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1. Introduction

A wireless sensor network, which is a key network to facilitate ubiquitous information envi-
ronments, has attracted a significant amount of interest from many researchers (Akyildiz et al.,
2002). A wireless sensor network has a wide range of applications, such as natural environ-
mental monitoring, environmental control in residential spaces or plants, object tracking, and
precision agriculture. In a general wireless sensor network, hundreds or thousands of micro
sensor nodes, which are generally compact and inexpensive, are placed in a large scale obser-
vation area and sensing data of each node is gathered to a sink node by inter-node wireless
multi-hop communication. Each sensor node consists of a sensing function to measure the sta-
tus (temperature, humidity, motion, etc.) of an observation point or object, a limited function
on information processing, and a simplified wireless communication function, and generally
operates on a resource of a limited power-supply capacity such as a battery. Therefore, a data
gathering scheme and/or a routing protocol capable of meeting the following requirements
has been mainly studied to prolong the lifetime of a wireless sensor network.

1. Efficiency of data gathering

2. Balance on communication load among sensor nodes

As the scheme that satisfy the above two requirements, gradient-based routing protocol has
attracted attention (Xia et al., 2004). However, this does not positively ease the communication
load concentration to sensor nodes around a sink node that is the source of problems on the
long-term operation of a wireless sensor network. In a large scale and dense wireless sensor
network, the communication load is generally concentrated on sensor nodes around a sink
node during the operation process. In case sensor nodes are not placed evenly in a large
scale observation area, the communication load is concentrated on sensor nodes placed in
an area of low node-density. Intensive data transmission to specific nodes, such as sensor
nodes around a sink node and sensor nodes placed in an area of low node-density, brings on
concentrated energy consumption of them and causes them to break away from the network
early. This makes the long-term observation by a wireless sensor network difficult. To solve
this communication load concentration problem, a data gathering scheme for a wireless sensor
network with multiple sinks has been proposed (Dubois-Ferriere et al., 2004; Oyman & Ersoy,
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2004). Each sensor node, in this scheme, sends sensing data to the nearest sink node. In
comparison with the case of a one-sink wireless sensor network, the communication load of
sensor nodes around a sink node is reduced. In the existing studies, however, the effective
locations for sink nodes, which are an important design problem for the long-term operation
of a wireless sensor network, have not been discussed.
This chapter discusses a method of suppressing the communication load on sensor nodes by
effectively placing a limited number of sink nodes in an observation area. As a technique
of solving effective locations for sink nodes, this chapter presents a new search algorithm
named the suppression particle swarm optimization algorithm (Yoshimura et al., 2009). This
algorithm is based on the particle swarm optimization algorithm (Kennedy & Eberhart, 1995)
that is one of the swarm intelligence algorithms. The suppression particle swarm optimization
algorithm can provide plural effective allocation sets for sink nodes so that total hops in all
sensor nodes are minimized. As their allocation sets are switched dynamically, the above two
requirements can be satisfied.
This chapter consists of five sections. In Section 2, the basic particle swarm optimization
algorithm is introduced. In Section 3, the suppression particle swarm optimization algorithm
is explained. In Section 4, simulation results for two types of wireless sensor networks are
presented. Through numerical simulations, effectiveness by using the suppression particle
swarm optimization algorithm is confirmed. In Section 5, the overall conclusions of this work
are given and future problems are discussed.

2. The Particle Swarm Optimization Algorithm

In this section, the original particle swarm optimization algorithm is outlined. The particle
swarm optimization algorithm belongs to the category of swarm intelligence algorithms. It
was developed and first introduced as a stochastic optimization algorithm (Kennedy & Eber-
hart, 1995). Currently, the particle swarm optimization algorithm is intensively researched
because it is superior to the other algorithms on many difficult optimization problems. The
ideas that underlie the particle swarm optimization algorithm are inspired not by the evo-
lutionary mechanisms encountered in natural selection, but rather by the social behavior of
flocking organisms, such as swarms of birds and fish schools. The particle swarm optimiza-
tion algorithm is a population-based algorithm that exploits a population of individuals to
probe promising regions of the search space. In this context, the population is called a swarm
and the individuals are called particles. In the particle swarm optimization algorithm, a multi-
dimensional solution space by sharing information between a swarm of particles is efficiently
searched. The algorithm is simple and allows unconditional application to various optimiza-
tion problems.
Assume a D-dimensional search space and a swarm consisting of N particles. Each particle
(The i th particle) has a position vector

xi = (xi1, xi2, · · · , xiD)
T, (1)

and the velocity vector

vi = (vi1, vi2, · · · , viD)
T, (2)

where the subscript i (i = 1, · · · , N) represents the particle’s index. In addition, each particle
retains the best position vector pbesti found by the particle in the search process and the best
position vector gbest among all particles as information shared in the swarm in the search
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Fig. 1. The movement of particles.

process. In the particle swarm optimization algorithm, each particle produces a new velocity

vector vk+1
i by linearly coupling pbestk

i found by the particle in the past, gbestk shared in

the swarm, and the previous velocity vector vk
i and moves to the next position xk+1

i , where
the superscript k indicates the number of search iterations. At the k + 1 th iteration, the ve-

locity vector vk+1
i and the position vector xk+1

i of the i th particle is updated by the following
equations:

vk+1
i = w · vk

i + c1 · r1 · (pbest
k
i − xk

i ) + c2 · r2 · (gbest
k
− xk

i ) (3)

xk+1
i = xk

i + vk+1
i (4)

where r1 and r2 represent random numbers, uniformly distributed within the interval [0,1]. w
is a parameter called the inertia weight. c1 and c2 are positive constants, referred to as cogni-
tive and social parameters, respectively. The settings of w, c1, and c2 affect the performance
of the particle swarm optimization algorithm. In Fig. 1, an example on the movement of par-
ticles is shown. By iterating the search based on Equations (3) and (4) until the end condition
is satisfied, a solution to an objective function f (x) can be obtained. The particle swarm opti-
mization algorithm to search the minimization of an objective function f (x) is as follows (see
Fig. 2):

Step 0 : Preparation

Set the total number of particles N, the particle parameters (w, c1, c2), and the maximum
number of iterations Kmax.

Step 1 : Initialization

Set the search iteration counter to k = 1. Generate the initial velocity vector v1
i and

the initial position vector x1
i of each particle from random numbers and determine the

initial pbest1
i and gbest1.

pbest1
i = x1

i , i = 1, · · · , N (5)

ig = arg min
i

f (pbest1
i ) (6)

gbest1 = pbest1
ig

(7)
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Fig. 2. Flowchart of the particle swarm optimization algorithm.

Step 2 : Update of velocity vector and position vector
Update the velocity vector and the position vector of each particle by Equations (3) and
(4).

Step 3 : Update of pbest and gbest

Update pbestk+1
i and gbestk+1 as follows:

I1 =
{

i
∣

∣

∣
f (xk+1

i ) < f (pbestk
i ), 1 ≤ i ≤ N

}

(8)

pbestk+1
i =

{

xk+1
i , i ∈ I1

pbestk
i , i /∈ I1

(9)

ig = arg min
i

f (pbestk+1
i ) (10)

gbestk+1 = pbestk+1
ig

(11)

Step 4 : Judgment of end
Finish the search when k = Kmax. Otherwise, return to Step 2 by assuming k = k + 1.

The particle swarm optimization algorithm can fast solve various optimization problems in
nonlinear continuous functions, although the algorithm uses only simple and fundamental
arithmetic operations. However, the basic particle swarm optimization algorithm can find
only a single solution for a single trial.

3. The Suppression Particle Swarm Optimization Algorithm

In this section, the suppression particle swarm optimization algorithm having a simple self
control mechanism is explained (Yoshimura et al., 2009). The overall processing flow of the
suppression particle swarm optimization algorithm is shown in Fig. 3. As shown in the figure,
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Fig. 3. Flowchart of the suppression particle swarm optimization algorithm.

“suppression” and “memory” are added to the flow of the original particle swarm optimiza-
tion algorithm. The suppression scheme controls excessive conversion of particles as referring
to density of particles. The memory scheme stores copies of position vectors having better
evaluation values, which are distant from each other. These schemes can realize to provide
various acceptable solutions.
In the suppression particle swarm optimization algorithm, distance between the i th and the j
th particles is calculated by

distanceij = ||xi − xj|| (12)

Also, density of the i th particle is calculated by

densityi =
1

N

N

∑
j=1,j �=i

α(distanceij; Td) (13)

where N is the number of particles, Td is a distance threshold parameter, and α(z; T) is the
following function.

α(z; T) =

{
1, z ≤ T
0, otherwise

(14)

That is, the number of particles having shorter distances than the threshold Td is proportional
to the density. Let x̃k

j be the j th position vector preserved in the memory scheme at the k th

iteration. Set the number of the preserved position vectors to L = 0 in Step 1. Additional
schemes in the suppression particle swarm optimization algorithm are as follows:

Step 2a: Suppression

Consider the following subset:

I2 = {i | densityi > Ts, 1 ≤ i ≤ N } (15)

Step 2:
Update k

i
k
i xv and

kk
i gbestpbest and

Step 1:
Initialization

Step 3:
Update

Step 4:
Judgment of end
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where Ts is a density threshold parameter. Reset the velocity vector vk
i and the position

vector xk
i to random values if i ∈ I2 is satisfied.

Step 3a: Memory

Set the position vector xk
i as a candidate preserved in the memory scheme if the follow-

ing condition is satisfied:

f (xk
i ) < Tm f (16)

where Tm f is a fitness threshold parameter. Store the candidate position vector xk
i in the

memory scheme and let L = L + 1 if the following condition is satisfied:

L∧

j=1

(
||xk

i − x̃
k
j || > Td

)
(17)

where Td is the distance threshold parameter explained before. Otherwise, consider the
following subset:

I3 =
{

j
∣∣∣ ||xk

i − x̃
k
j || ≤ Td

}
(18)

Replace the preserved position vectors x̃
k
j (j ∈ I3) with the candidate position vector

x
k
i and let L = L − |I3| if the following condition is satisfied:

∧

j∈I3

(
f (xk

i ) < f (x̃k
j )
)

(19)

The suppression particle swarm optimization algorithm is based on the artificial immune sys-
tem which is one of optimization algorithms (de Castro & Timmis, 2002). The living body
has a mechanism to reconstruct own genes and generate antibodies which eliminate antigens
from outside. The antibodies affect not only antigens but also antibodies themselves. Repeat-
ing in such a process between antibodies and antigens, effective antibodies are generated. The
artificial immune system mimics such a process. This algorithm can keep a diversity of solu-
tions by a production mechanism of antibodies and a self-control mechanism in an immunity
system, and can search plural acceptable solutions. However, the artificial immune system re-
quires large computation costs. The suppression particle swarm optimization algorithm can
be regarded as a fusion algorithm which has simple and fast search functions in the particle
swarm optimization algorithm, and plural solution search functions in the artificial immune
system.
Purpose of this study is to suppress the communication load on sensor nodes by effectively
placing a limited number of sink nodes in an observation area. However, the communication
load is concentrated on sensor nodes around a sink node during the operation process of
wireless sensor networks and causes them to break away from the network early. Therefore, it
is needed to find plural allocation sets for sink nodes so that total hops in all sensor nodes are
minimized, and to switch their allocation sets dynamically considered energy consumption of
each sensor node. The suppression particle swarm optimization algorithm can provide plural
effective allocation sets for sink nodes, such that the communication load of each sensor node
can be reduced.
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(a) (b)

Fig. 4. Sensor node allocations. (a) Uniform node-density. (b) Nonuniform node-density.

Fig. 5. Coding method to each particle (M = 5).

4. Simulation Experiments

In this section, three methods, the suppression particle swarm optimization algorithm, the
particle swarm optimization algorithm and the artificial immune system, are applied to a sink
node allocation problem, and the solving performances are compared.

4.1 Sink Node Allocation Problem

The problem to allocate M sink nodes in a two dimensional observation area is considered. In
the observation area, sensor nodes are allocated randomly as the followings:

1. Uniform node-density as shown in Fig. 4(a); sensor nodes are allocated evenly in whole
of the area.

2. Nonuniform node-density as shown in Fig. 4(b); many sensor nodes are allocated in the
lower left and upper right area, and few sensor nodes are allocated in the other area.

Sink nodes can be allocated at the arbitrary locations in the area.
For the locations of M sink nodes in the two dimensional area, the expressions of each particle
are 2M design variables as shown in Fig. 5. In the figure, Sim denotes a two dimensional
location of the m th sink node which the i th particle has. In order to apply each method
to this problem, distanceij in Equation (12) is defined as the minimum value in all Euclidean
distances between sink node locations which each particle has (see Fig. 6):

distanceij = min
m,n

|Sim − Sjn|, 1 ≤ m ≤ M, 1 ≤ n ≤ M (20)

where M is the number of sink nodes. Then, the density basically increases when at least two
sink nodes which each particle has are contiguous.
The evaluation value (fitness) of each particle is given by total hop counts from all sensor
nodes to each nearest sink node. This fitness is used for all the methods, the suppression
particle swarm optimization algorithm, the particle swarm optimization algorithm and the
artificial immune system.
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Fig. 6. Definition of distance between each particle (M = 5).

Parameter Value

Area Size [m2] 500 × 500

Number of sink nodes M 5

Number of sensor nodes 1000

Radio range [m] 25

Table 1. Conditions in wireless sensor networks.

The conditions in wireless sensor networks are shown in Table 1, and the parameters in each
method are shown in Table 2, which are decided by preliminary experiments.

4.2 Average Delivery Ratio

In sink node allocation sets provided with each method, lifetime of wireless sensor networks
is evaluated. Each sensor node periodically transmits sensor information to the nearest sink
node. Then, the sensor node and relative relay sensor nodes consume energy (Heinzelman et
al., 2000):

ERx(b) = Eelec × b (21)

ETx(b, d) = Eelec × b + εamp × b × d2 (22)

Parameter Value

Inertia coefficient w 0.9

Weight coefficient c1 1.0

Weight coefficient c2 1.0

Threshold of distance Td 30

Threshold of density Ts 0.9

Threshold of fitness Tm f 6250

Number of particles N 30

Total number of iterations Kmax 100

Table 2. Parameters in each method.
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Parameter Value

Battery capacity [ J ] 0.5

Processing coefficient Eelec [ nJ/bit ] 50

Transmission coefficient εamp[pJ/bit/m2] 100

Data size b [ Byte ] 12

Transmission output d [ m ] 25

Number of transmissions 900

Number of trials 100

Table 3. Conditions in calculating average delivery ratio.

Algorithm SPSO AIS PSO

Best fitness 5274 5429 5149

Average fitness 5501 5701 5382

Number of solutions 3.73 3.44 1

Table 4. Fitness and the number of solutions for a uniform node-density wireless sensor net-
work. SPSO: the suppression particle swarm optimization. AIS: the artifical immune system.
PSO: the particle swarm optimization.

where ERx and ETx denote energy consumption in reception and transmission, respectively.
b is data size of sensing data. d is transmission output. Eelec and εamp are processing and
transmission coefficients, respectively. All sensor nodes have the same battery capacity at first,
and simultaneously transmit sensing data with the same data size to each nearest sink node
via some relay sensor nodes. The relay sensor nodes are selected so that each sensing data
is transmitted in minimum hop counts to each nearest sink node. If plural candidates of the
relay sensor nodes exist, one of them is selected randomly. If buttery shutoff occurs in a relay
sensor node, the sensor node can not relay sensing data. In such a situation, average delivery
ratio for wireless sensor networks is calculated. Table 3 shows conditions in calculating the
average delivery ratio.

4.3 Results for a Wireless Sensor Network with uniform node-density

First, simulation results for the wireless sensor network with uniform node-density shown
in Fig. 4(a) are presented. Fig. 7 shows transitions of the best fitness (total hop counts) in
each method. In the figure, each value corresponds to the best fitness in all particles in each
iteration. Table 4 shows the best fitness, the average fitness, and the average number of the
solutions preserved in the memory scheme. These are the average values for 100 trials. In
the suppression particle swarm optimization algorithm and the artificial immune system, it is
possible to search widely in the solution space by the self-control mechanism and each fitness
does not converge monotonously. On the other hand, in the particle swarm optimization
algorithm, fitness converges to a single solution and it is not possible to search other solutions.
As comparing quality of solutions, the particle swarm optimization algorithm is the best in all
the methods. However, it should be noted that the suppression particle swarm optimization
algorithm and the artificial immune system can search plural acceptable solutions while the
particle swarm optimization algorithm can not. Fig. 8 shows three allocation sets for five sink
nodes finally obtained by the suppression particle swarm optimization algorithm. As shown
in the figure, all the sink nodes are allocated without overlapping. This is very important in
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Fig. 7. Fitness in each method for a wireless sensor network with uniform node-density. SPSO:
the suppression particle swarm optimization. AIS: the artifical immune system. PSO: the
particle swarm optimization.

Fig. 8. Three allocation sets for five sink nodes in a uniform node-density wireless sensor
network obtained by the suppression particle swarm optimization algorithm.

the viewpoints of suppressing communication load in each sensor node. Fig. 9 shows average
delivery ratio for the following three methods:

SPSO: Three sink node allocation sets obtained by the suppression particle swarm optimiza-
tion algorithm are switched in every 300 transmission.

PSO: The best sink node allocation set obtained by the particle swarm optimization algorithm
continues to be used during 900 transmissions.

Regular: The regular sink node allocation set in the area continues to be used during 900
transmissions.

Sink node allocation sets obtained by all the methods are shown in Fig. 10.
It is found that average delivery ratio in the suppression particle swarm optimization method
is higher than those in the particle swarm optimization method and the regular allocation
method. Because, communication load in each sensor node is distributed by dynamically
switching sink node allocation sets. That is, energy consumption of sensor nodes is balanced.
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Fig. 9. Average delivery ratio for a uniform node-density wireless sensor network. SPSO:
the suppression particle swarm optimization method. PSO: the particle swarm optimization
method. Regular: the regular allocation method.

(a) (b) (c)

Fig. 10. Sink node allocation sets obtained by each method. (a) SPSO: the suppression particle
swarm optimization method. (b) PSO: the particle swarm optimization method. (c) Regular:
the regular allocation method.

But, fitness of the suppression particle swarm optimization algorithm is worse than that of the
particle swarm optimization algorithm. This means that in order to prolong wireless sensor
network lifetime, it is necessary to search for plural distant solutions rather than to search for
a single high accuracy solution. Therefore, it is shown that the suppression particle swarm
optimization method is effective for the long-term operation of wireless sensor networks.

4.4 Results for a wireless sensor network with nonuniform node-density

Next, simulation results for the wireless sensor network with nonuniform node-density
shown in Fig. 4(b) are presented. Fig. 11 shows transitions of the best fitness (total hop count)
in each method. In the figure, each value corresponds to the best fitness in all particles in each
iteration. Table 5 shows the best fitness, the average fitness, and the average number of the
solutions preserved in the memory scheme. These are the average values for 100 trials. As
same as the previous experiment, in the suppression particle swarm optimization algorithm
and the artificial immune system, it is possible to search widely in the solution space by the
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Fig. 11. Fitness in each method for a nonuniform node-density wireless sensor network. SPSO:
the suppression particle swarm optimization. AIS: the artifical immune system. PSO: the
particle swarm optimization.

Algorithm SPSO AIS PSO

Best fitness 4800 5115 4800

Average fitness 4979 5429 4971

Number of solutions 3.51 6.17 1

Table 5. Fitness and the number of solutions for a nonuniform node-density wireless sen-
sor network. SPSO: the suppression particle swarm optimization. AIS: the artifical immune
system. PSO: the particle swarm optimization.

self-control mechanism and fitness does not converge monotonously. On the other hand, in
the particle swarm optimization algorithm, fitness converges to a single solution and it is not
possible to search other solutions. The number of obtained solutions in the artificial immune
system is the most, but fitness is the worst. The fitness in the suppression particle swarm op-
timization algorithm is almost the same as that in the particle swarm optimization algorithm.
Fig. 12 shows three allocation sets for five sink nodes finally obtained by the suppression par-
ticle swarm optimization algorithm. Fig. 13 shows average delivery ratio for three methods.
Sink node allocation sets obtained by all the methods are shown in Fig. 14.
As same as the previous experiment, the suppression particle swarm optimization algorithm
can keep higher average delivery ratio than the other methods. This means that for the
nonuniform node-density wireless sensor network, the suppression particle swarm optimiza-
tion algorithm can also search effective sink node allocation sets. Because, it is possible to
widely search on solution space. That is, the suppression particle swarm optimization method
is applicable to various wireless sensor networks, and can realize long-term operation of the
wireless sensor networks.
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Fig. 12. Three allocation sets for five sink nodes in a nonuniform node-density wireless sensor
network obtained by the suppression particle swarm optimization algorithm.

Fig. 13. Average delivery ratio for a nonuniform node-density wireless sensor network. SPSO:
the suppression particle swarm optimization method. PSO: the particle swarm optimization
method. Regular: the regular allocation method.

5. Conclusions

This chapter has discussed a method of placing sink nodes effectively in an observation area
to use wireless sensor networks for a long time. For the effective search of sink node locations,
this chapter has presented the suppression particle swarm optimization method, which is a
new method based on the particle swarm optimization algorithm, to search several acceptable
solutions. In the actual environment of wireless sensor networks, natural conditions or other
factors may disturb the placement of a sink node at a selected location or the location effect
may be lost due to the appearance of a blocking object. Therefore, it is important to provide
several means (candidate locations) for sink nodes by using a method capable of searching
several acceptable solutions. In the simulation experiment, the effectiveness of the method
has been verified by comparison for the particle swarm optimization algorithm and the arti-
ficial immune system. Without increasing the number of search iterations, several solutions
(candidate locations) of approximately the same level as that by the existing particle swarm
optimization could be obtained. Future problems include evaluation for solving ability of the
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(a) (b) (c)

Fig. 14. Sink node allocation sets obtained by each method. (a) SPSO: the suppression particle
swarm optimization method. (b) PSO: the particle swarm optimization method. (c) Regular:
the regular allocation method.

method in more detail, and fusion with the existing communication algorithms dedicated to
wireless sensor networks.
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