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Abstract

Numerous routing protocols have been proposed for wireless sensor networks. Each such
protocol carries with it a set of assumptions about the traffic type that it caters to, and hence
has limited interoperability. Also, most protocols are validated over workloads which only
form a fraction of an actual deployment’s requirement. Most real world and commercial de-
ployments, however, would generate multiple traffic types simultaneously throughout the
lifetime of the network. For example, most deployments would want all of the following
to happen concurrently from the network: periodic reliable sense and disseminate, real time
streams, patched updates, network reprogramming, query-response dialogs, mission critical
alerts and so on. Naturally, no one routing protocol can completely cater to all of a deploy-
ments requirements.

This chapter presents a routing framework that captures the communication intent of an ap-
plication by using just three bits. The traditional routing layer is replaced with a collection
of routing components that can cater to various communication patterns. The framework dy-
namically switches routing component for every packet in question. Data structure require-
ments of component protocols are regularized, and core protocol features are distilled to build
a highly composable collection of routing modules. This creates a framework for developing,
testing, integrating, and validating protocols that are highly portable from one deployment
to another. Communication patterns can be easily described to lower layer protocols using
this framework. One such real world application scenario is also investigated: that of predic-
tive maintenance (PdM). The requirements of a large scale PAM are used to generate a fairly
complete and realistic traffic workload to drive an evaluation of such a framework.

1. Introduction

First generation wireless sensor networks (hereafter ‘sensornets’) passively transported bits
from one end to another. The subjective requirements of a payload are opaque to the network
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254 Sustainable Wireless Sensor Networks

protocols, and the role of in-network processing is limited. Various routing protocols for trans-
porting data in sensornets have been proposed: protocols for reliable routing (2; 7; 24; 27; 28),
real time communication (10; 11; 14), energy aware communication (1; 12; 29), load balanced
communication, aggregation centric approaches (19) and so on to name a few. Each such pro-
tocol typically optimizes a certain set of chosen parameters in making routing decisions, and
is likewise validated over a workload that only generates that type of network traffic. This
means that a deployment that adopts any given protocol has to build its entire deployment
logic using the traffic type for which the protocol is optimized. To make sensornets a viable
solution to real world problems, applications need to be built on top of arbitrary communica-
tion patterns, often with conflicting requirements. For example, a meaningful case of habitat
monitoring would mostly demand all of the following communication patterns to co-exist:
periodic network reports using reliable sense and disseminate, critical real time alerts when
anomaly is detected, aggregation to suppress duplicates, network reprogramming to transfer
bulk data, patched updates for continuous customization of the sensornet, best effort com-
munication to transfer redundant information, interactivity with the network in the form of
request-reply dialogs and so on. Naturally, no one routing protocol can cater to such varied
application requirements within a given deployment. In other words, a given deployment can
be viewed as a collection of various tasks (applications) which have very different, and often
conflicting, communication requirements. The deployment goal is met when the goals of its
constituent applications are fulfilled.

Secondly, there is little synergy across research efforts. Pressed by scarcity of energy and a
need to focus on performance, protocols are developed with little thoughts to modularity and
interoperability. Though a new application deployment would have a plethora of routing
protocols to choose from, these protocols cannot be readily wired together to form a com-
municating framework due to compatibility problems. Compatibility problems largely arise
because of the assumptions made on interface and data structure requirements. In general,
and as Culler et. at. (5) note, a framework for testing, integrating and proposing protocols is
largely missing.

This chapter presents a routing framework that makes an application’s communication re-
quirements visible to the lower layers, and allows activation of application specific process-
ing. The traditional routing layer is replaced by a highly composable collection of routing
decisions. Now, the routing logic is dynamically wired as per each packets requirements.
The effectiveness of this strategy is demonstrated by gathering requirements and validating a
fairly complete deployment scenario: predictive maintenance (PdM) using sensornets (15).

2. Protocol Description

2.1 Routing Framework Overview

Application payload presents a three bit preamble to the framework that describes it commu-
nication intent, The framework dynamically switches routing decisions based on the preamble
bits. The routing layer is now a composable set of routing components that perform similar
functions, but are optimized for different classes of traffic. The routing components carry a
similar three bit signature that lets the framework know their applicability for a certain class
of traffic. The selection of a routing component is hence a mapping between what the appli-
cation demands and what the component has to offer. The routing components house core
protocol features that cater to a particular application type. This allows components to evolve
independently, and owing to their composable nature, allows seamless migration from one
deployment experience to another. To unify interface assumptions, the routing components
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share a universal neighbor lookup table that houses relevant information about various neigh-
bors which saves storage space and makes way for consistent interface assumptions. Compo-
nent protocols make ranged queries into the neighbor table to derive the best candidate hop
for a given application payload. Designing such a framework requires addressing challenges
of composing routing protocols into core components, and regularizing the various interface
and data structure requirements. But before that, we begin with the fundamental problem of
making visible an applications demands to the stack.

2.2 Specifying Communication Intent

Applications need a way to express their communication requirements in a format that is both
completely expressive and minimal. Various approaches have been taken to increase applica-
tion visibility to the communication framework, and much of the effort has been to prioritize
data. For example, the SP architecture (20) argues for a one bit descriptor that describes the
urgency of a packet. On the Internet, DiffServ uses a class of service (CoS) field, three bits in
length, to specify a priority value between 0 (for best effort traffic) to 7 (real time traffic). ISP’s
in the present day Internet also use similar tags to differentially route packets from preferred
customers and offer them a higher quality of service. However, assigning a priority for any
class of traffic is a highly subjective task, and these assignment rules would not be consistent
from one deployment to another. Application naming should instead revolve around funda-
mental communication requirements rather than blatant priorities. This would allow one to
construct meaningful and consistent inferences of a packets requirement for virtually any de-
ployment. In effect, the following question is posed: What is the minimum number of bits to let a
deployment specify its fundamental communication requirements?

To best characterize an application to the communication framework, various possibilities
exist: number of recipients (anycast, multicast, broadcast), loss tolerance, delay tolerance,
priority, sensitivity to congestion or link losses, soliciting retransmissions, tagging packets for
aggregation, tagging packets for load balancing, control information v/s data packets and so
on. However, communication patterns can be best described using three fundamental axes:
nature of payload, reliability, and time criticality.

Nature of payload: Traffic in the network can be broadly classified as data or control traf-
fic. Data traffic is all of the push based traffic generated by a mote. Control traffic is traffic
used for control plane management (like beacons, ACK’s etc.), and to a certain extent, user
generated traffic. Sensor networks are more than just a collection of data gathering elements
that autonomously report values. There is a need to accommodate a human element into the
network for a variety of reasons. Users would want interact with the network with queries,
and would want to receive responses in short turn around times. More importantly, admin-
istrators see the need to continuously customize the network with updates or network repro-
gramming. Interplay of data and control traffic in the network needs to be closely modeled as
per a deployments requirements.

Reliability: The second axis to consider is tolerance to loss. Since a deployment consists
of a host of nodes that are primarily involved in data gathering, some level of redundancy
is sensed values is inherent. However, dictated by application requirements, some sensed
values might be loss intolerant. For example, a deployment might want to construct a time
series plot of sensed values from every mote for statistical purposes. This would require
every mote to reliably transfer data periodically with minimum losses. Loss intolerance is
also required for network re-programming or bulk reliable transfers, where binary updates
need to be transmitted to node(s) reliably over the network.
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Delay Sensitivity

Application Payload
Control / Data Reliability

Fig. 1. 3-bit preamble appended to the application payload

Time Criticality: Some sensed value might be of no use if it does not make it to the destination
within strict time bounds. Consider a deployment of sensors that report real time co-ordinates
of moving objects to a camera which then pans and zooms to that area. If the co-ordinates
reach the destination late, the camera might be unable to capture the desired frames of interest.
Again, dictated by application requirements, there are time bounds for values of interest to
make it to the destination.

2.3 Preamble Bits

Figure 1 shows the three axes of communications reduced to a simple three bit scheme that
each packet carries. These bits are set or unset by the application programmer using simple
API calls. The three bits, taken in combination, provide a characteristic description of an ap-
plications requirements. Figure 2 provides a complete combination of the preamble bits and
their inference. For example, a beacon packet would carry a signature of [1,0,0], denoting a
control packet that is loss tolerant and insensitive to delay. A data packet demanding reliabil-
ity over delay would publish [0,0,1]. Similarly, a real time packet which only demands speed
of delivery would publish [0,1,0]. An anomalous case is made when a packet demands both
reliability and speed of delivery (bits [0,1,1] and [1,1,1]). Ensuring reliability inherently adds
delay in transit, and such packets are interpreted as “mission critical”, which see the need to
both make it to the destination and in as short a time as possible. In general, the bits when
combined with other information available in the packet headers make way for a powerful
expression of precise communication demands. Note that the bits do not convey any notion
of relative priority amongst packets, just a set of actual communication requirements.

2.4 Shared Neighbor Table: Unified view for routing protocols

Since the routing layer is now a collection of independent routing components, each com-
ponent assumes the presence of various state information to be available to perform routing
decisions. The neighbor table houses values such as the node-ID, energy available, congestion
level, depth, link-quality estimate and a ‘last heard” bit. The columns can easily be extended
by future protocols. Since routing components share this table, it decouples core protocol
features from interface assumptions and regularizes data structure requirements. This leaves
the routing layer with a composable set of routing components that can be seamlessly ported
across various research efforts.
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Data(0)/ Real-Time(1)/ Reliable(1)/ Inference
Control(1) | Non-Real-Time(0) | Un-Reliable(0)
0 0 0 Unreliable,
non Real Time,
Data Packet
0 0 1 Reliable,
non Real Time,
Data Packet
0 1 0 Time Critical,
Unreliable,
Data Packet
0 1 1 Mission Critical
Data packet
1 0 0 Unreliable,
non Real Time,
Control Packet
1 0 1 Reliable
non Real Time,
Control Packet
1 1 0 Real Time,
Unreliable,
Control Packet
1 1 1 Mission critical

control packet

Fig. 2. Combinations of the preamble bits and their inferences for eight traffic types

2.4.1 Universal Beacon Packet

The wireless medium is unreliable, link qualities show time varying fluctuations, and node
failures are not uncommon. Hence, there is a need to continuously monitor the state of the
network by exchanging beacons at regular intervals. The various beacons assumed by com-
ponent protocols are regularized by the use of a universal beacon packet. The creation and
maintenance of the neighbor table is performed by the exchange of this universal beacon at
periodic intervals.

The beacon packet contains information such as the ID of the node, the advertised depth, a one
bit congestion indicator, and a one bit energy available indicator. A node sets the congestion
bit if 75% of its buffer capacity is full. Likewise, the node sets the energy bit if less than 25%
of its battery life is available.

2.4.2 Neighbor Table Creation and Maintenance

Even though there may be many potentially good neighbors available in the vicinity, there is
a limit to the number of neighbors a mote can maintain due to limited resident memory . It is
crucial to be able to identify the best possible neighbors and retain them in the neighbor list
(27). A statistical approach to identify the goodness of a neighbor is employed.

At the start of the network, a node aggressively enters into its neighbor table every entry
that advertises a depth lesser than its own. As time progresses, and owing to the presence
of “gray" areas (27; 31), a node continues to hear more often from certain neighbors and less
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frequently from others. Since the beacon exchange is uniform among all participating nodes,
a node maintains a ratio of the number of beacons received to the number that should have
been received since the entry was made. This ratio (p) gives a good indication of the quality
of link to a neighbor by estimating the number of transmissions required as 1/p? (6;27). Link
estimations apart, this ratio is helpful in establishing the true depth of a node. Consider a
node which receives a beacon from a neighbor advertising a depth of n with a reception ratio
of 0.3, and another neighbor with a depth n + 1 and a reception ratio of 0.9. The given node
correctly infers its true depth to be n 4 2, since it has a stronger and more stable link to the
latter neighbor. In general, a node infers its true depth to be one greater than the neighbor
with the largest reception ratio and least depth.

The maintenance of the neighbor table is governed by a timer driven “scan and update" (SAU)
module. The module is invoked each time the timer fires, whose periodicity is equal to the
beacon interval, and offset of 10 seconds. As a node continues to receive beacons from neigh-
bors present in the table, the various fields advertised in the beacon are used to update entries
in the table. Associated with every entry is a “last heard" bit which is set to true upon the
reception of a beacon. SAU unsets the bit each time it is invoked. SAU also updates the recep-
tion ratio of a neighbor by using the last heard bit. An entry is evicted from a neighbor table if
one of two things happen: (i) a node discovers that a neighbor’s depth is greater than its own;
or, (ii) the reception ratio to that neighbor drops below 0.3 for a minimum statistical interval of
100 beacon cycles. Nodes evicted from the table are entered into a pool of blacklisted neigh-
bors, who are not considered as potential neighbors for the next 500 beacon intervals. This
prevents stale neighbors re-appearing in the table and gives an opportunity to other potential
neighbors in the vicinity.

The notion of a “good" neighbor quickly blurs when there are multiple route selection compo-
nents, each with their own yard of goodness measure. In general, entries are driven by their
depth in the network more than by any other factor. This usually results in a good blend of
neighbors with various values of depths, link qualities, congestion levels and energy values,
and all of whose depths are lesser than that of the given node. Routing modules make ranged
queries into the neighbor table to derive the next hop for a particular packet. However, it
may so happen that a routing module fails to find any potential next hop candidate from the
table. This could be either because the neighbor table is starved of good neighbors for that
routing component, or due to unavailability of neighbors in the vicinity. When this happens,
the SAP module is triggered with information about the routing component, and it marks for
an insertion of an entry that matches the routing components needs from future beacons. This
could possibly lead to an eviction of an entry from the table. The least recently used (LRU)
algorithm is used to choose an entry for eviction.

2.5 Decomposing Routing Protocols to Core Components

The routing layer consists of a collection of routing components, with each component opti-
mized for a certain class of traffic. Like the application payload, the component protocols also
publish three bits that advertise their suitability for a particular application. It is crucial to de-
compose component protocols at the right granularity to allow rapid protocol development.
As Cheng et. al. (3) note, choosing the granularity at which a protocol is to be decomposed
is highly challenging: fine grained decomposition will result in un-necessary run time over
head, while too large a granularity will fail to leverage code sharing among components and
could result in significant re-implementations. They show that a composable set of of proto-
cols that share common code result in smaller memory footprints, and are in general lucrative
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Fig. 3. Internal components of the routing protocols

considering resource scarcity on a mote. While the precise needs of future protocols are highly
debatable, we decompose a routing protocol to the following components: the dispatcher, the
naming and addressing unit, the forwarding unit, and the scheduling unit. The internal layout
of a typical component protocol is shown in Figure 3.

Dispatcher: The first step in accepting a packet is to check the preamble bits to establish the
right unit to which the packet is to be forwarded. The dispatcher is agnostic to intricacies
of a protocols implementation or its naming and addressing format, and is shared by all the
component protocols.

The naming and addressing unit (NAU) is the component that understands the addressing for-
mat for a protocol. Different addressing units are used by various protocols: while some
protocols assume flat ID’s, some other expect gradients or location information. Owing to the
broadcast nature of the wireless medium, a node may receive a packet that it is not intended
to. In effect, the NAU determines if a packet has made it to the destination, or if it needs to be
forwarded further.

The forwarding unit (FU) is primarily concerned with establishing the next hop for a packet.
Packets make it to this unit if the given node is not already the destination. The FU arrives at
the next hop by making a raged query into the shared neighbor table. For example, a routing
protocol that selects a route based on link qualities, congestion and depth at its neighbors
would make a ranged query of the form f(link_quality, congestion,depth) into the neighbor
table to arrive at a list of potential neighbors. The FU then applies its set of optimizations to
arrive at the best neighbor(s) to which the packet is to be forwarded.

The scheduling unit (SU) is a buffer data structure that can order packets awaiting transmis-
sion. It can internally schedule the order in which packets are to be forwarded to the link
layer for injection into the wireless medium. Certain protocols might need to buffer packets
for potential retransmission, while other might need to hold packets to perform aggregation
stalling for similar information to arrive. Certain other protocols might want to reschedule the
order of injecting packets into the link layer to transmit mission critical alerts ahead of regular
traffic.
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Apart from these units, there are certain other units in the routing layer that accept packets
for further processing. For example, beacon packets make it to insertion/eviction module,
which considers the beacon as a potential neighbor. Likewise, control traffic originating from
the base station is a typical query into the node, to which the node responds by performing
certain local computations. The shared neighbor table is controlled by the scan and update
unit, which periodically scans through the neighbor table to evict stale neighbors and enter
them into a blacklisted pool.

2.6 The Dynamic Routing Framework

The effectiveness of using three bits to drive customization and protocol selection within the
dynamic routing framework is next investigated. Apart from communication requirements
of reliability or delay tolerance, the bits fundamentally divide the traffic as being of control
or data type. Control or data traffic do not necessarily demand differential routing in terms
of shorter or longer paths. In fact, most of control traffic (like beacons or ACKs) are for one
hop use only. Beacons in particular are simply broadcast, and require no route selection or
optimization. Communication requirements for control and data packets are best character-
ized by a need to be scheduled differentially inside the framework, and then, routed optimally.
Differential treatment is achieved by the use of separate virtual queues for control and data
traffic, while routing components are dynamically switched based on demands for reliability
and delay. A detailed interaction diagram of packet with the framework is shown in Figure 4.
Application presents a blend of control (C0-C3) and data packets (D0-D3). The suffix indicates
the status of the reliability and real time bits. For example, packet D3 would have preamble
bits set to [0,1,1], with the first bit indicating a data packet and last two bits account for the
suffix 3. Selection of a routing component is driven by the suffix number. In other words,
both Dx and Cx are offered the same routing component. Data or control traffic, however,
are scheduled differently after route selection is established. Two virtual queues, one each for
data and control traffic, take the incoming packets and schedule them for transmission to the
lower layers of the stack.

2.6.1 Routing Protocols

An implementation of the component routing protocols in the framework is next discussed.
Classifying traffic on reliability and delay leads to four combinations of routing components.
A possible route selection strategy for four classes of traffic are described as follows:
Reliable, non Real Time Routing: Numerous approaches have been taken for this class of
routing in the past (7; 24; 27; 28), to name a few. These routing protocols emphasize reliable
delivery over time to deliver. A maximum of three link level retransmissions are used to en-
sure successful reception. Since a retransmission is costly in terms of energy and bandwidth,
the protocol selects the strongest link to a neighbor closer to the destination. High estimations
of link quality, or a form of ETX (7), is the most lucrative option here. The packet takes nu-
merous short hops of high quality links to make it to the destination with minimum losses.
Hence, speed is compromised by the use of numerous short and reliable hops. Delay toler-
ance for this class of traffic make it highly conducive to aggregation, since the SU can stall
for self-similar data to arrive. Nodes with growing congestion and low energy are avoided as
much as possible as the next hop.

Unreliable, Real Time Routing: Certain classes of traffic have a time associated with them,
after which the data is virtually of little or no use. Speed of delivery is emphasized, and losses
can be tolerated to a certain degree. Various protocols have been proposed for this class of
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traffic (4; 11; 23). This approach greedily forwards traffic to the base station primarily based
on depth, avoiding congestion and low energy nodes, and ignoring link quality estimates or
indications of poor packet reception.

Reliable, Real Time Routing: A contradictory requirement where packets need to maximize
their chances of reception and yet want the shortest path to a destination. Waiting time for
ACKs and retransmissions only add to the delay of the packet in transit. To both meet delivery
deadlines and thwart link losses, the routing protocol first chooses nodes with the minimum
depth. Of this list, nodes with the highest link quality are chosen, and the protocol injects
multiple copies of the same packet to minimize link losses. The exact number of duplicates is
based on the estimated link quality of a particular node. For example, if a neighbor with a link
quality of p is chosen, the protocol transmits [1/p] packets with the same data. This form of
routing is costly in terms of resources, but this type of traffic is reserved for mission critical
alerts which is arguably rare in the network.

Unreliable, non Real Time Routing: This form of routing is applied to packets that neither
demand reliable transmission, nor demand a speedy delivery. A good fraction of sense and
disseminate traffic would fall into this category, where data values exhibit significant redun-
dancy. Every packet adds little value to already existing information in the network, perhaps
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even repeating known observations. This form of traffic is also predominant in delay tolerant
networks. This form of traffic is an excellent candidate for aggregation, where the SU unit can
stall for long windows of time to effectively aggregate observed results to reduce the traffic
to a handful of packets. This form of routing makes a compromise on both link quality and
depth to route packets to the destination. Alternatively, this form of data centric routing could
also utilize a minimum Steiner tree to maximize chances of aggregation.

2.6.2 Virtual Queues

Packets that egress the routing modules would need to be passed onto the link layer queue
for subsequent transmission. Scheduling packets into the link layer queue is controlled by
two virtual queues, one each for data and control traffic. The virtual queues do not maintain
any independent buffer of their own: they only maintain the order in which packets shall
be forwarded to the link layer. While packets await their transmission, they are physically
housed in the scheduling unit of their respective component protocols. The scheduling unit
internally marks a packet to be ready for transmission after it performs its set of optimizations
(e.g., aggregation, reordering etc.). Fair scheduling is employed amongst the four scheduling
units into the virtual queue, and from the virtual queues themselves to the link layer. This
ensures that an even mix of control and data traffic are output from the framework, even
though one or the other type may have a different packet arrival rate. In effect, this schedules
both traffic types evenly by policing their resource sharing.

3. Related Research

The idea of classifying network traffic and offering differential services is not new to the net-
working community. The Internet witnessed the proposal of the DiffServ mechanism. Diff-
Serv assigned integer numbers to derive Class of Service (CoS). The CoS varied between 0
and 7, and three bits were used to specify a value in that range. Each router would then ap-
ply a differential treatment to each class of traffic. Likewise, the two bit differentiated service
architecture (17) is also in line with our approach. However, DiffServ in general required intel-
ligence embedded in the routers, something which contradicted Internet’s philosophy of end
system intelligence. It was virtually impractical to maintain behavioral consistency amongst
the millions of routers deployed in the Internet. Also, with the advent of optical intercon-
nection lines, link errors were reduced to a bare minimum and the network capacity in terms
of bandwidth shot up. The Internet could very well handle most of the demands placed on
it in terms of voice, video and data traffic placed on it without the need for DiffServ. It was
hence pondered that the DiffServ was a “technical solution to a technical problem that did
not exist”. The conditions in sensornets, however, are highly fertile for a differentiated ser-
vice mechanism. Links are error prone, bandwidth is scarce, energy conservation is of utmost
importance, and hop-by-hop processing and intelligence are the key to building networking
technologies. Service differentiation is beyond a mere luxurious add-on in sensornets, it is
more of a basic requirement. Meeting the subjective requirements of various traffic classes is
a key to building successful deployments.

On the sensornet side, there has been an excellent series of work that address the problem
of promoting synergy and providing sufficient abstraction for rapid protocol development.
Work by Culler et. al. (5) argued that the abstraction that IP provides in the Internet can be
provided at the link layer for sensornets, and this was substantiated by the SP architecture
(20). The case for a modular network layer, where core network layer protocols were de-
composed into an abstract set of modules, was then proposed by Cheng et. al. (3). Dunkels
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et. al. (8) proposed an architecture that could adapt to heterogeneous protocols. The idea of
building a dynamic routing framework also aligns with the ability to build dynamic network-
ing stacks (18) with a major focus on performance and efficiency, which was proposed to be
built on top of the x-kernel (13). However, none of the above architectures raise the issue of
conflicting application requirements, and the presence of such a collection of applications in
real world deployments. A logical extension of the above efforts is to address ways to spec-
ify precise communication patterns for every application, and building a dynamic protocol
framework that can cater to such requirements.

The issue of supporting concurrent applications, with each independent application sharing
the resources of a mote, has been addressed in Mate (16) and Melete (30). Mate is primarily
concerned with code dissemination for network reprogramming. Melete significantly extends
the Mate architecture, and addresses the issues of reliable storage and runtime sharing of
multiple concurrent applications. Though it effectively substantiates the possibility of run-
ning concurrent applications on a mote, it does not address the conflicting communication
requirements of various applications. Our work complements their by utilizing that fact that
multiple concurrent applications can reside on a mote, and we address every application’s
communication requirements.

As far as routing protocols themselves are concerned, sensornets are at a stage where suf-
ficient exploratory work has been performed. As each designer explored a potential use of
sensornets, new protocols began to emerge. However, the journey has been fraught with se-
vere challenges. As Fonseca et. al. (9) note, the trivial case of flooding and tree construction on
motes took “three years and five successive implementations”. We are not aware of dynamic
and composable protocols that can cater to a wide range of application demands in sensor-
nets. However, in our quest to build such a framework, we leverage the vast body of work
available in sensornets.

4. Application Background

With the dynamic routing framework in place, the various intricacies of a fairly complete
large scale real world deployment of Predictive Maintenance (PdM) is analyzed as an exam-
ple target application. We begin by gathering the various communication demands of this
deployment. The three bit scheme is employed in exposing these requirements to the commu-
nication framework. Using these requirements, we chart a comprehensive traffic workload to
drive an evaluation of the dynamic routing framework.

4.1 Predictive Maintenance

Productivity is a key weapon for manufacturing companies to stay competitive in a growing
global market. Increased productivity comes through increased availability. The need to be
continuously available has driven many companies to focus on effective maintenance strate-
gies. PdM is a set of techniques which help determine the condition of in-service equipment
in order to predict when maintenance should be performed. PdM uses a variety of vibration
analysis, oil analysis, infrared thermography and ultrasonic detection with an objective of re-
ducing catastrophic equipment failures, and the associated repair and replacement costs much
before the failure occurs. PAM enables machinery stakeholders to monitor, access, predict and
in general understand the working of physical assets.

One alternate way of implementing PdM is by use of online motoring systems of wired sen-
sors that can continuously gather statistics. Wired sensors are constrained by a 1:1 point-to-
point connectivity links, and such systems are expensive to procure and install. This trend in
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general has limited their penetration into the market. In fact, most small to medium sized com-
panies would not procure them owing to their higher cost and lower return for investment,
resulting in their mere 10% market penetration (15). Sensornets break ground by promising
to be cheaper, providing higher returns on investment, flexibility owing to a broadcast wire-
less communication pattern, self-healing abilities when it comes to node failures and adapting
to changing network conditions. Hence, there is great potential for sensornets to tap into the
market provided they can completely satisfy all of a deployers requirements by allowing them
a greater flexibility in communication patterns.

The case for PdAM as a potential killer application for sensornets has been investigated by Kr-
ishnamurthy et. al. (15). They create an excellent groundwork for PAM using sensornets by
demonstrating a viable return on investment. However, their focus is primarily on the effect of
hardware architectural impact on performance. Their study is limited to PAM vibration anal-
ysis, where the deployment generates just one type of traffic: vibration signatures that need to
be reliably transported to a base station. We significantly extend PAM’s requirements in terms
of complete communication requirements from a deployers point of view by enumerating var-
ious communication patterns possible. Accommodating the various communication patterns
in such deployments is an important problem to solve. This is because the cost of deploying
and running such an infrastructure would be dominated by software and service management,
while diminishing hardware costs would make it cheap to network hundreds of motes. In
effect, our study builds upon and complements their work, and we show that sensornets can
be a powerful platform to perform PdM.

4.2 Requirements

Most deployers want a system of sensors to autonomously report sensed values and raise
alerts, while they also want the presence of a human element in the process. Human in-
tervention can be best characterized by an ability to interact with the deployment (query-
response), apply patched code updates, re-program the network with newer protocols, man-
age or change various threshold values and so on. In general, there is a constant need to
evolve, interact and update the deployment with changing requirements, which allows for
continuous customization of the sensornet behavior.

Based on our survey of PdM requirements, we have found that deployers wanting to adopt
sensornets as a means to build their maintenance regime demand the following aspects:

Req. 1. Periodic reports: Deployers expect the network to report sensed values on a regular
interval. Such statistics make way for monitoring, analysis, trend forecasting and prediction
of equipment behavior which can help them chart maintenance schedules. Apart from main-
tenance predictions, it also helps assess performance of new machinery within a warranty
period.

Req. 2. Streaming Real Time Values: Apart from periodic updates of sensed values, there are
numerous instances when there is a need to report values in real time. Examples could include
protected zones with cameras which need to capture a video of a personnel when he walks
into the facility. This would require sensors to report co-ordinates in real time to camera
installations, which would then pan and zoom to capture streaming video.

Req. 3. Query-Response: Users or administrators need to query and get a response from the
network at will. As with any interactive system, there is a need to maintain short turn-around
times within user irritation levels. In fact, there are various levels of accuracy and delay as-
sociated with each response. Some responses need to be time critical, while others demand
accuracy with more acceptable levels of turn around times. In general, while keeping turn
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Fig. 5. Traffic generation for a 9-week PdM derived from requirements. The workload gen-
erates periodic samples, real time streams and mission critical alerts. The user/administrator
interacts with the deployment at will with queries, weekly patched updates, and one major
network reprogramming.

around times low, there is a need to model such subtle variations even within these interac-
tive dialogs. Deployers further stress on the need to keep high levels of interactivity at all
stages of the deployment, especially when mission critical events occur.

Req. 4. Continuous Customization: Requirements are not static, and would continuously evolve
with time. This means that administrators see a need to constantly update or change network
behavior. Examples could include changing threshold values for alerts, commanding specific
motes to raise or lower sensing fidelity and so on. This in general emphasizes robust com-
munication between an administrator and the network, and could even involve minor and
incremental changes to network software.

Req. 5. Network Reprogramming: Change is inevitable, and must so with network protocols.
Deployers want the liberty to completely reprogram an entire sensornet deployment when
a more stable or efficient communication suite is available. Such modes of communication
emphasizes on the need to reliably bulk transfer large pieces of code to the entire deployment.
Req. 6. Mission Critical Alerts: Apart from the above modes of communication, there are
certain mission critical events which need to be reported reliably in as short a time as possible.
Such events may trigger a cascade of events within the network. In fact, there is a need to
accommodate a large number of interactive queries and commands to various motes when
such events occur. In short, when serious anomaly occurs in the deployment, there is a need
to gracefully alert, shutdown and recover as much as possible before the situation exacerbates.
These set of requirements are not isolated to the case of PAM alone. Virtually any practical
sensornet deployment, if put under a microscope, would usually result in an enumeration
of similar requirements to take place concurrently throughout the lifetime of a network with
varying levels of emphasis on one requirement or another.

The requirements reveal significant variations in terms of communication needs. Variations
exist in terms of reliability, time criticality, mission critical alerts and levels of interactivity
with the deployment. We proceed to show how these set of requirements can be made visible
to our framework using just three intent bits.
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4.3 Translating Requirements using Three Bits

We show how just three bits can be used to make visible all of PdAM’s requirements to the com-
munication framework. We proceed by identifying the nature of traffic (data/control) from
the requirements, and subsequently analyze requirements of reliability and delay in transit.
The first step is to distill control from data traffic. We broadly define data traffic to be traffic
that a mote creates using a sensed value, for consumption at its destination. Control traffic
is all of those packets that are used for control plane management (e.g., beacons), and traffic
from end users. User generated traffic includes queries, responses, commands, and code up-
dates. This is done to ensure that user traffic, along with control plane traffic, is scheduled
differently from sensed data. While traffic is normally low during normal operations, critical
events in the facility are usually coupled with a surge of traffic in the network. It is precisely at
such times that congestion begins to surface (26). And again, at such times, it is highly likely
that an end user or an administrator will issue queries, commands or updates into the net-
work. In effect, while the data plane reports values of interest, user interactivity and network
management at such times are not compromised. For the rest of the discussion on mapping
various requirements using three bits, refer to Figure 2.

Data traffic can be easily grouped as per their requirements of reliability and speed of delivery.
PdM requires periodic reports from every sensor to build a statistical record of the facility
(Req. 1). This type of traffic publishes [0,0,1]: data traffic demanding high reliability and no
urgency of delivery. Real time streams (Req. 2) would publish [0,1,0], stressing on urgency and
lesser demands of reliability from the network, since the payload could be rendered useless
if reception is delayed. Mission critical traffic (Req. 6) would publish [0,1,1], emphasizing on
both urgency and reception.

Beacon packets publish [1,0,0]. Since they are usually broadcast into the medium, there is
no notion of reliability or time to deliver. Interaction with the network (Req. 3), however,
can be modeled at very fine granularities with these three bits. Using the axes of reliability
and urgency, four levels of interaction are made possible. For example, queries of type [1,1,0]
would result in very fast turn around times, but with compromised accuracy. Interactions
using [1,0,1] preamble would be high on accuracy, but with longer turn around times. Critical
real time alerts or updates shall present [1,1,1], which would ensure short turn around times
and high accuracy. Packets for patched updates, commands or network reprogramming (Reqs
4 and 5) would publish [1,0,1], which stress on reliable delivery. To summarize, we tabulate
the various requirements mapped as one or other traffic type in Figure 6.

We conclude our mapping by summarizing the criterions to validate PdAM’s requirements: (i)
Types 1 and 5 should have high delivery ratios compared to other forms of traffic, with an
acceptable compromise on transit delay; (ii) Types 2 and 6 should have short transit times,
with a compromise on reliability; (i) Types 3 and 7 traffic should have high delivery ratios
and short transit time; (iv) interactivity with the deployment should be maintained at all time,
even in times of growing congestion and mission critical events. This in general emphasizes
differential treatment to data and control traffic.

4.4 A Realistic Traffic Workload

We use PdM'’s requirements to create a realistic traffic generation scenario of a typical oper-
ation to drive our evaluation. We are interested in fairly large scale operations, and seek to
identify the various activities that shall typically take place over a large window of time. We
reword the requirements in terms of traffic generation, and create a comprehensive workload
to drive our evaluation.
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All traffic from the motes converge towards the base station. The base station issues queries
to random motes, and replies are likewise routed back to the base station. The base station
applies patched updates to specific motes, while network reprogramming is applied to every
mote. Every mote generates a sensed value at a periodicity of one hour (Type 1), which needs
to be reliably transported to the base station. This would help the deployment build a statisti-
cal monitoring record of the facility to drive maintenance. Nodes also generate asynchronous
real time streams of value, 5 packets at a time (Type 2). Real time streams are generated at
a mote with a probability of 0.1 at any instant of time, which needs to be transported to the
base station as fast as possible. End users generate queries at will modeled as a Poisson pro-
cess. Each query has a random flavor to it (Type 4-7), some queries demand high interactivity
(small turn around times), while other demand high accuracy (commands, queries or patched
updates). The administrator performs a network wide patched update roughly once a week,
when the network is fine tuned to slightly update or customize behavior (Type 5). Nodes ob-
serve mission critical data with a probability of 0.05, and generate 5 packets at a time (Type 3).
Each time this happens, it triggers a surge of real time streams of values at motes close to the
phenomena. The situation is responded to by the user, who generates multiple queries to the
zone, and with a probability, issues numerous commands and patched updates.

We use this pattern to generate synthetic workloads for a 9-week evaluation period of a large
scale plant employing PdM. The generation is better captured in Figure 5. Unless otherwise
stated, we consistently use this traffic workload for every experiment.

5. Simulation Results

We evaluate our dynamic routing framework by both simulations and experiment on testbeds
of MicaZ motes. We resort to a simulation based study to analyze behavior at scale where we
simulate behavior for thousands of motes. Though a simulator tends to hide certain physical
characteristics of actual motes, it allows us to demonstrate the effectiveness of our framework
for operations at various scales and densities. Nevertheless, we make every effort to model
network behavior to as close to reality as possible. Link behavior between any pair of nodes
is closely modeled around results by Woo (27) and Zhao (31). Using that model, we also
implement the typical broadcast behavior of all packet transmissions and receptions that take
place in the network. As our next round of results, we also implement our framework and
evaluate it on a 40-node MicaZ testbed.

5.1 Evaluation Criteria

Evaluation is driven by a comprehensive 9-week long workload detailed in Section 4.4. The
workload generates a good blend of the various traffic, while carrying out the requirements
of PAM. Our first set of results analyze behavior of a dynamic routing framework at scale.
We vary the number of nodes from 4 to 1024, and show how PdM’s subjective requirements
for various traffic types are met at scale. In effect, we show that our framework can adapt
to the demands of: (i) reliability for traffic Types 1 and 5; (ii) the real time nature of Types
2 and 6; (iii) the mission critical nature of Types 3 and 7, which demand both reliability and
short turn-around times; and, (iv) interactivity with the networks using Types 5, 6, and 71, We
show that such diverse communication patterns can co-exist, and also meet their subjective

1 We do not generate Type 0 traffic, since none of PAM’s requirements map to this. Also, we do not profile
Type 4 since it is made up of beacon and ACK packets in our workload.
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Preamble | Inference PdM Req | Traffic
bits Type
[0,0,0] Unreliable, non real time packet; X Type 0
Exhibits significant redundancy

[0,0,1] Reliable data traffic, demands Req. 1 Type 1
high throughput; agnostic to delay

[0,1,0] Real time data stream, demands Req. 2 Type 2
short delivery time; agnostic to loss

[0,1,1] Mission critical data, demands Req. 6 Type 3
reliability and speedy delivery

[1,0,0] Unreliable, non real time control Beacons, Type 4
packet; ACKs

[1,0,1] Reliable control traffic; agnostic Req. 3,4,5 | Typeb
to loss

[1,1,0] Real time control packet; Req. 3 Type 6
demands speedy delivery

[1,1,1] Mission critical control; demands Req. 6 Type 7
reliability and speedy delivery

Fig. 6. PdM’s requirements mapped to various traffic types

demands. Since the workload used mimics PdM operations, our results in turn validate the
deployments goal for operations at scale.

5.2 Delivery Ratio

We begin by analyzing the average end to end success rate for all the traffic generated by the
application (Figure 7).

We see good delivery ratios for reliable data traffic (Type 1), reliable control traffic (Type 5) and
mission critical control information (Type 7). High delivery ratio for Type 1 traffic validates
PdM’s expectation of samples from every mote at periodic intervals. Type 5 traffic denotes
interactivity with demands on accuracy, which are likewise met. Reliable traffic in general
is driven by a retransmission upon failure, which significantly raises chances of successful
packet reception. Similarly, the odds that mission critical traffic (Type 7) makes it to the des-
tination are also high. Mission critical control traffic would be routed through the control
queue, and it maintains a high delivery ratio of around 0.9. Delivery ratio is poor for real time
data traffic (Type 2), which is routed greedily based on a shortest path algorithm.

While similar routing is applied to both Type 1 and Type 5 traffic, the delivery ratio of reliable
data (Type 1) dips a little with increasing number of nodes as compared to Type 5. This is
mostly because data traffic is mapped onto a separate virtual queue than control traffic. While
Type 1 would face rising congestion with increasing number of nodes, Type 5 traffic hardly
witnesses any of this. Likewise, delivery ratio for real time queries (Type 6) are significantly
higher than real time data streams (Type 2). Mapping data and control traffic in separate
virtual queues has enabled us to provide high levels of interactivity with the network.
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Fig. 7. Delivery ratio for different traffic types

5.3 End to end delay

We profile the average end to end delay experienced for all traffic that makes it to the destina-
tion. Delay in the network is primarily a function of the number of hops a packet takes, and
the queuing delay at every hop. As a packet increases its hop count to destination, end to end
delay intuitively increases.

The average end-to-end delay for all traffic types for increasing number of nodes is shown in
Figure 8. All traffic demanding speedy delivery experience short transit time. Real time data
experiences least delay (Types 2 and 6), reliable traffic experience maximum delay (Types 1
and 5), while mission critical traffic experiences delay that is only marginally more than real
time data.

Small delay profiles for Types 2 and 6 directly validate PAM’s requirements of real time
streaming communication. Likewise, short delivery times of mission critical traffic (Types
3 and 7), coupled with their high delivery ratios, validates PdAM’s requirements for mission
critical communication. High delay values for Types 1 and 5 only emphasizes on their ability
to select numerous short hops of high quality.

The interplay of control and data traffic, which receive differential scheduling due to separate
virtual queues, is also captured in the plot. Overall, data traffic experiences more delay than
control traffic. For example, though Types 1 and 5 are offered the same routing, the overall
delay for Type 1 is almost twice that of Type 5. This highlights the ability of the framework in
meeting PAM’s overall requirements of maintaining network interactivity. With PdAM’s overall
objectives met, we now analyze the causes of losses in the network.

5.4 Link Losses

Effectiveness of the various routing components in their ability to choose the right path for
every traffic type is best characterized by profiling the link loss distribution. Link loss is
a typically attributed to the unreliable wireless medium, where packets are corrupt or lost
while in transit. Routing components that stress on reliability need to understand the nature
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Fig. 8. End to end delay for different traffic types

of links, and use these to derive a suitable next hop while keeping the requirements of the
payload consistent.

We profile link losses for various traffic types in Figure 9. As the number of nodes in the
network increases, so does the effective number of hops that a packet takes to reach its desti-
nation. This in effect increases the probability of a link loss. Real time data streams (Type 2)
experience maximum link losses, largely because of the nature of route selection which greed-
ily forwards traffic to nodes closest to the base station. Reliable traffic (Types 1, 5), however,
make ranged queries into the neighbor table with high thresholds of link estimates. Likewise,
they experience nearly zero link related losses in the network. Because of inter-node spacing
in this experiment (10 feet), neighbors closest to a node do not fall over into the gray area.
Mission critical alerts (Type 7), likewise experience low values of link losses since they thwart
link error by multiple copies per packet transmission.

5.5 Congestion losses

Congestion occurs when nodes inject more packets than the network can handle. While our
workload generates traffic that can normally be serviced by the network, congestion does
occur for a variety of reason. First, all data traffic is destined to one node (base station). Hence,
all of the network’s traffic converges towards nodes closer to the base station to be routed
via them. Even though we try to avoid congested nodes in route selection, a point comes
when all neighboring options for a node are congested. Congestion particularly increases
with rising number of nodes in the network, which simply translates to rising traffic levels
for nodes near the base station to service. Based on PdM’s requirements, we also notice that
congestion is likely to occur when serious anomaly is detected. When a mission critical failure
is noticed, a surge of events takes place in the network. Nodes report mission critical alerts,
and some other nodes in the vicinity would begin to send streams of real time values. The
end user or administrator would add on to this by issues commands, queries and triggering
actions. In our workload, both these causes are sufficiently represented. We now analyze the
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role congestion plays in the network, and profile the various congestion related losses for the
traffic types.

The fraction of packets lost due to congestion are shown in Figure 10. For network scales of a
few hundreds of nodes, congestion is not really a pressing problem because of the low duty
cycle of nodes. However, congestion starts to surface for networks with more than 300 nodes,
primarily because of increased load on nodes closer to base station. We notice that Type 1
traffic witnesses maximum congestion related losses. As packets begin to approach the base
station, traffic from other types (real time streams or mission critical alerts) would try to avoid
congested nodes nearby and choose low quality links with faster transit times. At this same
stage, reliable traffic would take two or three additional hops to ensure high quality links.

It is interesting to see that mission critical data (Type 3) also experiences congestion losses.
This has a few implications for congestion control in general. When mission critical anomaly
is detected, activity of motes suddenly peaks. Various nodes start to simultaneously inject
traffic into the network. Congested links, coupled with multiple copies per packet from Type
3, only makes matters worse for mission critical data. This suggests that dropping any packet
in a FIFO manner, as most current congestion control schemes do, only undermines perfor-
mance. In general, utilizing information about nature of payload and dropping packets of rel-
atively lesser importance should be an added metric to future congestion control algorithms.
Lastly, we also observe that control traffic (Types 5, 6, 7) do not experience congestion drops.
This means that even in times of congestion, interactivity is kept high because control traffic
is offered differential scheduling. This further validates PdAM’s requirements of maintaining
high interactivity with the network even in times of congestion and mission critical events.

5.6 Interactivity with deployment

While the effects of scheduling control and data traffic differentially are brought out, we seek
to understand the interplay of various types of interactive control traffic within the virtual
‘control” queue. Three levels of interactivity are made possible by the use of preamble bits:
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Fig. 10. Packets lost due to congestion for various traffic types. Shown in the figure is the
fraction of packets lost due to congestion over all packets lost in transit.

reliability driven queries (Type 5), real time queries (Type 6), and mission critical interaction
(Type 7). We analyze the average round trip times (RTT) for various kinds of queries into
the network. Our workload generates queries to random motes in the network at various
distances. For a 9-week long interaction, we summarize the interactivity times for networks
at scale.

The interaction RTTs are plotted in Figure 11. Dynamic routing plays a major role in ensuring
that interactivity times are kept low for real time queries (Type 6), acceptable for mission
critical queries (Type 7) and relatively higher for reliability driven queries (Type 5). Coupled
with high delivery ratios of Types 5 and 7, and short turn around for Type 6, we successfully
meet the subtle variations in interactivity demanded by PdM.

5.7 Average Path Distribution

We finally characterize the path distribution statistics for various traffic types in the network
(Figure 12). This simulation was run for a collection of 1024 nodes arranged using a 32x32 grid,
with a 10 feet inter-node spacing. For every packet received at the base station, we measure
the number of hops that it took build a frequency distribution for various hop counts. The
curve is representative of route selection since each traffic type generates sufficient number of
packets at various distances from the base station.

Requirements of PdM apart, nature of route selection is best captured in this plot. Reliable
traffic (Types 1 and 5) take numerous short hops of high quality links, and register large hop
counts. Real time traffic (Types 2 and 6), which is routed greedily based on shortest paths,
takes the least number of hops. Mission critical data are offered hops that range in between
reliable and real time traffic.
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Fig. 12. Path distribution statistics for various traffic types for a deployment of 1000 nodes

6. Discussions

Exposing application requirements creates a plethora of in-networking possibilities. We show
the impact of creating a dynamic network architecture with the use of the preamble bits at
various levels of the stack: applications, protocol validation, energy efficiency, aggregation,
fairness and differentiated services.
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Application Programming: With data becoming self identifying, application programming is
agnostic to the lower layers of the stack. Since the preambles are not protocol dependent, the
scheme is guaranteed to work even when the mapping between the preamble and a particular
protocol change over time. The framework in turn understands the nature and requirements
of the payload, and accordingly wires a routing module to serve the purpose. We have di-
verged from priority based approaches, where our three bit scheme provides no notion of
relative importance of a packet. We believe this is important, because the subjective notions
of a packets relative priority are often debatable, inconsistent and prone to errors. Applica-
tion programming is virtually error free, since it is not possible to confuse between a packets
requirements, whereas it might be really hard to choose between a priority level of 5 or 6 for a
range from 0-7 as in the case of DiffServ.

Protocol Validation: Protocols in sensornets are validated over a set of workload at least
thought to be representative of the entire application domain. Most protocols are evaluated
on a workload for which the protocol is optimized for. For example, a real time routing pro-
tocol is evaluated for a workload that emphasizes real time traffic alone. Most practical de-
ployments would generate a workload of which real time communication is only a part of
the requirement. Hence, a protocol’s behavior in the face of real world deployment traffic is
largely unknown. A dynamic routing framework, which can house various types of protocols
optimized for various other types of traffic could form the basis of applying real-life workload
to evaluate any alternative choice of protocol optimized for a given traffic type.

Energy Efficiency: Energy conservation has been an integral motive of almost every protocol
proposed thus far. This trend in general has led to various “energy efficient" protocols with
crippled communication abilities. Majority of energy drain happens at a nodes communica-
tion interface, and this trend shall continue to hold true well into the future. While compu-
tational subunits can be expected to improve in terms of energy per unit computation (e.g.
Moore’s Law), communication interfaces are governed by static laws of physics. Research by
Pottie and Kaiser (21) shows that over 3000 instructions could be executed for the same energy
cost of transmitting one bit wirelessly by 100 meters. The only foreseeable way to conserve
energy is to compute more, and communicate wisely. With the application’s requirements be-
coming visible, a whole host of in-network processing is now made possible to take the most
appropriate action for every packet.

Aggregation: This domain has been widely studied in the sensornet domain, with excellent
contributions in literature. However, aggregation cannot be abstracted as a component that
generally applies to any payload. Aggregation comes with a little cost of delay in terms of
processing, and in some cases, stalling for potentially related information to arrive. Delay
sensitive data is generally not very amenable to aggregation.

Fairness: Presently, fairness in sensornets is not a well defined notion. Classical notions of
fairness, where every player gets an equal share, needs a redefinition in the case of sensor
nets. Not all nodes in the sensornet are the same, and neither are all packets equally impor-
tant. The authors in IFRC (22) raise whether fairness is a reasonable initial design goal in a
sensornet. While this may be difficult to answer without extensive deployment experience,
what is generally lacking is a basis for defining fairness. For example, which packets should
be transmitted in what order, or at what power level, or who should be dropped when con-
gestion grows are questions that seek answers.

Differentiated Service: Traditional data networks passively transport bits from one end sys-
tem to another. To the network, the payload is opaque as far as requirements are concerned,
and the role of in-network processing is limited. Protocols and policies ought to act according

www.intechopen.com



Dynamic Routing Framework for Wireless Sensor Networks 275

to the relative importance of a particular packet in question. Not all packets in a sensornet are
of equal importance. For example, during times of congestion, dropping an arbitrary packet
makes little sense: a packet carrying a critical alert information is clearly more important than
a packet carrying regular sense-and-disseminate data. Similarly, a node with little energy
might not receive mundane data, but might be willing to forward critical information when it
offers a shorter path. Service differentiation is a strong incentive in sensor networks, largely
because typical deployments are governed by higher level logic dictating requirements.
Richer Possibilities: The preamble bits and the dynamic framework provide a basis for adap-
tive protocols, allowing richer interactions with the deployment. It provides a powerful plat-
form for user driven customization of the infrastructure, allowing new services to be deployed
at a faster pace.

7. Conclusions

Typical deployments would consist of multiple concurrent applications, all of whose success
leads to the fulfillment of a deployments objective. With every application placing its own
subjective communication demand on the framework, there is an urgent need to both expose
these requirements to the communication framework, and dynamically customize behavior
for every type of application. We have presented a simple scheme of using just three intent bits
to completely describe communication patterns the stack, and we use this to drive a dynamic
routing framework that customizes its routing behavior for every packet type in the system.
We have proved its effectiveness in meeting the demands of a fairly complete deployment
of industrial monitoring using PdM, where we analyzed behavior at scale for thousands of
nodes, and implemented a prototype of a 40 node wireless testbed.

Diversity in application requirements for sensornets has led to an explosion of network pro-
tocols. Protocol developers focus performance for a particular traffic type, and likewise vali-
date protocols for that type of traffic. Our framework allows for rapid protocol development,
integration and validation in the face of realistic workloads. With a need to emphasize perfor-
mance, developers further make assumptions about interfaces and functionalities that further
limits synergy across research efforts. In our quest to build a configurable framework, we
have regularized interface assumptions to distill core protocol features as individual compo-
nents. This would ensure that the core components can evolve independently, and research
efforts on any component can be seamlessly ported across deployments.

The role of in-network processing is currently limited in sensornets. With the application
requirements made visible to the stack, there is great potential to design application specific
processing at every node. Our dynamic routing is just one example of using the requirements
to switch routing behavior at the network layer. In general, there is excellent potential for
designing medium access protocols, scheduling protocols, congestion control algorithms and
energy efficiency modules at various layers of the stack using the preamble bits.
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