
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

14

Predicting Parallel TSP Performance:
A Computational Approach

Paula Fritzsche, Dolores Rexachs and Emilio Luque
DACSO, University Autonoma of Barcelona

Spain

1. Introduction

Faced with a scientific force and a critical need to solve large-scale and/or time-constrained
problems, the industry reports that access to high-performance computing (HPC) capability
is required now more than ever. Continued hardware and software advances, such as more
powerful and lower-cost processors, have made it easier for scientists and engineers to
install and use clusters / multi-cores and complete high-performance computing jobs.
In particular, the Traveling Salesman Problem (TSP) is one of the most famous problems
(and the best one perhaps studied) in the field of the combinatorial optimization. In spite of
the apparent simplicity of their formulation, the TSP is a complex solving problem and the
complexity of its solution has been a continue challenge to the mathematicians for centuries.
Not only the study of this problem has attracted people from mathematics but also many
researchers of other fields like operations research, physics, biology, or artificial intelligence,
and accordingly there is a vast amount of literature on it. On the other hand, not yet an
effective polynomial-time algorithm is known for the general case. Many aspects of the
problem still need to be considered and questions are still left to be answered satisfactorily.
A significant challenge is being able to predict TSP performance order. It is important to
bear in mind, that the TSP conclusions drawn could eventually be applied to any TSP family
problem. There are important cases of practical problems that can be formulated as TSP
problems and many other problems are generalizations of this problem. Therefore, there is a
tremendous need for predicting the performance order of TSP algorithms.
Measuring the execution time (performance) of a TSP parallel algorithm for all possible
input values would allow answering any question about how the algorithm will respond
under any set of conditions. Unfortunately, it is impossible to make all of these
measurements. TSP performance depends on the number of cores used, the data size, as
well as other parameters. Detecting the main other parameters that affect performance order
is the real clue to obtain a good estimation. The issue of measuring performance for the TSP
problem in practice and how to relate practical results to the theoretical analysis is
addressed in this chapter as a knowledge discovery methodology.
The defined methodology for performance modelling begins by generating a representative
sample of the full population of TSP instances and measuring their execution times. An
interactive and iterative process explores data in search of patterns and/or relationships
detecting the main parameters that affect performance. Knowing the main parameters
which characterise time complexity, it becomes possible to suspect new hypotheses to

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

238

restart the process and to produce a subsequent improved time complexity model. Finally,
the methodology predicts the performance order for new data sets on a particular parallel
computer by replacing a numerical identification. The methodology arises out of the need to
give an answer to a great number of problems that are normally set aside. Besides, this is a
good starting point for understanding some facts related with the non-deterministic
algorithms, particularly the data-dependents algorithms. Any minimum contribution in this
sense represents a great advance due to the lack of general knowledge.
An Euclidean TSP implementation, called global pruning algorithm (GP-TSP), to obtain the
exact TSP solution in a parallel machine has been developed and studied. It is used to analyze
the influence of indeterminism in performance prediction, and also to show the usefulness of
the methodology. It is a branch-and-bound algorithm which recursively searches all possible
paths and prunes large parts of the search space by maintaining a global variable containing the
length of the shortest path found so far. If the length of a partial path is bigger than the current
minimal length, this path is not expanded further and a part of the search space is pruned. The
GP-TSP execution time depends on the number of processors (P), the number of cities (C), and
other parameters. As a result of our investigation, right now the sum of the distances from one
city to the other cities (SD) and the mean deviation of SDs values (MDSD) are the numerical
parameters characterizing the different input data beyond the number of cities.
Comparisons of experimental results with predictions have been quite promising. Therefore,
the efficacy of the methodology proposed has been demonstrated. In addition to the
prediction capability, an interesting and practical issue from this research has been
discovered: how to select the best starting city. With this important and non-trivial selection,
the time spent on evaluation has been dramatically reduced.
This chapter is organized as follows. The next section describes the Traveling Salesman
Problem, their computational complexity and their applications in several fields. Besides, it
provides detailed coverage of the GP-TSP parallel algorithm. Section 3 presents the
knowledge discovery methodology to the problem of predicting the TSP performance.
Section 4 focuses on the discovering process carried out to find the significant input
parameters and building the GP-TSP prediction model. In addition, two outstanding
experiments have been studied. Section 5 summarizes and draws the main conclusions of
this chapter. Appendix A shows the specification of the parallel machine used along the
experimentation stage. Appendix B shows the characteristics of a clustering tool used to
discover internal data information.

2. Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is one of the most famous problems (and the best
one perhaps studied) in the field of combinatorial optimization. In spite of the apparent
simplicity of its formulation, the TSP is a complex data-dependent problem. Not only the
complexity of its solution has been a continue challenge to the researchers of several fields
but also the prediction of its performance. Predicting TSP performance is vital due to there
are many practical problems that can be formulated as TSP problems and others problems
are generalizations of this problem.

2.1 Problem statement

The TSP for C cities is the problem of finding a tour visiting all the cities exactly once and
returning to the starting city such that the sum of the distances between consecutive cities is

www.intechopen.com

Predicting Parallel TSP Performance: A Computational Approach

239

minimized (TSP page, 2010). The requirement of returning to the starting city does not
change the computational complexity of the problem.

2.2 Computational complexity

The TSP has been shown to be NP-hard (Karp, 1972). More precisely, it is complete for the

complexity class (FPNP)1, and the decision problem version is NP-complete. If an efficient

algorithm is found for the TSP problem, then efficient algorithms could be found for all

other problems in the NP-complete class. Although it has been shown that, theoretically, the

Euclidean TSP is equally hard with respect to the general TSP (Garey et al., 1976), it is

known that there exists a sub exponential time algorithm for it.

The most direct solution for a TSP problem would be to calculate the number of different

tours through C cities. Given a starting city, it has C-1 choices for the second city, C-2 choices

for the third city, etc. Multiplying these together it gets (C-1)! for one city and C! for the C

cities. Another solution is to try all the permutations (ordered combinations) and see which

one is cheapest. At the end, the order is also factorial of the number of cities. Briefly, the

solutions which appear in the literature are quite similar.

The factorial algorithm's complexity motivated the research in two attack lines: exact

algorithms or heuristics algorithms. The exact algorithms search for an optimal solution

through the use of branch-and-bound, linear programming or branch-and-bound plus cut

based on linear programming (Karp, 1972) techniques. Heuristics solutions are

approximation algorithms that reach an approximate solution (close to the optimal) in a

time fraction of the exact algorithm. TPS heuristics algorithms might be based on genetic

and evolutionary algorithms (Tsai et al., 2002), simulated annealing (Pepper et al., 2002),

Tabu search, neural networks (Aras et al., 2003), ant systems, among others.

2.3 Practical problems

The TSP often comes up as a subproblem in more complex combinatorial problems. The best

known and important one of which is the vehicle routing problem, that is, the problem of

determining for a fleet of vehicles which customers should be served by each vehicle and in

what order each vehicle should visit the customers assigned to it (Christofides, 1985).

Another similar example is the problem of arranging school bus routes to pick up the

children in a school district. The TSP naturally arises in many transportation and logistics

applications (TSP page, 2010).

Besides problems having the TSP structure occur in the analysis of the structure of crystals

(Bland & Shallcross, 1989), in material handling in a warehouse (Ratliff & Rosenthal, 1983),

in genome rearrangement (Sankoff & Blanchette, 1997), in phylogenetic tree construction

(Korostensky & Gonnet, 2000), and predicting protein functions (Johnson & Liu, 2006),

among others. Important practical computer science problems including the TSP structure

appear in clustering of data arrays (Lenstra & Kan, 1975), in sequencing of jobs on a single

machine (Gilmore & Gomory, 1964), in physical mapping problems (Alizadeh et al., 1993),

in drilling of printed circuits boards (Duman, 2004).

1 The class NP is the set of decision problems that can be solved by a non-deterministic Turing machine

in polynomial time. FP means function problems.

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

240

2.4 Related problems

An equivalent formulation in terms of graph theory can be described. Given a complete
weighted graph find a Hamiltonian cycle with the least weight. The vertices would
represent the cities, the edges would represent the roads, and the weights would be the cost
or distance of that road (Gutin & Punnen, 2006).
Another related problem consists of finding a Hamiltonian cycle in a weighted graph with
the minimal length of the longest edge. This problem, known as the bottleneck traveling
salesman problem, is really useful in transportation and logistics areas.
Related variations on the TSP include the resource constrained traveling salesman problem
which has applications in scheduling with an aggregate deadline (Miller & Pekny, 1991).
The prize collecting TSP (Balas, 1989) and the orienteering problem (Golden et al., 1987) are
special cases of the resource constrained TSP. The problem of finding a tour of maximum
length is the objective in MAX TSP (Barvinok et al., 2003). The maximum scatter TSP is the
problem of computing a path on a set of points in order to maximize the minimum edge
length in the path. It is motivated by applications in manufacturing and medical imaging
(Arkin et al., 1996).

2.5 GP-TSP parallel algorithm

As a representative of the practical problems, a global pruning TSP algorithm (called GP-

TSP), has been deeply studied. It obtains the exact TSP Euclidean solution in a parallel

machine. For simplicity, the algorithm works with cities in R2 instead of R3 and uses the

Euclidean distance due to it is the most straightforward way of computing distances

between cities in a two-dimensional space. Nevertheless, the choice of the distance measure

used (Euclidean, Manhattan, Chebychev, …) is irrelevant. More over, it would be the same

to work with an equivalent formulation in terms of graph theory. Therefore, the ideas of this

article can be generalized.

The GP-TSP algorithm is indeed both useful and profitable to analyze the influence of

indeterminism in performance prediction. It is a branch-and-bound algorithm which

recursively search all possible paths. It follows the Master-Worker programming paradigm

(Fritzsche, 2007). Each city is represented by two coordinates in the Euclidean plane.

Considering C different cities, the Master defines a certain level L to divide the tasks. Tasks

are the possible permutations of C-1 cities in L elements. The granularity G of a task is the

number of cities that defines the task sub-tree, this is G = C - L. At the execution start-up the

Master sends the cities coordinates to every Worker.

A diagram of the possible permutations for five cities (Vienna, Graz, Linz, Barcelona,

Madrid), considering the salesman starts and ends his trip at Vienna, can be seen in Figure

1. The Master can divide this problem into 1 task of level 0 or 4 tasks of level 1 or 12 tasks of

level 2 for example. The tasks of the first level would be represented by the cities Vienna and

Graz for the first task, Vienna and Linz for the second, followed by Vienna and Barcelona,

and Vienna and Madrid. The requirement of returning to the starting city is without

detracting from the generality. In this closed cycle the salesman may begin and end in the

city who wants.

Knowing the latitude and longitude of two cities on the Earth, it is possible to determine the

distance between them in kilometres. The table 1 lists the latitude and longitude of the five

cities mentioned previously. Figure 2(a) shows a strictly lower triangular distance matrix

where each box contains the Euclidean distance in kilometres between two cities.

www.intechopen.com

Predicting Parallel TSP Performance: A Computational Approach

241

V

L M

G B M G L M

M G M G B L

V

M L M L B B B L B G L LB B

L B M G

G B

L B

G B G L

B M G B G BB M L B L M L B L L G BM L B G L G

Level 0

Level 1

Level 2

Fig. 1. Possible paths for the salesman considering five cities: Vienna, Graz, Linz, Barcelona,
Madrid

 Latitude Longitude

Barcelona 40° 26' north 3° 42' west

Graz 48° 13' north 16° 22' east

Linz 47° 05' north 15° 22' east

Madrid 48° 19' north 14° 18' east

Vienna 41° 18' north 2° 06' east

Table 1. Latitude and longitude of the five cities

Workers are responsible for calculating the distance of the permutations left in the task and
sending to the Master the best path and distance of these permutations. One of the
characteristics of the TSP is that once the distance for a path is superior to the already
computed minimum distance it is possible to prune this path tree.
Figure 2(b) and Figure 2(c) exhibit the pruning processes for the GP-TSP algorithm where

each arrow has the distance between the two cities it connects. Analyzing Figure 2(b), the

total distance for the first followed path (in the left) is of 3845 km. The distance between

Vienna and Barcelona on the second path (in the right) is already of 4737 km. It is then not

necessary for the algorithm to keep calculating distances from the city Barcelona on because

it is impossible to reach a better distance for this branch. Analyzing the other example, the

total distance for the first followed path (in the left of Figure 2(c)) is of 3845 km. Then, the

distance between Linz and Barcelona on the second path (in the right of Figure 2(c)) is

already of 4839 km. Therefore, it is not necessary for the algorithm to keep calculating

distances from the city Barcelona on.

3. TSP knowledge discovery methodology

The scientific experimental knowledge discovery methodology presented here is a first
attempt to estimate the performance order of a TSP parallel algorithm. As well as the
process of knowledge discovery is certainly not new, it is typical of the experimental

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

242

V

V

146

B

L G

G

158 1694

1236

M

497

1808

M

1808

(a) (c)

Vienna Graz Linz Barcelona

Graz

Madrid

Barcelona

Linz

146

49716941808

12361235

158153

1360

1671

city

city

B

1235

L

L

L

1236

V

M V

B

497 1808

1808

G

146

158

M

1671

B

1360

G

(b)

Fig. 2. (a) Matrix of Euclidean distances between cities (in km), (b)-(c) Two pruning
processes in the GP-TSP algorithm

sciences. An experimental science is based on observation of performing repeated controlled
experiments. Before computers were used to automate this process, people involved in
math, physics or statistics were using probability techniques to model historical data.
The methodology consists of three main phases. First, the design and composition of
experiments to define and improve the TSP asymptotic time complexity. Next, the
validation of the built model. Finally, the definition of the TSP asymptotic time complexity.

3.1 Design and composition of experiments to define and improve the asymptotic
time complexity

Foremost it is important understanding the application domain and the relevant prior
knowledge, and analyzing their behavior step by step, in a deep way. It is a try-and-error
method that requires specialists to manually or automatically identify the relevant
parameters that can affect the execution time of the algorithm studied. Discovering the
proper set of parameters is the basis to obtain a good capacity of prediction.
Designing a well-built experiment involves articulating a goal, choosing an output that
characterizes an aspect of that goal and specifying the data that will be used in the study
taking into account the worked hypotheses at that time. The experiments must provide a
representative sample (a good training data set) first to measure the quality of the model /
hypotheses and then to fit the model. After the necessary training data have been defined
the TSP parallel algorithm studied must process each experiment obtaining a tour visiting
and the execution time invested as output.
The term knowledge discovery in databases (KDD) refers to the process of analyzing data
from different perspectives and summarizing it into useful information. Technically, KDD is
the process of finding correlations or patterns among dozens of fields in large relational
databases. A KDD process, a bold closed curve in Figure 3, involves data preparation,
defining a study, reading the data and building a model, understanding the model, and
finally predicting. It is an interactive and iterative process, surrounding numerous steps
with many decisions that the end-user carries out (Groth, 1998).

www.intechopen.com

Predicting Parallel TSP Performance: A Computational Approach

243

Executing TSP
parallel algorithm KDD process

Space of
possible

hypotheses

Training
data

Experiments

preprocessing

preprocessed
data

transformation

source
data

executing
data mining
algorithm

transformed
data

patterns /
correlations

understanding
the patterns

Training
data

Experiments +
execution times Knowledge

(model)

data
cleaning

TSP asymptotic
time complexity (O)predicting

s

xe
d

med

aning

Fig. 3. Knowledge acquisition

Inside the KDD process, a gray closed curve in Figure 3, the stages of data preparation and
defining a study surrounds both the decision of choosing between the data mining
techniques (classification, regression, clustering, dependency modeling, summarization of
data, or change and deviation detection), and also the selection of the data mining algorithm
to apply according to the chosen technique.
Regarding the analysis of the problem, a clustering study could be performed to potentially
identify groups. Clustering is the process of partitioning of a data set into subsets (clusters),
so that the data in each subset (ideally) share some common trait (often proximity according
to some defined distance measure). Therefore, a clustering data-mining tool through k-
means algorithm analyzes the measured times and the main parameters values that affect
performance in order to summarize these into a useful information. Knowing the main
parameters which characterize time complexity, it becomes possible to suspect new
hypotheses to restart the process and to produce a subsequent improved time complexity
model.
Figure 3 shows the knowledge acquisition process which includes the design of
experiments, the execution of the TSP parallel algorithm and the KDD process. There is no
doubt that the design of experiments is directly related to the suspected hypotheses. The
solid lines in Figure 3 represent the compulsory path to follow in the methodology and the
dashed lines represent paths of refinement.

3.2 Validation of the model

A new data set is proposed to be able to validate the created model. Although the validation

data set constitutes a hold-out sample, it has not been considered in the building of the

model. This enables to estimate the error in the predictions without having the assumption

that the execution times follow a particular distribution.

The analytical formulation, together a particular architecture, is used to make predictions for

each experiment in the validation data. The quality analysis is a relevant issue in this stage and

has to include interest measurements. The prediction for each experiment is then compared to

the value of the dependent variable that was actually observed in the validation data obtaining

the prediction error. Then the average of the square of these errors enables to compare

different models and to assess the accuracy of the model in making predictions.

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

244

It is important to bear in mind that every stage in the design of experiments to obtain and
improve the asymptotic time complexity is validated. Figure 4 exhibits the entire model
validation phase.

Execution of the TSP
parallel algorithm

Validation
data

Validation
data

Experiments +
execution times

Comparisons

Prediction of
performance

TSP asymptotic
time complexity (O)

Space of
possible

hypotheses

Execution
time

Architecture of the
parallel computer

Experiments

Fig. 4. Model validation phase

3.3 Definition of the asymptotic time complexity

The refined built model allows defining the asymptotic time complexity for the TSP parallel
algorithm studied, Figure 5. Then the analytical formulation will be instanced with values
coming from a new input data set and a particular parallel computer in order to give a
prediction of performance.

Knowledge
(model)

TSP asymptotic time
complexity (O)

Fig. 5. The final definition of the TSP asymptotic time complexity

The entire TSP knowledge discovery methodology is shown in Figure 6. Every stage in the

methodology defined can implicate a backward motion to previous steps in order to obtain

extra or more precise information to fit the final model.

4. Analyzing the GP-TSP algorithm

Using simple experiments, varying one or two values at a time, it is possible to infer that time
required for the parallel GP-TSP algorithm depends on certain parameters. Discovering these
significant GP-TSP input parameters is the main issue of this section. Then, the prediction of
GP-TSP performance order and two relevant experiments are analyzed.

www.intechopen.com

Predicting Parallel TSP Performance: A Computational Approach

245

KDD process

Space of
possible

hypotheses

Training
data

Experiments Training
data

Validation
data

Experiments +
execution times

Validation
data

Experiments +
execution times

Knowledge

Extracting
knowledge
(3.1 & 3.2)

Predicting
(3.3)

Execution of the
TSP parallel
algorithm

New input
data

Use

Comparison

Prediction of
performance

Execution time

Prediction of
performance

TSP asymptotic
time complexity (O)

Architecture of the
parallel computer

Architecture of the
parallel computer

TSP asymptotic
time complexity (O)

TSP asymptotic
time complexity (O)

Fig. 6. Performance prediction using the knowledge discovery methodology

4.1 Discovering the significant GP-TSP input parameters

It is clear that the GP-TSP execution time depends on the number of processors (P), the
number of cities (C), and other parameters. Discovering the other parameters is the key to obtain a
good or an acceptable prediction of performance order. Undoubtedly, the knowledge
discovery in databases process (KDD process) has been one of the most profitable stages in the
scientific examination. A huge amount of data sets was processed with the only goal of finding

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

246

some common properties. First intuitions guided the different tests in order to determine the
characteristics, the relationships, and the patterns between the data sets.
As a result of the investigation, right now the sum of the distances from one city to the other
cities (SD) and the mean deviation of SDs values (MDSD) are the numerical parameters
characterizing the different input data beyond the number of cities (C). But how these final
parameters have been obtained? Next, it is described the followed way to discover the above
mentioned dependencies (SD and MDSD) and the construction of a model.

4.1.1 First hypothesis å location of the cities (geographical pattern)

Given a number of cities with its pattern of distribution, the initial experiments have
provided evidence that times required for the completion of the algorithm are dissimilar. In
order to understand the general process, show its progress and results, it has been chosen an
example data set to follow along this section. It consists of five different geographical
patterns of fifteen cities each one (named GPat1 to GPat5) as it is shown in Figure 7.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 3 0 40

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

(a) GPat1 (b) GPat2 (c) GPat3 (d) GPat4 (e) GPat5

(1,2)

(3,15)

(1,4) (1,6) (1,8)

(5,15)
(7,15) (9,15)

(1,15)

Fig. 7. Five patterns defined for fifteen cities

The GP-TSP implementation receives the number of cities (C) and their coordinates ((x1, y1),
…, (xi, yi), …, (xC, yC)), the level (L), and the number of processors (P) as input parameters. It
behaves recursively searching all possible paths and applying the global pruning strategy
whenever it is feasible and, finally, generating the minimal path and the time spent.
Table 2 shows the GP-TSP execution times (in sec.) by pattern (columns GPat1 to GPat5) and
starting city (1...15) using only 8 nodes of the parallel machine described in Appendix A. It is
important to observe the dispersion of times while maintaining constant the number of
processors (P) and the number of cities (C).
Hence before continuing, there are two important concepts to refresh. The main goal of data
mining is finding useful patterns and knowledge in data. Besides, clustering is one of the
major data mining techniques, grouping objects together into clusters that exhibit internal
cohesion (similar execution time) and external isolation. Therefore, in this work, clustering
has been applied to discover the internal information and then to decrease the data-
dependence. This general action has been done using the well-known k-means clustering
algorithm (MacQueen, 1967) included in the Cluster-Frame tool; see Appendix B for extra
information about the tool. With the idea of obtaining quite similar groups with respect to
the groups (patterns) used at the beginning, k was fixed in five (k is the number of clusters).

www.intechopen.com

Predicting Parallel TSP Performance: A Computational Approach

247

The initial centroids (one for each cluster) were randomly selected by the clustering tool.
Figure 8 shows the experiments by cluster in the Cluster-Frame environment.

Geographical pattern (GPat)

1 2 3 4 5

Starting
city

Time
spent

Assigned
cluster

Time
spent

Assigned
cluster

Time
spent

Assigned
cluster

Time
spent

Assigned
cluster

Time
spent

Assigned
cluster

1 216.17 1 36.50 3 15.34 2 10.51 4 8.03 5

2 214.44 1 36.82 3 15.19 2 10.49 4 7.82 5

3 77.25 1 38.09 3 15.57 2 10.02 4 7.71 5

4 72.64 1 37.29 3 15.02 2 10.30 4 7.91 5

5 70.94 1 18.54 2 15.84 2 10.41 4 7.83 5

6 74.21 1 17.83 2 15.24 2 10.24 4 7.71 5

7 75.59 1 18.16 2 10.31 4 10.36 4 7.93 5

8 73.72 1 18.03 2 10.34 4 10.26 4 7.87 5

9 69.47 1 17.79 2 10.27 4 9.98 4 8.14 5

10 74.96 1 17.48 2 10.23 4 9.88 4 8.22 5

11 75.89 1 17.07 2 10.24 4 9.85 4 8.04 5

12 70.17 1 17.39 2 10.28 4 9.87 4 8.12 5

13 73.73 1 18.10 2 10.36 4 9.88 4 7.98 5

14 70.87 1 17.37 2 10.17 4 9.95 4 8.02 5

15 73.30 1 18.00 2 10.32 4 9.97 4 7.78 5

Mean 92.23 22.97 12.32 10.14 7.94

Table 2. GP-TSP execution times (in sec.) and assigned cluster by k-means algorithm

Fig. 8. Cluster-Frame environment

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

248

The k-means algorithm aims at minimizing a squared error function. In Equation (1), it is
presented the widely used objective function with n data points and k disjoint subsets

 () 2

1 1

| |
k n

j
ji

j i

x c
= =

−∑∑ (1)

where |xi(j)-cj|2 is a chosen distance measure between a data point xi(j) and the cluster
centroid cj. The entire function is an indicator of the distance of the n data points from their
respective cluster centroids.
Table 2 show the assigned cluster for each experiment after executing k-means algorithm.
For the clusters 1 to 5, the centroids values were 92.23 sec., 16.94 sec., 37.17 sec., 10.19 sec.,
and 7.94 sec., respectively.
The quality evaluation involves the validation of the above mentioned hypothesis. For each
experiment, the assigned cluster was confronted with the defined graphic pattern
previously. The percentage of hits expresses the capacity of prediction. A simple observation
is that the execution times were clustered in a similar way to patterns fixed at starting, see
Figure 7. In this example, the capacity of prediction was near of 75% (56 hits on 75
possibilities). There was a close relationship between the patterns and the execution times.
Conclusions: The initial hypothesis for the GP-TSP has been corroborated; the capacity of
prediction has been greater than 75% for the full range of experiments worked. The
remaining percentage has given evidence of the existence of other significant parameters.
Therefore, a deep analysis of results revealed an open issue remained for discussion and
resolution, the singular execution times by pattern. Another major hypothesis was
formulated. At this stage, the asymptotic time complexity was defined as O(P, C, pattern).

4.1.2 Second hypothesis å location of the cities and starting city

The example data set is the same used previously. Comparing each chart of Figure 7 with its
corresponding column in Table 2 it is easy to infer some important facts. The two far cities
(1, 2) in Figure 7(a) correspond with the two higher time values of starting city 1 and 2 in
Table 2(GPat1). The four far cities (1, 4) in Figure 7(b) correspond with the four higher
execution time values of starting city 1 to 4 in Table 2(GPat2). The six far cities in Figure 7(c)
correspond with the six higher time values of Table 2(GPat3). The cities in Figure 7(d) are
distributed among two zones; therefore, the times turn out to be similar enough, see Table
2(GPat4). Finally, the cities in Figure 7(e) are closed enough; in consequence, the times are
quite similar, see Table 2(GPat5).
An additional important observation is that the mean of execution times by geographical
pattern decreases as the cities approach, see again Table 2.
Conclusions: Without doubt, the location of the cities and the starting city (C1) play an
important role in execution times; the hypothesis has been corroborated. However, an open
issue remained for discussion and resolution: how to relate a pattern (in general) with a
numerical value which means execution time. This relationship would be able to establish a
numerical characterization of patterns. On this basis, an original hypothesis was formulated.
At this point, the GP-TSP asymptotic time complexity was redefined as O(C, P, pattern, C1).

4.1.3 Third hypothesis å sum of distances and mean deviation of sum of distances

What parameters could be used to quantitatively characterize different geographical
patterns in the distribution of cities? In graph theory, the distance of a vertex p, d(p), of such

www.intechopen.com

Predicting Parallel TSP Performance: A Computational Approach

249

a connected graph G is defined by d(p) = Σ d(p, q) where d(p, q) is the distance between p and
q and the summation extends over all vertices q of G. This measure is an inverse measure of
centrality. Therefore, following the ideas previously mentioned, the sum of the distances
from one city to the other cities (SDj, as it is shown in Equation 2), and the mean deviation of
SDs values (MDSD) are the worked inputs right now. As greater is the sum of the distances,
the lower is the centrality.

() ()2 2

1

: 1 j i j i
C

x x y y

j
i

j j C SD
− + −

=
∀ ≤ ≤ =∑ (2)

The SD value is an index time. If a j particular city is very remote of the others, its SDj will

be considerably greater to the rest and consequently its execution time will also grow. This

can be observed in Table 3.

Why is it needed to consider MDSD in addition to SD as a significant parameter? Quite

similar SD values from the same geographical pattern (same column) of Table 3 imply

similar execution times. The SD4 and SD10 values for the geographical pattern 1 are 230.11

and 234.84, respectively. Then, their execution times are similar 72.64 sec. and 74.96 sec.

(labelled with the symbol ◊). Instead, this relation is not true considering similar SD values

coming from different geographical patterns (different columns). The SD3 value for

geographical pattern 1 and the SD10 value for geographical pattern 2 are similar (315.51 and

Geographical pattern (GPat)

1 2 3 4 5

Starting
city

Time
spent

SD
Time
spent

SD
Time
spent

SD
Time
spent

SD
Time
spent

SD

1 216.17 853.94 36.50 746.10 15.34 664.60 10.51 643.75 8.03 148.74

2 214.44 887.44 36.82 740.49 15.19 649.14 10.49 635.54 7.82 104.16

3 * 77.25 * 315.51 38.09 820.63 15.57 707.70 10.02 555.70 7.71 141.15

4 ◊ 72.64 ◊ 230.11 37.29 789.80 15.02 678.07 10.30 599.99 7.91 103.35

5 70.94 226.88 18.54 345.83 15.84 643.65 10.41 611.45 7.83 111.79

6 74.21 244.56 17.83 330.76 15.24 638.04 10.24 595.58 7.71 102.81

7 75.59 276.09 18.16 369.56 10.31 467.99 10.36 592.68 7.93 111.28

8 73.72 294.62 18.03 383.38 10.34 490.55 10.26 639.61 7.87 147.14

9 69.47 233.53 17.79 370.10 10.27 491.52 9.98 574.23 8.14 123.19

10 ◊ 74.96 ◊ 234.84 * 17.48 * 323.12 10.23 446.48 9.88 578.78 8.22 172.52

11 75.89 259.19 17.07 332.87 10.24 477.42 9.85 544.61 8.04 124.64

12 70.17 234.22 17.39 325.19 10.28 449.03 9.87 534.91 8.12 131.68

13 73.73 306.99 18.10 383.11 10.36 504.79 9.88 530.72 7.98 109.78

14 70.87 239.19 17.37 327.02 10.17 451.21 9.95 574.97 8.02 124.96

15 73.30 295.27 18.00 372.00 10.32 494.09 9.97 534.36 7.78 96.29

MDSD 140.94 165.47 90.60 31.56 16.78

Table 3. GP-TSP execution times (in sec.) and sum of the distances from each starting city

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

250

323.12, respectively) but the execution times are completely dissimilar 77.25 sec. and 17.48

sec. (labelled with the symbol *). The reason is due to the different between the MDSD

values of geographical pattern 1 and 2.

Conclusions: It is important to emphasize that the GP-TSP algorithm obtains good results of

prediction. The asymptotic time complexity for the GP-TSP algorithm should be defined as

O(P, C, SD, MDSD). Another important fact has been reached beyond was originally sought.

Choosing the j city which has minimum SDj associated value, it is possible to obtain the

exact TSP solution investing less amount of time. Much better results it would be reached if

the algorithm begins considering the closer L cities to j city.

4.2 Predicting GP-TSP performance order

The GP-TSP has a time complexity of O(P, C, SD, MDSD). The analytical formulation allows

making predictions for a new data set on a particular parallel computer. Figure 9 shows the

prediction framework.

New input
data

Use

Prediction of
performance

Architecture of the
parallel computer

TSP asymptotic
time complexity (O)

Fig. 9. The prediction of performance framework

4.3 Two relevant GP-TSP experiments

Additional TSP experiments have been performed to verify certain hypotheses. Some of

them have shown how important is the geographical pattern of the cities instead of knowing

their coordinates. Other experiments which follow a specific pattern have helped to confirm

the strong compliance of our hypotheses. Due to the significance, these two groups of

experiments were chosen to be developed in this section.

4.3.1 Importance of the geographical pattern

Making geometric transformations (shifting, scaling, and rotation) to well-known patterns is

without no doubt a trivial test. This is an excellent case study for understanding the

importance of geographical pattern. Applying each one of the transformations to a set of

cities, similar execution times are expected executing the same algorithm. This leading to

conclude, the time required to reach the solution of the GP-TSP algorithm is invariant to

certain transformations into the geographical patterns.

www.intechopen.com

Predicting Parallel TSP Performance: A Computational Approach

251

The coordinates of a city shifted by Δx in the x-dimension and Δy in the y-dimension are

given by

 ´ ´x x x y y y= + Δ = + Δ (3)

where x and y are the original and x’ and y’ are the new coordinates.

The coordinates of a city scaled by a factor Sx in the x-direction and y-direction (the city is

enlarged in size when Sx is greater than 1 and reduced in size when Sx is between 0 and 1)

are given by

 ´ ´x yx xS y yS= = (4)

The coordinates of a city rotated through an angle θ about the origin of the coordinate

system are given by

 ´ cos sin ´ sin cosx x y y x yθ θ θ θ= + = − + (5)

An example set consisting of fifteen cities is chosen from the historical database. The

execution times were obtained using 32 nodes of the parallel machine described in

Appendix A. The shifting and rotation transformations are obtained interchanging x-

coordinate by y-coordinate, and the scaling transformation dividing by 2 both coordinates.

All these patterns are shown in Figure 10.

0

5000

10000

15000

20000

25000

30000

35000

0 5000 10000 15000 20000 25000 30000 35000

x-coordinate

y
-
co

or
d
in
a
te

Original

Shifed+Rotated

Scaled

Fig. 10. A historical pattern consisting of fifteen cities. Besides, the same pattern shifted and
rotated, and then the pattern scaled

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

252

Table 4 exhibits the execution times for the example set starting by each one of the cities.

Analyzing the values by row, the historical execution times and the execution times of the

geometric transformations for an experiment (row) are quite similar as it was to be expected.

For all the experiments, the mean deviation was smaller than 2%.

Pattern Starting
city Historical Shigted+Rotated Scaled

Mean
deviation

1 46.25 48.52 47.30 0.78

2 100.30 105.60 102.77 1.81

3 73.48 76.34 74.52 1.04

4 32.92 34.52 33.75 0.54

5 30.83 31.96 31.35 0.39

6 30.49 31.92 31.22 0.48

7 31.77 33.00 32.21 0.45

8 30.10 31.06 30.43 0.35

9 31.08 32.13 31.92 0.42

10 30.98 32.24 31.60 0.42

11 29.94 31.09 30.36 0.42

12 30.33 31.53 30.85 0.42

13 31.45 32.82 32.14 0.46

14 32.67 33.44 32.53 0.37

15 32.49 33.49 32.89 0.36

Table 4. Comparison of execution times (in sec.) using 32 nodes for the three patterns plotted
in Figure 9

4.3.2 Limit case

A singular case is to have the cities uniformly distributed in a circumference, see an example

in Fig. 11. As the MDSD value will be near to 0, similar execution times are expected. The

idea is considering a limit case in order to confirm the hypothesis with respect to the MDSD

value and the geographical pattern.

Table 5 exhibits a comparative study of GP-TSP behaviour; the means and means deviations

of execution times of different number of cities uniformly distributed in each circumference

pattern are shown. The number of cities is between 15 and 25. As it can be appreciated in

Table 5, there is a progressive increase in the mean times. For every circumference, the

execution times were quite similar starting by each one of the cities. The mean deviations

were smaller than 4%.

www.intechopen.com

Predicting Parallel TSP Performance: A Computational Approach

253

850

900

950

1000

1050

1100

1150

850 900 950 1000 1050 1100 1150

x-coordinate

y
-c

o
o

rd
in

a
te

Fig. 11. A circumference pattern composed of 24 uniformly distributed cities

#Cities 15 16 17 18 19 20 21 22 23 24 25

Mean 12.71 17.47 23.42 32.93 42.95 54.94 68.67 129.53 367.29 1085.57 2957.15

Mean
deviation

0.03 0.04 0.08 0.08 0.07 0.10 0.10 0.11 0.30 2.12 3.03

Table 5. Mean and mean deviation of execution times (in sec.) using 32 nodes by the number
of cities that are present in each circumference pattern

5. Conclusions

This chapter introduces a knowledge discovery methodology to estimate the performance

order of a hard data-dependent parallel algorithm that solves the traveling salesman

problem. It is important to understand that the parallel performance achieved depends on

several factors, including the application, the parallel computer, the data distribution, and

also the methods used for partitioning the application and mapping its components onto the

architecture.

Briefly, the general knowledge discovery methodology begins by designing a considerable

number of experiments and measuring their execution times. A well-built experiment

guides the experimenters in choosing what experiments actually need to be performed in

order to provide a representative sample. A data-mining tool then explores these collected

data in search of patterns and/or relationships detecting the main parameters that affect

performance. Knowing the main parameters which characterise performance, it becomes

possible to suspect new hypotheses to restart the process and to produce a subsequent

improved time complexity model. Finally, the methodology predicts the performance order

for new data sets on a particular parallel computer by replacing a numerical identification.

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

254

A TSP parallel implementation (called GP-TSP) has been deeply studied. The GP-TSP

algorithm analyzes the influence of indeterminism in performance prediction, and also

shows the usefulness and the profits of the methodology. Their execution time depends on

the number of cities (C), the number of processors (P), and other parameters. As a result of

the investigation, right now the sum of the distances from one city to the other cities (SD)

and the mean deviation of SDs values (MDSD) are the numerical parameters characterizing

the different input data beyond the number of cities. The followed way to discover this

proper set of parameters has been exhaustively described.

The defined methodology for performance modelling is applicable to other related problems

such as the knapsack problem, the graph partition, the bin packing, the motion planning,

among others.

Appendix

A. Specification of the parallel machine

The execution has been reached with a 32 node homogeneous PC (Cluster Pentium IV

3.0GHz., 1Gb DDR-DSRAM 400Mhz., Gigabit Ethernet) at the Computer Architecture and

Operating Systems Department, University Autonoma of Barcelona. All the

communications have been accomplished using a switched network with a mean distance

between two communication end-points of two hops. The switches enable dynamic routes

in order to overlap communication.

B. Characteristics of Cluster-Frame environment

Cluster-Frame is a dynamic and open environment of clustering (Fritzsche, 2007). It permits

the evaluation of clustering methods such as K-Means, K-Prototypes, K-Modes, K-Medoid,

K-Means+, K-Means++ for the same data set. Using Cluster-Frame, the results reached

applying different methods and using several parameters can be analyzed and compared.

6. References

Alizadeh, F.; Karp, R.; Newberg, L. & Weisser, D. (1993). Physical mapping of chromosomes:

A combinatorial problem in molecular biology. Symposium on Discrete Algorithms,

pp. 371-381, ACM Press.

Aras, N.; Altinel, I. & Oommen, J. 2003. A kohonen-like decomposition method for the

euclidean traveling salesman problem-knies/spl i.bar/decompose. IEEE

Transactions on Neural Networks, Vol. 14, No.4, pp. 869–890.

Arkin, E.; Chiang, Y. ; Mitchell, J.; Skiena, S. & Yang, T. (1996). On the Maximum Scatter

TSP, In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA 97), pp. 211-220, ACM New York.

Balas, E. (1989). The Prize Collecting Traveling Salesman Problem. Networks, Vol.19, pp. 621-

636.

Barvinok, A.; Tamir, A.; Fekete, S.; Woeginger, G; Johnson, D. & Woodroofe, R. (2003). The

Geometric Maximum Traveling Salesman Problem. Journal of the ACM, Vol.50,

No.5, pp. 641-664.

www.intechopen.com

Predicting Parallel TSP Performance: A Computational Approach

255

Bland, R. & Shallcross, D. (1989). Large Traveling Salesman Problems Arising from

Experiments in X-ray Crystallography: a Preliminary Report on Computation.

Operations Research Letters, Vol.8, pp. 125-128.

Christofides, N. (1985). Vehicle Routing. N. Christofides, A. Mingozzi, P. Toth, and C. Sandi,

editors, Combinatorial Optimization, pp. 315-338, Wiley, Chichester, UK.

Duman, E. & Or, I. (2004). Precedence constrained TSP arising in printed circuit board

assembly. International Journal of Production Research, Vol.42, No.1, pp. 67-78, 1

January 2004, Taylor and Francis Ltd.

Fritzsche, P. (2007). ¿Podemos Predecir en Algoritmos Paralelos No-Deterministas?, PhD

Thesis, University Autonoma of Barcelona, Computer Architecture and Operating Systems

Department, Spain. http://caos.uab.es/

Garey, M.; Graham, R. & Johnson, D. (1976). Some NP-complete geometric problems, STOC

'76: Proceedings of the eighth annual ACM symposium on Theory of computing,

pp. 10-22, Hershey, Pennsylvania, United States, ACM, New York, NY, USA.

Gilmore, P. & Gomory, R. (1964). Sequencing a One-State-Variable Machine: A Solvable

Case of the Traveling Salesman Problem. Operations Research, Vol.12, No.5, pp.

655-679.

Golden, B.; Levy, L. & Vohra, R. (1987). The Orienteering Problem. Naval Research Logistics,

Vol.34, pp. 307-318.

Groth, R. (1998) Data mining: a hands-on approach for business professionals, Prentice Hall

PTR.

Gutin, G. & Punnen, P. (2006). The Traveling Salesman Problem and Its Variations, Springer, 0-

387-44459-9, New York.

Johnson, O. & Liu, J. (2006). A Traveling Salesman Approach for predicting protein functions,

Source Code for Biology and Medicine, Vol.1, pp. 1-7.

Karp, R. (1972). Reducibility among combinatorial problems: In Complexity of Computer

Computations. Plenum Press, pp. 85-103. New York.

Korostensky, C. & Gonnet, G. (2000). Using traveling salesman problem algorithms for

evolutionary tree construction. BIOINF: Bioinformatics, Vol.16, No.7, pp. 619-627.

Lenstra, J. & Kan, A. (1975). Some simple applications of the Travelling Salesman Problem.

Operations Research Quarterly, Vol.26, No.4, pp. 717-732.

Lilja, D. (2000). Measuring computer performance: a practitioner's guide, Cambridge University

Press, ISBN: 0-521-64105-5, New York, NY, USA.

MacQueen, J. (1967). Some Methods for Classification and Analysis of MultiVariate

Observations, Proc. of the fifth Berkeley Symposium on Mathematical Statistics and

Probability, Vol.1, pp. 281-297, L. M. Le Cam and J. Neyman, University of

California Press.

Miller, D. & Pekny, J. (1991). Exact Solution of Large Asymmetric Traveling Salesman

Problems. Science, Vol.251, pp. 754-761.

Miller, R. & Boxer, L. (2005). Algorithms Sequential and Parallel: A Unified Approach, Charles

River Media. Computer Engineering Series, 1-58450-412-9.

Pepper, J.; Golden, B. & Wasil, E. (2002). Solving the travelling salesman problem with

annealing-based heuristics: a computational study. IEEE Transactions on Man and

Cybernetics Systems, Part A, Vol. 32, No.1, pp. 72–77.

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

256

Ratliff, H. & Rosenthal, A. (1983). Order-Picking in a Rectangular Warehouse: A Solvable

Case for the Traveling Salesman Problem. Operations Research, Vol.31, No.3, pp.

507-521.

Sankoff, D. & Blanchette, M. (1997). The median problem for breakpoints in comparative

genomics, Proceedings of the 3rd Annual International Conference on Computing and

Combinatorics (COCOON'97), Vol.1276, pp. 251-264, New York.

Tsai, H.; Yang, J. & Kao, C. (2002). Solving traveling salesman problems by combining global

and local search mechanisms, Proceedings of the 2002 Congress on Evolutionary

Computation (CEC’02), Vol.2, pp. 1290–1295.

TSP page (2010). http://www.tsp.gatech.edu/.

www.intechopen.com

Traveling Salesman Problem, Theory and Applications

Edited by Prof. Donald Davendra

ISBN 978-953-307-426-9

Hard cover, 298 pages

Publisher InTech

Published online 30, November, 2010

Published in print edition November, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is a collection of current research in the application of evolutionary algorithms and other optimal

algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune

Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy

Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both

theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry

students in the field of applied Mathematics, Computing Science and Engineering.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Dolores Rexachs, Emilio Luque and Paula Cecilia Fritzsche (2010). Predicting Parallel TSP Performance: a

Computational Approach, Traveling Salesman Problem, Theory and Applications, Prof. Donald Davendra

(Ed.), ISBN: 978-953-307-426-9, InTech, Available from: http://www.intechopen.com/books/traveling-

salesman-problem-theory-and-applications/predicting-parallel-tsp-performance-a-computational-approach

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

