodes is 
over 175, it is impossible for this simulation to compare FAD with asynchronous diffusion. 
However, when the number of nodes is under 175, FAD has better performance than 
asynchronous diffusion. 
 

www.intechopen.com



Smart Wireless Sensor Networks278

 

50 100 150 200 250 300 350 400 450 500
7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

number of nodes

nu
m

be
r 

of
 o

pe
ra

tio
ns

(in
 lo

g 
sc

al
e)

 

 
average diffusion
FAD(100%)
FAD(80%)
FAD(60%)
FAD(40%)

50 100 150 200 250 300 350 400 450 500
3

3.5

4

4.5

5

5.5

6

number of nodes

nu
m

be
r o

f 
ro

un
ds

(in
 lo

g 
sc

al
e)

 

 
average diffusion
FAD(100%)
FAD(80%)
FAD(60%)
FAD(40%)

 
Fig. 11. Comparison between asynchronous diffusion and FAD in the average number of 
operations (left) and the average number of rounds (right) with threshold value(log scale)  

 
7. Conclusion 

Time synchronization is very useful function for improving device performance in WSN. In 
this chapter, we investigated time synchronization algorithms in WSN. Even though many 
algorithms are proposed until now, the best solution doesn’t seem to exist since diversity 
devices are used in WSN. For the future research, meanwhile, time synchronization among 
heterogeneous devices will be new challenges.  

 
8. References 

Bae, J., & Moon, B. (2009). Time Synchronization with Fast Asynchronous Diffussion in 
Wireless Sensor Network, International Conference on Cyber-enabled Distributed 
Computing and Knowledge Discovery (CyberC 2009), China, Zhangjiajie, October 

Dolev, D.; Halpern, J., & Strong, H. R. (1984). On the Possibility and Impossibility of 
Achieving Clock Synchronization, Proc. ACM Symp. Theory of Computing (STOC), 
May 

Elson, J. & Estrin, D. (2001). Time Synchronization for Wireless Sensor Networks, Proceedings 
of the 2001 International Parallel and Distributed Processing Symposium 
(IPDPS),Workshop on Parallel and Distributed Computing Issues in Wireless and Mobile 
Computing, San Francisco, California, USA, April  

Elson, J.; Girod, L. & Estrin, D. (2002). Fine-Grained Network Time Synchronization Using 
Reference Broadcasts, Proc. Fifth Symp. Operating System Design and 
Implementation(OSDI 2002), Dec. 

Ganeriwal, S.; Kumar, R. & Srivastava, M. (2003). Time Sync Protocol for Sensor Network, 
The First ACM Conference on Embedded Networked Sensor System (SenSys), Los 
Angeles, Nov., pp. 138–149. 

Ganeriwal, S.; Pöpper, C., Čapkun, S. & Srivastava, M. (2008), Secure Time Synchronization 
in Sensor Networks, ACM Transactions on Information and System Security (TISSEC), 
Vol.11,  no.4,  July, ISSN:1094-9224  

 

Girod, L. & Estrin, D. (2001). Robust range estimation using acoustic and multimodal 
sensing, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS2001), March 

Halpern, J.; Simons, B. & Strong, R. (1984). Fault-Tolerant Clock Synchronization, Proc. ACM 
Symp. Principles of Distributed Computing (PODC), Aug.  

Hofmann-Wellenhof, B.; Lichtenegger, H., & Collins, J. (1997). Global Positioning System: 
Theory and Practice, 4th ed. Springer Verlag. 

Intanagonwiwat, C.; Govindan, R., Estrin, D., Heidemann, J. & Silva, F. (2003). Directed 
Diffusion for Wireless Sensor Networking, IEEE Trans. Networking, vol.11, no.1, 
pp.2–16, Feburuary 

Kopetz, H., & Ochsenreiter, W. (1987). Clock Synchronization in Distributed Real-Time 
Systems, IEEE Transactions on Computers, C-36(8), p.933–939, August 

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system, 
Communications of the ACM, vol.21, no.7, pp.558–565 

Lamport L. & Melliar-Smith, P. M. (1985). Synchronizing Clocks in the Presence of Faults, J. 
ACM, vol.32, no.1, pp.52-78, Jan. 

Levine, J. (1999). Time synchronization over the internet using an adaptive frequency-locked 
loop, IEEE Trans. Ultrason., Ferroelectr., Freq. Contr., vol.46, no.4, pp.888–896, Jul. 

Li, Q., & Rus, D. (2006). Global Clock Synchronization in Sensor Network, IEEE Trans. 
Computer Society,  vol.55, pp.214-216, Feb. 

Lundelius, J. & Lynch, N. (1984). A New Fault-Tolerant Algorithm for Clock 
Synchronization, Proc. ACM Symp. Principles of Distributed Computing (PODC), pp. 
75-88, Aug.  

Mannermaa, J; Kalliomaki, K., Mansten, T. & Turunen, S. (1999). Timing performance of 
various GPS receivers, Proceedings of the 1999 Joint Meeting of the European Frequency 
and Time Forum and the IEEE International Frequency Control Symposium, pp.287–290, 
April 

Maroti, M.; Kusy, B., Simon, G. & Ledeczi, A. (2004). The flooding time synchronization 
protocol, Proceedings of the ACM Conference on Networked Sensor Systems (SenSys’04), 
ACM Press, New York, pp.39–49 

Mills, D. L. (1991). Internet Time Synchronization: The Network Time Protocol, IEEE 
Transactions on Communications, COM 39, no.10, pp.1482-1493, October 

Mills, D. L. (1998). Adaptive hybrid clock discipline algorithm for the network time protocol,  
IEEE/ACM Transactions on Networking, vol.6, no.5, pp.505–514, Oct.  

Romer, K. (2003). Temporal Message Ordering in Wireless Sensor Networks, IFIP 
MedHocNet, Mahdia, Tunisia, June 

Sichitiu, M. L., & Veerarittiphan, C. (2003). Simple, Accurate Time Synchronization for 
Wireless Sensor Networks, IEEE Wireless Communications and Networking Conference 
(WCNC) 2003, New Orleans, LA, USA, March,  vol.2, pp.1266 – 1273 

Simon, G.; Maroti, M., Ledeczi, A., Balogh, G., Kusy, B., Nadas, A., Pap, G., Sallai, J. & 
Frampton, K. (2004). Sensor network-based counter sniper system, Proceedings of the 
2nd International Conference on Embedded Networked Sensor Systems (Sen Sys), ACM 
Press, New York 

Sivrikaya, F. &  Yener, B. (2004).   Time Synchronization in Sensor Networks: A Survey, IEEE 
Network, vol.18, no.4, pp.45 – 50, July-Aug 

www.intechopen.com



Time Synchronization in Wireless Sensor Networks 279

 

50 100 150 200 250 300 350 400 450 500
7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

number of nodes

nu
m

be
r 

of
 o

pe
ra

tio
ns

(in
 lo

g 
sc

al
e)

 

 
average diffusion
FAD(100%)
FAD(80%)
FAD(60%)
FAD(40%)

50 100 150 200 250 300 350 400 450 500
3

3.5

4

4.5

5

5.5

6

number of nodes

nu
m

be
r o

f 
ro

un
ds

(in
 lo

g 
sc

al
e)

 

 
average diffusion
FAD(100%)
FAD(80%)
FAD(60%)
FAD(40%)

 
Fig. 11. Comparison between asynchronous diffusion and FAD in the average number of 
operations (left) and the average number of rounds (right) with threshold value(log scale)  

 
7. Conclusion 

Time synchronization is very useful function for improving device performance in WSN. In 
this chapter, we investigated time synchronization algorithms in WSN. Even though many 
algorithms are proposed until now, the best solution doesn’t seem to exist since diversity 
devices are used in WSN. For the future research, meanwhile, time synchronization among 
heterogeneous devices will be new challenges.  

 
8. References 

Bae, J., & Moon, B. (2009). Time Synchronization with Fast Asynchronous Diffussion in 
Wireless Sensor Network, International Conference on Cyber-enabled Distributed 
Computing and Knowledge Discovery (CyberC 2009), China, Zhangjiajie, October 

Dolev, D.; Halpern, J., & Strong, H. R. (1984). On the Possibility and Impossibility of 
Achieving Clock Synchronization, Proc. ACM Symp. Theory of Computing (STOC), 
May 

Elson, J. & Estrin, D. (2001). Time Synchronization for Wireless Sensor Networks, Proceedings 
of the 2001 International Parallel and Distributed Processing Symposium 
(IPDPS),Workshop on Parallel and Distributed Computing Issues in Wireless and Mobile 
Computing, San Francisco, California, USA, April  

Elson, J.; Girod, L. & Estrin, D. (2002). Fine-Grained Network Time Synchronization Using 
Reference Broadcasts, Proc. Fifth Symp. Operating System Design and 
Implementation(OSDI 2002), Dec. 

Ganeriwal, S.; Kumar, R. & Srivastava, M. (2003). Time Sync Protocol for Sensor Network, 
The First ACM Conference on Embedded Networked Sensor System (SenSys), Los 
Angeles, Nov., pp. 138–149. 

Ganeriwal, S.; Pöpper, C., Čapkun, S. & Srivastava, M. (2008), Secure Time Synchronization 
in Sensor Networks, ACM Transactions on Information and System Security (TISSEC), 
Vol.11,  no.4,  July, ISSN:1094-9224  

 

Girod, L. & Estrin, D. (2001). Robust range estimation using acoustic and multimodal 
sensing, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS2001), March 

Halpern, J.; Simons, B. & Strong, R. (1984). Fault-Tolerant Clock Synchronization, Proc. ACM 
Symp. Principles of Distributed Computing (PODC), Aug.  

Hofmann-Wellenhof, B.; Lichtenegger, H., & Collins, J. (1997). Global Positioning System: 
Theory and Practice, 4th ed. Springer Verlag. 

Intanagonwiwat, C.; Govindan, R., Estrin, D., Heidemann, J. & Silva, F. (2003). Directed 
Diffusion for Wireless Sensor Networking, IEEE Trans. Networking, vol.11, no.1, 
pp.2–16, Feburuary 

Kopetz, H., & Ochsenreiter, W. (1987). Clock Synchronization in Distributed Real-Time 
Systems, IEEE Transactions on Computers, C-36(8), p.933–939, August 

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system, 
Communications of the ACM, vol.21, no.7, pp.558–565 

Lamport L. & Melliar-Smith, P. M. (1985). Synchronizing Clocks in the Presence of Faults, J. 
ACM, vol.32, no.1, pp.52-78, Jan. 

Levine, J. (1999). Time synchronization over the internet using an adaptive frequency-locked 
loop, IEEE Trans. Ultrason., Ferroelectr., Freq. Contr., vol.46, no.4, pp.888–896, Jul. 

Li, Q., & Rus, D. (2006). Global Clock Synchronization in Sensor Network, IEEE Trans. 
Computer Society,  vol.55, pp.214-216, Feb. 

Lundelius, J. & Lynch, N. (1984). A New Fault-Tolerant Algorithm for Clock 
Synchronization, Proc. ACM Symp. Principles of Distributed Computing (PODC), pp. 
75-88, Aug.  

Mannermaa, J; Kalliomaki, K., Mansten, T. & Turunen, S. (1999). Timing performance of 
various GPS receivers, Proceedings of the 1999 Joint Meeting of the European Frequency 
and Time Forum and the IEEE International Frequency Control Symposium, pp.287–290, 
April 

Maroti, M.; Kusy, B., Simon, G. & Ledeczi, A. (2004). The flooding time synchronization 
protocol, Proceedings of the ACM Conference on Networked Sensor Systems (SenSys’04), 
ACM Press, New York, pp.39–49 

Mills, D. L. (1991). Internet Time Synchronization: The Network Time Protocol, IEEE 
Transactions on Communications, COM 39, no.10, pp.1482-1493, October 

Mills, D. L. (1998). Adaptive hybrid clock discipline algorithm for the network time protocol,  
IEEE/ACM Transactions on Networking, vol.6, no.5, pp.505–514, Oct.  

Romer, K. (2003). Temporal Message Ordering in Wireless Sensor Networks, IFIP 
MedHocNet, Mahdia, Tunisia, June 

Sichitiu, M. L., & Veerarittiphan, C. (2003). Simple, Accurate Time Synchronization for 
Wireless Sensor Networks, IEEE Wireless Communications and Networking Conference 
(WCNC) 2003, New Orleans, LA, USA, March,  vol.2, pp.1266 – 1273 

Simon, G.; Maroti, M., Ledeczi, A., Balogh, G., Kusy, B., Nadas, A., Pap, G., Sallai, J. & 
Frampton, K. (2004). Sensor network-based counter sniper system, Proceedings of the 
2nd International Conference on Embedded Networked Sensor Systems (Sen Sys), ACM 
Press, New York 

Sivrikaya, F. &  Yener, B. (2004).   Time Synchronization in Sensor Networks: A Survey, IEEE 
Network, vol.18, no.4, pp.45 – 50, July-Aug 

www.intechopen.com



Smart Wireless Sensor Networks280

 

Sommer, P. & Wattenhofer, R. (2009). Gradient clock synchronization in wireless sensor 
networks, Proceedings of the 2009 International Conference on Information Processing in 
Sensor Networks, pp. 37-48,  

Su, W. & Akyildiz, I. F. (2005). Time-Diffusion Synchronization Protocol for Wireless Sensor 
Networks, IEEE/ACM Transactions on Networking, vol.13, no.2, pp.384–397, April 

Woo, A., & Culler, D. (2001). A Transmission Control Scheme for Media Access in Sensor 
Networks, International Conference on Mobile Computing and Networking, (Mobicom), 
pp. 221–235, July  

Yoon, S.; Veerarittiphan, C. & Sichitiu, M. L. (2007). Tiny-sync: Tight time synchronization 
for wireless sensor networks, ACM Transactions on Sensor Networks (TOSN), 
vol., no.2, June  

 

www.intechopen.com



Smart Wireless Sensor Networks

Edited by Yen Kheng Tan

ISBN 978-953-307-261-6

Hard cover, 418 pages

Publisher InTech

Published online 14, December, 2010

Published in print edition December, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The recent development of communication and sensor technology results in the growth of a new attractive and

challenging area â€“ wireless sensor networks (WSNs). A wireless sensor network which consists of a large

number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the

ability of wireless communication and intelligent computation, these nodes become smart sensors which do not

only perceive ambient physical parameters but also be able to process information, cooperate with each other

and self-organize into the network. These new features assist the sensor nodes as well as the network to

operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the

applications require design and operation of WSNs different from conventional networks such as the internet.

The network design must take into account of the objectives of specific applications. The nature of deployed

environment must be considered. The limited of sensor nodesâ€™ resources such as memory, computational

ability, communication bandwidth and energy source are the challenges in network design. A smart wireless

sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage,

reliability and security of networkâ€™s operation for a maximized lifetime. This book discusses various aspects

of designing such smart wireless sensor networks. Main topics includes: design methodologies, network

protocols and algorithms, quality of service management, coverage optimization, time synchronization and

security techniques for sensor networks.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jonggoo Bae and Bongkyo Moon (2010). Time Synchronization in Wireless Sensor Networks, Smart Wireless

Sensor Networks, Yen Kheng Tan (Ed.), ISBN: 978-953-307-261-6, InTech, Available from:

http://www.intechopen.com/books/smart-wireless-sensor-networks/time-synchronization-in-wireless-sensor-

network

www.intechopen.com



Fax: +385 (51) 686 166

www.intechopen.com

Fax: +86-21-62489821



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


