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1. Introduction     

Gears are one of the most complicated parts of machines. Their efficiency and optimum 
design determines the success of the machine. The first level of innovation is the geometry. 
The geometry determines the possible usage area of the gearing and influences the 
manufacturability and working parameters of the gear. Consequently, improvement and 
innovation of gear geometry is always a focus of interest for gear manufacturers. For these 
reasons, many gear-oriented CAD software packages have been developed. Figure 1 gives a 
comparison of several programs depending on their suitability for dimensioning or 
development. The design tool ZPS (Miltenovic & Milcic, 1999) or KISSsoft (Kissling, 1999) is 
mainly intended for the determination of suitable sizes for a given gearing type to fulfil the 
construction requirements. The programs ZAKGEAR (Lunin, 2010), UMCORR (Stadtfeld, 
1999), KEGELRADKETTE (Landvogt et al., 1999) or Kato’s application (Kato & Kubo, 1999) 
are more suitable for the development of new characteristics of gearings or for optimisation. 
 

 
Fig. 1. Comparison of gearing design programs 
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The vertical axis measures the number of different modelled gear types. One of the 
programs having the largest freedom of embedded gearing kinematics is ZAKGEAR sw 
(Lunin, 2010). Most of the programs are intended to handle a few concrete gear types and 
the number of modelled sorts is limited. Recognition of this fact motivated the author to find 
a robust connection theory and to create a surface and kinematical relation independent 
gearing development tool.  The name of this connection theory is the “Reaching Model”. 
The original theory will be introduced with full particulars here. This theory serves as the 
basis for the developed Surface Constructor kinematical modelling and simulation tool, the 
goal of which is to provide maximum freedom in modelling contacting kinematical surfaces 
and their kinematical arrangements. The tool’s capabilities will be demonstrated through 
modelling of innovative gear constructions.  

 
2. The theory 

To give a basis for referencing in the modelling section, we need to go over the theoretical 
fundamentals of the innovative Surface Constructor kinematical surface generating and 
contact analysing software. The name of the theory introduced by the author for generation 
conjugate surface pairs is the Reaching Model. Here we give an explanation with emphasis 
on its novelty and differences from other models. The model solves the well-known task of 
gearings – the determination of the F2 conjugate surface if the generating F1 surface and the 
generating motion are given. Figure 2 shows the two surfaces with their holder frames K1 
and K2. The  curved co-ordinate system plays a major role in the Reaching Model theory. 
 

 
Fig. 2. Generating surface F2 by surface F1 
 
There are two well-known methods to solve this task: 

 the differential-geometric method developed by Gochman, and 
 the kinematical method, which applies the nv1,2 = 0 scalar product where n is the 

normal vector and v1,2 is the relative speed vector at the contacting point. This 
method has two forms: the pure geometrical and the Litvin type, which uses 
matrix-algebra (Litvin, 1994). 

 
 

 

2.1 The Reaching Model 
Before the Reaching Model the word undercut was used for various undesirable surface 
problems of mating surface pairs. The Reaching Model distinguishes local undercut 
situations from global cut. The methods mentioned above to determine the unknown 
surface are local methods, i.e., they can produce the theoretical mating points and the border 
of areas containing such points. The border points are points where local undercut occurs. 
The local undercut, which can appear in an infinitely small space and time domain, is 
practically always accompanied by global cut, when one part of the local area is destroyed 
by the other surface, e.g., the enveloped surface of the tooth of a worm-wheel is damaged by 
the tip edge of the worm. Though global cut usually follows local undercut, it can appear 
alone, as well. In our terminology the word interference may mean either local undercut or 
global cut. To determine local undercut locations infinitesimal calculation is needed. To 
determine the location of global cut usually iterative or discrete simulation methods are 
used. One method for discovering interferences is the use of normal, then inverse generating 
processes comparing the result with the original surface. Another solution (Seveleva et al., 
1989) applied two theoretically different methods – in our terminology a local and a global 
method – to generate the needed surface and if these surfaces were identical then there was 
no interference.  
The Reaching Model includes the capability to detect all types of local undercuts and the 
global cut in the same theoretical model. The main advantage of the model is its simplicity. 
In this model the generation of one of the points of the F2 surface is equal to solving a 
simple minimum value problem. The denominative reaching process will be introduced 
briefly with the help of Figure 3.  
 

 
Fig. 3. The reaching process 
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The Reaching Model applies a special non-Descartes co-ordinate system . The   co-
ordinate lines as well as the co-ordinate axis   itself coincide with the motion paths of the 
points of a surface that is in the co-ordinate system K2, meaning that   has two roles:  
1.  motion (time) parameter,   
2.  one of the three space co-ordinates of co-ordinate system . 
In the reaching process we choose a  co-ordinate line that does not intersect the T1 body. 
Stepping from one  co-ordinate line to another going in R direction, the generating  co-
ordinate line will be that which can reach F1 first. This   line is the path of motion of point 
Pk' that will be one surface point of the generated surface F2. Point Pk will be the contact 
point, see Figure 3a. Transforming the intersection of the R- co-ordinate surface to a 
Descartes co-ordinate system, it is evident that the determination of a Pk point is equal to 
solve a minimum-value problem, as shown in Figure 3b. 
The necessary condition of connection in the Reaching Model is  

 0



R

 (1) 

where R = R(, T, Z) is the reaching-coordinate function,   is the motion-path co-ordinate, 
T is the division co-ordinate in the  slicing co-ordinate system, Z is the identifying 
parameter of the  co-ordinate system. This necessary condition is equivalent to the nv1,2 = 0 
condition of the above-mentioned kinematical method.  
The sufficient condition of the local minimum in the  = t point that is equivalent to the 
real connection at the same location is given in the following form:  
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where w is an even number. (3)

 
This condition defines a local minimum point at  = t  which generates the Pk’= Pk’( = t ; 
R = R(t) ; T=Tk ) point of the calculated F2 surface. The local nature of this condition means 
that it can be fulfilled in an infinitesimally small time or space region, but a generating 
process with a longer  (time and space) interval may destroy the generated Pk’ point. 

 
2.2 Situations of local undercut 
The model can give all the types of local undercuts simply by discussing the minimum 
value problem in a local tangential point. To recognize different types of local undercuts we 
need the path of motion of point Pk' only. If the necessary local condition of contact becomes 
true and the path of motion intersects the solid T1 there will be local undercut.  
 
 First Situation 
As shown in the left subfigure of Figure 4, t  is a local maximum point of R = R() function. 
The path of motion of point Pk' interferes with solid T1. 

 

 
Fig. 4.  Situations of local undercut 
 
The sufficient local condition of undercut is as follows: 
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 where w is an even number. (5) 

 
 Second Situation 
The general type of local undercut is shown in the middle subfigure of Figure 4. In this 
situation an inflexion form yields undercut. The sufficient local condition of this type of 
undercut is given as: 
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where w is an odd number. (7) 

 

This situation includes a more complex form, shown in Figure 5. 
 

 
Fig. 5. The motion of point Pk' stops at point Pn for a moment 
 
The motion of the point Pk' comes to a halt for a moment (the speed of point Pk' becomes 0 
for a moment). Figure 5 demonstrates this case in three dimensions (a), after one step of 
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transformation (b) and at the end of transformation from the curved  -R coordinate surface 
to the coordinate system that has straightened  -R coordinate lines (c). This special case is 
equivalent to the inflexion situation shown in Figure 4 and it can be detected using the same 
sufficiency condition. 
 
 Third Situation 
If the R = R( ) function of the intersection of surface F1 is constant in the infinitely small 
surroundings of point Pk as represented in the right subfigure of Figure 4, the sufficient 
condition of this type of  local undercut shows the following form: 
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where w = , infinite value. (8) 

 
In this third situation the speed of the contact position on F2 becomes zero because the same 
Pk' generated point connects to F1 for a short time. This type of local undercut may be 
theoretical if the generated surface F2 is smooth in this Pk' contact point. Though this does 
not create an edge on the generated F2 surface, the momentary or prolonged lack of motion 
results in decreased pressure in the oil film and is consequently undesirable.  
Sometimes an enveloped edge is formed on the surface F2, like on the gear of a Cone-type 
classical globoid gearing. This case can be analysed in Figure 6. One of the paths of motion 
coincides with intersection of generating surface F1, as shown in Figure 6a. In this general 
case the angle  between the path of motion and coordinate direction R changes point by 
point. Figure 6b shows the same example but the generated surface F2 is fixed and the 
generating solid T1 (and its surface F1) is moving. The result is an enveloped edge on 
surface F2, and point Pk’ of F2 remains in continuous contact with surface F1 for a certain 
time. Figure 6c demonstrates the function  = ( ) in this general case. If the function  is 
not constant then an edge will appear on the generated surface F2; otherwise the surface will 
be smooth. 
 

 
Fig. 6. Enveloping an edge on generated surface F2 by the given surface F1 
 

 

2.3 The cut as a global phenomenon 
As shown in Figure 7, the path of generated point Pk' interferes with the solid T1 in the 
represented space and corresponding time interval. The Pk' point of the F2 surface generated 
by the Pk local minimum point at t value will be destroyed by a cut if the motion interval is 
not limited. 
 

 

Pk' 
 

Fig. 7. An example of global cut 

 
3. The application 
 

Though the theory works with analytical expressions and partial derivatives, a robust, 
surface-independent software for realisation of the theory was developed on a discrete 
numerical basis. This program is named Surface Constructor (SC) and will be demonstrated 
in the following sections. The developed system applies both symbolic and numerical 
representations of the objects. The symbolic algebraic computation provides the flexible 
characteristic of the tool. SC starts as an empty kinematical modelling shell and models the 
kinematical modelling process itself. The system sketched in Figure 8 has three main 
representation levels: 

 the symbolic level, which uses a symbolic algebraic representation of the objects in 
the kinematical model, 

 the numerical level, which stores the given and computed objects using numerical 
form, and 

 the visualisation level, which allows the analysis of views and motion of the 
objects. 

The selection and visualisation options are as follows: 
 F2glob: global computational method and appropriate result 
 F2lok: local computational method and appropriate result 
 F2al: computation and visualisation of the occurrences of  local undercuts 
  : computation and visualisation of moving path of selected points 
 R- : computation and visualisation of R = R( ) functions as a special feature of 

this software 
 v_a: computation and visualisation of the space of relative speed and acceleration 
 PT : computation and visualisation of axoids. 
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Fig. 8. The structure of the Surface Constructor kinematical modelling tool 
 
The application can envelope different F2i surfaces by the same generating F1 surface, 
modelling point-like connections in such a way. In the case of i = 2 the generated members 
of a gearing with a point-like connection are surfaces F21 and F22. The intermediary 
theoretical generating surface is F1. The generating kinematical relations are given by 
transformation matrices as functions of Fi1 and Fi2 motion parameters. In the software and 
in the followings Fi will replace . Similarly, the Rho, Tau and Zeta coordinates correspond 
to the R, T and Z coordinates of the described theory. Moreover SC changes each letter to 
upper case form. 
The usability of the computer program for modelling of gear members can be followed in 
the next figures. Figure 9 shows the results of modelling a ZTA-type worm gearing. The 
result of global cut produced by the top edge of the hob can be detected on the right side of 
the calculated teeth. Comparing it to the teeth of the real worm-wheel proves that the 
program simulates the real cutting conditions well. 

 
3.1 Visualization of R = R(  ) functions 
Most modern programs apply the TCA (Tooth Contact Analysis) method for optimizing 
contacting properties (Su & Qin, 2003; Litvin & Fuentes, 2004). One of the best realizations 
uses real time ease-off topography manipulation through surface or kinematical system 
parameter modification using mouse and visual feedback (Stadtfeld, 1999). But this and 
similar methods need the two mating surfaces previously computed in the case of conjugate 
contacting too.   

 

 
Fig. 9. The ZTA worm gearing with the contact line, the calculated worm wheel segment 
and the manufactured real worm wheel surface 
 
The investigation in the space of path of motion characterizes SC only. Using this new tool, 
we can optimize contacting characteristics of connection and avoid interference situations 
without the generated F2 surface. From the description given above it is evident that the 
curves of R = R( ) functions are very suitable for detecting different types of local 
undercuts and global cuts of contacting surfaces. These occurrences are very dangerous not 
only in gearing contact but in cutting gearing parts, too. The analyzing of R = R( ) 
functions offers a unique possibility, since by using this facility it is possible to avoid these 
problems. Good contact is characterized by a global minimum point, whereas problematic 
local undercut situations are featured by points having inflection with horizontal tangent, or 
local maximum. Figure 10 shows examples. 
 

 
Fig. 10. The investigation window for selecting the needed R = R(  ) function or set of 
functions using mouse 
 
Curves having a local maximum point often produce global cut that is the horizontal 
tangent of local maximum point intersects the curve in a farther point. One R = R( ) curve 
characterizes the generating process of a point of the F2 generated surface. If we would like 
to analyze all the grid-points of the generated F2 surface we have to study a set of R = 
R(,T ) surfaces. This can be carried out conveniently using the input interface shown in 
Figure 11. To provide the maximum comfort the input interface is the visualization window 
itself. 
Using the mouse, the following visualization possibilities are given: 
 A click on the M grid-point results in the visualization of an R = R( ) function which 

characterizes the generating process of the P2(T,Z) point of the F2 generated surface 
 Dragging the M point results in a continuously changing R = R( )  function curve 
 A click on the T or Z adjuster results in visualization of an R = R(,Z )  or  R = R(,T ) 

surface 
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characterizes the generating process of a point of the F2 generated surface. If we would like 
to analyze all the grid-points of the generated F2 surface we have to study a set of R = 
R(,T ) surfaces. This can be carried out conveniently using the input interface shown in 
Figure 11. To provide the maximum comfort the input interface is the visualization window 
itself. 
Using the mouse, the following visualization possibilities are given: 
 A click on the M grid-point results in the visualization of an R = R( ) function which 

characterizes the generating process of the P2(T,Z) point of the F2 generated surface 
 Dragging the M point results in a continuously changing R = R( )  function curve 
 A click on the T or Z adjuster results in visualization of an R = R(,Z )  or  R = R(,T ) 

surface 
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Fig. 11. The adjusting area for selecting the needed R = R(  ) function associated to M point  
 
 Dragging the T or Z adjuster gives a continuously changing R = R(,Z )  or R = R(,T) 

surface. The form of the surface characterizes the quality of contact between the given F1 
surface and the points of one line of the needed F2 surface. Good contact between F1 and 
F2 will occur if every R = R(,Z ) or R = R(,T ) surface has a 'valley'. The visualization of 
surfaces is possible applying a set of R = R( ) curves or drawing a rendered surface, as 
shown in Figure 12. 

 

  
Fig. 12. To the left: Good conjugate contact along the ZETA1 = constant parameter curve of 
F2.  To the right: The R = R( ) curve indicates the appearance of the undercut point on F2. 

 
3.2 Optimizing the contacting properties applying visual control of changing R= R(  ) 
curves, surfaces 
This optimizing capability characterizes only this design tool. In most cases the F1 given 
surface is changeable, or the kinematical relations have some flexibility. In these situations 
we can optimize the contacting properties by changing the value of one of the parameters of 
F1 surface or the kinematical system. If we have a powerful enough computer system this 
changing of the selected value may be carried out in a continuous manner using visual 
control of R = R( ) curves or surfaces. The result will be similar to a situation when the 
parameter change is resulted by direct manipulation of the surface using mouse dragging. 
To realize this possibility we have to apply a comfortable user interface for changing 
parameter values, for example sliders. If there is any deviant pattern on the selected R = 
R( ) curve or surface it is possible to make it disappear by manipulating the parameter by 
its slider. 

 

 
Fig. 13. Displaying space properties and curvature values in different windows 

 
3.3 Visualization of space properties 
The features of the motion can be visualised drawing the path of motion of given points, the 
speed and the acceleration vectors, the curvature values. Figure 13 demonstrates the 
possibilities. 

 
3.4 Visualization of instantaneous screw axis and axoid 
One of the unique capabilities of SC is the real-time visualization of an instantaneous screw 
axis, and the set of axes as axoid. The axoids of simple relative motions are known as 
surfaces of revolution, e.g. cylinders or cones. The goal of SC is to visualise axoids in more 
complicated motion as well. This section will describe the mathematical and geometrical 
basics of calculating an instantaneous screw axis if given the space of speed of the relative 
motion. The screw axis may be defined between two connected co-ordinate systems moving 
relative to each other. In a real situation these frames hold gears that may be considered as 
rigid solids. The space of relative speed in every moment forms a screw, the speed vectors 
are tangential to spirals, to helical curves. The main task is to determine the position of the 
axis of this screw in the space. See Figure 14 for an example. In case of continuous motion 
this process will result in a set of axes that form a line-surface, the axoid. This axoid may be 
shown relative to a selected member of the kinematical model and these surfaces have 
different shapes in general. 
 

 
Fig. 14. The speed vectors are tangential to helical curves in a general screw 
 
In the following section the calculation of the position of the momentary turning axis will be 
presented. The calculation introduced here differs from the discussion of pitch surfaces and 
velocity screws given in (Ramahi, 1998), because it uses the velocity vectors of the screw 
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In the following section the calculation of the position of the momentary turning axis will be 
presented. The calculation introduced here differs from the discussion of pitch surfaces and 
velocity screws given in (Ramahi, 1998), because it uses the velocity vectors of the screw 
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directly to determine the screw axis. This method does not need angular velocity or gear 
ratio, etc. It needs only three – properly selected – velocity vectors from the space, from the 
screw.  In this calculation the K1 and K2 co-ordinate systems move relative to each other and 
suppose that K2 is fixed and K1 is moving. The first step determines the direction of the axis 
in the K2 frame while second gives one of the points of the axis.  
Determining the direction of the screw axis 
To determine the direction of the axis we have to take into consideration the fact that the 
component parallel to the axis of every speed vector is equal. Look again at the screw in 
Figure 14. From here, we select three speed vectors and translate them to the origin of the K2 
co-ordinate system as shown in Figure 15. 
 

 
Fig. 15. The three velocity vectors are selected randomly from the screw 
 
The three velocity vectors form a pyramid. The height line will give the direction of the axis 
of the screw.  In Figure 15 it is marked as the normal vector of the base triangle of the 
pyramid. Equation (9) gives the n  normal in mathematical form. 
 
 )()( 2312 vvvvn   (9) 
 
The normalised vector is then: 
 

 nnn /0   (10) 

 
Determining one of the points of the screw axis  
To determine one of the points of the screw axis, we need to transform the three velocity 
vectors and their start points from the K2 co-ordinate system to a K2” system. The z” axis of 
this K2” system is parallel to the n  normal vector, so the projection of the three velocity 
vectors will be tangential to concentric circles on the x”-y” co-ordinate plane. The co-
ordinate transformation is shown in Figure 16. 
The transformation matrix consists of two consecutive rotations. The first rotation matrix 
rotates by  : 
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Fig. 16. In the K2” co-ordinate system the z” co-ordinate axis is parallel to n  
 
The second rotation matrix rotates by  : 
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The resultant transformation matrix is: 
 
 2,'2'2,''22,''2 MMM   (13) 

 
The values for  ,  , sin , cos , sin  and cos  from Figure 16 are: 
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To transform a Pi  point given by ir  from the K2 frame to the K2”  frame, the 2,''2M  is 

needed: 
 ii rMr  2,''2

,,  (16) 
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Determining one of the points of the screw axis is equal to determining its intersection point 
in the z” = 0 co-ordinate plane. This task will be carried out in this plane, so only the x” and 
y” components of the vectors are needed. The projections of the velocity vectors on the z” = 
0 plane are tangential to concentric circles, so the perpendicular lines intersect each other at 
the desired Pt point as shown in Figure 17. 
 

 
Fig. 17. Determining the Pt intersection point as a point of the screw axis 
 
If the projected velocity vectors are );();;( 22
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The 1k  and 2k  values have to be identical. 
The co-ordinates of wanted Pt intersection point in the K2” frame are: 
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The Pt intersection point in the K2 frame may be calculated using an inverse transformation: 
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The line of the momentary axis 
Finally the axis line of the momentary velocity screw can be given in the K2 frame using the 
p parameter: 
 0nprr Pt   (23) 
 
The velocity vector of the momentary sliding:   
 
 0101,2 )( nvnv   (24) 

 
The angle speed of the momentary rotation:  
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The parameter of the momentary screw: 
 

 /1,2vP   (26) 

 
and the pitch: 
 PPax  2  (27) 
 
This calculation is based on the velocity space itself and fits well to its embedding software 
environment. The visualisation of the set of axes as axoid helps gearing developers to study 
the character of kinematical relations. Figure 18 shows the axoid of a bevel gearing and the 
case of a gearing having out-of-line axes. Figure 19 shows the transformation matrix and the 
axoid of a complex motion. 
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Fig. 18. Axoids of simple motions 
 

  
Fig. 19. The transformation matrix and the axoid of a complex motion 

 
4. Innovative solutions 
 

This section will present three innovations. The first one solves the problem of theoretically 
exact grinding of conical and globoid worms. This example demonstrates the calculation of 
a conjugate generated surface. The second solution applies double modification to the 
surface of a helical worm, providing smooth connection between the worm and the worm-
wheel. The third example presents the construction of a worm gearing having a point-like 
contact pattern. 

 
4.1 Theoretically exact grinding of non-helical worms 
This section introduces a special patented worm grinder machine construction and related 
technology that resolves the problem of geometrically exact grinding of conical and globoid 
worms. The new method proposed here applies a special grinding wheel having the same 
number of threads as the worm has. The novelty of this machine lies in the special grinding 
wheel that is not surface-of-revolution form, because the working surface of the wheel is 
generated as a conjugate surface pair of the worm.  
The problem of the grinding of non-helical worms, which originates from the changing 
curvature values of tooth surface and changing diameter along the axis, was discovered 
decades ago, see (Boecker & Rochel, 1964).   Globoid worms – for example Cone-types – and 
spiroid worms  are characterised by threads having different diameters. 

 

This property leads to changing curvature values along the threads of the worm, so 
application of the classical grinding wheel with surface of revolution form is impossible, 
because the wheel is not able to change its shape during grinding. However, this ability is 
required for the grinding of globoid or spiroid worms because the contact line between the 
machined worm and grinding wheel changes its shape over time. For the solution of the 
problem different methods are known. One of the suggested patented technologies applies a 
CNC grinding machine and CNC wheel dresser combination that continuously dresses the 
wheel during grinding (Dudás, 2000). It is possible to eliminate geometrical errors and to 
produce theoretically exact spiroid worms using an involute surface. This type of worms 
were developed and introduced in (Gansin, 1969; Tajnafői, 1966). There is a special 
generating method to produce globoid worms having possibility for exact grinding. In this 
case, the generating surface for globoid worm and for the gear is a surface of revolution 
(Siposs, 1992). The author of this chapter also proposed special grindable Archimedean and 
convolute spiroid worm constructions featuring a cylindrical foot surface, shown in Figure 
20. If we would like to grind general spiroid or globoid worms in a theoretically exact 
manner, we can apply a new method that will be introduced in the following sections.  
 

 
Fig. 20. A grinded Archimedean spiroid worm with cylindrical foot surface 
 
New Procedure and Grinding Machine Construction 
If the surface of revolution shaped wheel cannot change its shape, then exact machining 
needs a special grinding wheel that has different profiles for every diameter of the worm.  A 
grinding wheel generated by the worm as its conjugate surface fulfils this requirement. The 
invention of the author (Dudás, 1990) includes such a wheel making the grinding of general 
spiroid or globoid worms possible in a theoretically exact manner, see Figure 21. The 
process applies the same angle speed quotient between the wheel and the worm for 
calculation of wheel surface. This angle speed quotient is generally equal to 1 and means 
opposite tangential speed directions (identical angle speed vectors). The form of the new 
type of grinding wheel may remind one of a Reishauer-type wheel or can take another form, 
like a toroid gearing-element. However, there is an important difference between the 
Reishauer-type wheel and this: the proposed wheel almost never has a helical working 
surface. The main advantage of the suggested construction and grinding process is that it 
makes theoretically exact grinding of globoid and spiroid worms possible. The disadvantage 
is the complicated manufacturing of the grinding wheel and the complex NC grinding 
machine. This type of grinding machine is advantageous for the mass production of worm 
surfaces, as opposed to continuous dressing during grinding, which is useful for the 
production of tool surfaces and smaller series of gearing elements. For a full explanation see 
(Dudas, 2007). 
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Fig. 19. The transformation matrix and the axoid of a complex motion 
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New Procedure and Grinding Machine Construction 
If the surface of revolution shaped wheel cannot change its shape, then exact machining 
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invention of the author (Dudás, 1990) includes such a wheel making the grinding of general 
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type of grinding wheel may remind one of a Reishauer-type wheel or can take another form, 
like a toroid gearing-element. However, there is an important difference between the 
Reishauer-type wheel and this: the proposed wheel almost never has a helical working 
surface. The main advantage of the suggested construction and grinding process is that it 
makes theoretically exact grinding of globoid and spiroid worms possible. The disadvantage 
is the complicated manufacturing of the grinding wheel and the complex NC grinding 
machine. This type of grinding machine is advantageous for the mass production of worm 
surfaces, as opposed to continuous dressing during grinding, which is useful for the 
production of tool surfaces and smaller series of gearing elements. For a full explanation see 
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Fig. 21. The grinding machine and the grinding wheel generation by SC 

 
4.2 Modelling a double-modified worm gearing 
The next example will introduce the use of SC for investigating a new modification method 
for worm gearing with an elliptical generating curve in the axle plane of the worm.  
The modification of gearing members is usually applied to achieve smooth starting and 
finishing of connection when the teeth enter or exit from the meshing, see (Litvin et al., 2001; 
Ohsima & Yoshino, 2001; Seol, 2000). Though these transitions are smoother in the case of 
helical gearings than with the connection of spur gears, the effect of elastic deformation 
because of the load or manufacturing and assembly errors causes deviance from the 
designed exact conditions. The goal of the modification is to achieve a point-like contact 
pattern instead of the exact line form of connections having one motion parameter. A perfect 
modification method uses minimal surface modifying to preserve the quasi line connection 
pattern in the loaded state of gearing to make possible a long cuneal oil-yawn, and takes 
into account the tolerances specified for the manufacture of gearing parts and for assembly. 
The possibilities of worm gearing modifications are as follows:  

 gear tooth profile modification using a slightly different hob for toothing than the 
hob that produces the conjugate gear  

 gear tooth profile modification applying a different hob position at hobbing than 
the theoretically exact position  

 worm tooth profile modification in the root and tip regions 
 worm profile position modification resulting in a barrel-form worm instead of a 

cylindrical worm  
 worm profile position modification along the worm length using changing pitch 
 combinations of the above. 

In the next section, the effect of pitch modification along the worm length will be analysed 
through the contact pattern for an elliptical worm profile in the axle plane. Then a second 
profile modification will be added to localize the connection to the central region of the 
working area of the teeth.  Worm gearings with a circular profile in the axle plane of the 
worm have better connection properties than gearings with a linear profile, because 
contacting curves are closer to the radial direction and more perpendicular to the relative 
sliding speed direction. 

 

Applying the ellipse profile curve in the analysis of the connection characteristics gives one 
more degree of freedom and may result in better contact line shapes. The generating ellipse 
arc of the worm is determined in the K70 co-ordinate system (CS) in Figure 22. It is 
important to emphasize that the sketch of the profile and the relations of the CSs are 
intended for documentation purposes; the SC system visualises the entered relations and the 
investigation itself needs no such drawings. After opening a new project in SC, the 
generating curve can be entered symbolically, as on the right side of Figure 22. 
 

  
Fig. 22. The elliptic generating arc and entering it in SC 
 

        
Fig. 23. To the left: Cubic function of P2 parameter for the left side of the worm tooth 
To the right: The use of cubic function for worm surface generation 
 
The goal of the use of pitch modification is to allow a small gap for entering and exiting 
teeth in an unloaded condition that will decrease parallel to the increase of the load. This 
effect can be realised using an axial pitch modification along the worm length, as shown in 
Figure 23. The cubic function preserves the original conditions of the connection for the 
teeth of the worm in the middle section and results in a slightly larger gap to avoid 
interference with the entering and exiting exterior threads of the worm. In the function, P2 is 
the generating parameter of the worm surface that is applied in the quasi-helical motion, as 
shown in the right side of Figure 23. Changing the sign of the MODC constant gives the 
modification function for the right side of the tooth. The K100 CS holds the worm. 
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Fig. 21. The grinding machine and the grinding wheel generation by SC 
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effect can be realised using an axial pitch modification along the worm length, as shown in 
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Fig. 24. The worm with axially modified tooth surfaces and the lighter reference helicoid 
 
The creation of the co-ordinate transformation matrices and the symbolic multiplication of 
the concatenated matrices are accomplished automatically. After the values have been 
entered the objects defined on the symbolic level can be displayed. In this case some of the 
introduced steps had to be repeated to enter the right side of the tooth and the root and tip 
surfaces because of the different axial pitch functions of the two sides. Figure 24 displays the 
worm. To make visible the very small axial modification, the non-modified helical surface is 
also drawn using a different, lighter colour. This surface stands out from the modified 
surface, showing that the modification results in larger differences at the two ends of the 
worm. 
The next step is to enter the kinematical relations between the worm and the worm-wheel, 
employing the sketch given in Figure 25. The K201 CS is fixed to the gearbox casing, while 
K230 holds the worm-wheel. The Z100 and Z230 axles are perpendicular. 
 

 
Fig. 25. Relation of the worm (K100) and worm-wheel (K230) CSs 
 
Before starting the worm-wheel generating process, the ZETA2-dependent position of the 
RHO2-TAU2 plane is needed, where RHO2 is the reaching direction while TAU2 is the 
division co-ordinate direction. The RHO-TAU CS is limited to the plane CS in SC to achieve 
higher calculation speed, and can be any special curved CS, for example a polar system, but 
now this will be a simple planar Descartes system as in Figure 26. This slicing plane is 
assigned to K260 CS and will be positioned relatively to the worm-wheel by the BETA angle 

 

constant to consider the helix angle and by the ZETA2 slicing CS identifier parameter to 
intersect the surface of the wheel (see the right side of Figure 26). For every ZETA2 position 
an intersection curve of the worm-wheel will be determined by points that arose at different 
TAU2 values and are characterised by the calculated RHO2 value, as the extremum of the 
RHO2 values in the RHO2-FI2 co-ordinate surface, as was introduced generally in Figure 3. 
 

           
Fig. 26. Determining the RHO2 reaching direction in the X260-Y260 co-ordinate plane and 
positioning the slicing plane by ZETA2 CS identifying parameter and by BETA constant 
 
The entering of these relations was accomplished similarly to the entering of the previously 
mentioned CS relations. After setting the reaching extremum to the global minimum, and 
entering the values for scalar and interval variables, the generating calculation can start. 
The resulting gear surface segment and the worm are presented in Figure 27. 
 

 
Fig. 27. The worm and the worm-wheel segment 
 
Comparing the contact patterns of the modified and the unmodified worms 
To check the effect of the pitch modification, the contact patterns of the modified and 
unmodified worms are analysed. In Figure 28 the modified version is shown on the left 
while the unmodified case is shown on the right. The worm is rolled around the fixed gear 
and the contact pattern is analysed from the inside of the gear. The wandering of the contact 
pattern on one side of the middle tooth is analysed. In case of non-modified, one-parametric 
enveloping, the points of the contact pattern are characterised by the same Fi value in the 
SC. It is possible to visualise any individual contact pattern as a set of points (Dudás,  1992). 
Visualisation in the following figures applies another method: it exploits the limited 
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Comparing the contact patterns of the modified and the unmodified worms 
To check the effect of the pitch modification, the contact patterns of the modified and 
unmodified worms are analysed. In Figure 28 the modified version is shown on the left 
while the unmodified case is shown on the right. The worm is rolled around the fixed gear 
and the contact pattern is analysed from the inside of the gear. The wandering of the contact 
pattern on one side of the middle tooth is analysed. In case of non-modified, one-parametric 
enveloping, the points of the contact pattern are characterised by the same Fi value in the 
SC. It is possible to visualise any individual contact pattern as a set of points (Dudás,  1992). 
Visualisation in the following figures applies another method: it exploits the limited 
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exactness of OpenGL visualisation in case of surfaces given in points of a two-parametric 
grid. The inner points of a grid segment are not in exact spatial position, and the generation 
of the surfaces by discrete motion simulation also causes errors, so the two connecting 
surfaces interfere with each other. Because the colours are different, the small intersections 
of the surfaces form a ‘contact pattern’. This pattern is informative, but depends on the 
parameters of the grid and the simulation. Theoretically the contact pattern is a line or a 
point among two rigid solids. In practice the elasticity of the real gear material results in 
patterns with width. The applied method gives a realistic pattern, because implicitly it 
models the effect of distance between the points of the two surfaces along the theoretical 
contacting line. 
 

 
Fig. 28. Contact patterns of the modified (left side) and unmodified (right side) worms 
 
When the worm enters the mesh the pattern has a tangential form, see Phase 1 in Figure 28. 
It is important to note that there is a radial contacting line on the previous tooth for the 
unmodified worm but there is no contact in the case of the modified worm. Considering that 
under load the middle tooth is elastically deformed, the connection can also develop on the 
left tooth. Depending on the value of the load, the value of the MODC modification 
parameter can be set properly in design time. Phase 2 is very similar. Phase 3 shows the 
moment when the contacting arcs, moving in the radial direction, meet. The tangential 
shapes change to radial, improving the contacting quality greatly. In the next phases the 
connection is characterised by advantageous radial patterns. In the Phase 6, the right side 
tooth enters the mesh, and in the Phase 7 the middle tooth exits the mesh. 
 
 
 

 

Adding a second modification in radial direction 
The comparison proved that the modified worm has localised to the middle of the worm 
connection. But the figures show that the patterns remaining after localisation have bits at 
the root and tip region too, which are very sensitive to misalignment and cannot tolerate 
assembly errors. To localize the connection area in the radial direction as well, the profile 
modification shown in Figure 29 can be used. 
 

 
Fig. 29. Using a larger ellipse arc to modify the profile in radial direction of the worm 
 
This new profile applies a larger ellipse arc and uses GAMMA angle to make it possible to 
set the position of the unmodified C central point. By changing RO2 and GAMMA, the 
localisation can be fine tuned, as can be seen in Figure 30. To make the effect of this radial 
modification visible, the lighter modified surface was shifted by 0.005mm relative to the 
worm surface with pitch modification only. 
 

 
Fig. 30. Picturisation of different radial modifications on the worm: RO2-RO = 0.2 (left) and 
0.05 (right), GAMMA= 47 
 
The contact patterns of the twice modified worm gearing are shown in Figure 31. The 
patterns are localised to the centre of the contacting area of the worm-wheel and the worm. 
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Fig. 31. Contact patterns of the twice modified worm gearing 
 
The advantage of this twice-modified worm gearing is the localised contact and, as a 
consequence, smooth, noiseless working. The disadvantage is the problem of exact grinding 
that needs similar technique to that mentioned regarding conical and globoid worms. The 
problem was analysed in a detailed manner in (Dudás, 2008). Grinding with surface of 
revolution shape wheel causes 0.03-0.04mm error. Like most of the modified gearings 
(Litvin & De Donno, 1998), this worm gearing also has a very small alteration in the transfer 
ratio. 

 
4.3 Transmission error-free localised worm gear having point-like contact 
The SC gear modelling application is capable of producing gearings having point like 
contact. In Figure 8 the generated members of a gearing with a point-like connection are 
surfaces F21 and F22. The intermediary theoretical generating surface is F1. The generating 
kinematical relations are given by transformation matrices as functions of Fi1 and Fi2 
motion parameters. In the followings a theoretical helicoid with circle profile in the axle 
plane will be the intermediary generating surface. 
The generating surface has to fulfil the following requirements: 

 The contact curves appearing between F1 and F21 and between F1 and F22 must 
give an intersection point M in every moment of the working of the worm gearing 
(on different teeth, providing a larger engagement factor than 1).  

 The shape of the generating surface has to guarantee the machinability of the 
generated surfaces, the teeth of the worm and the worm-wheel. 

 

 
Fig. 32. The contact line of a ZTA-type worm gear is quasi-orthogonal to sliding speed 
 
Guaranteeing a continuous point-like connection 
The chosen F1 generating helicoid will result in a constant k1 contact curve between the F1 
and F21 worm surface. We can predict that this will have a close-to-radial shape. On the 
other hand, the k2 contact curve between the F1 and F22 worm-wheel surface will change by 
the minute. Figure 32 pictures the previous modelling of a ZTA-type worm gear connection. 
The forms of ZTA contact lines are advantageous for achieving a loadable oil film. The 
point-like connection will worsen these lines so the thickness of the oil film will not be as 
even along the “contact curve direction”. Applying a slightly larger helicoid than the 
working tooth surface of the worm of a non-modified ZTA worm gearing will result in 
similar k2 contact curves. So the chosen form of the F1 generating surface will be a helicoid 

 

 

 
Fig. 33. Determining an F1 intermediary generating helicoid as a surface swept by a circle-arc 
 
having a circle arc in the axle plane, as in Figure 33. This helicoid will have a parallel axis to 
the generated F21 worm surface, as shown in Figure 34. In addition to the DELTAY vertical 
distance that handles the difference between radiuses, a DELTAX horizontal displacement is 
introduced to make it possible to find a proper relative position for the F1 generating 
helicoid that will result in a quasi-radial k1 contact line to create a continuous intersection 
with the k2 contact curve of F1-F22 (see the right side of Figure 34). 
 

 
Fig. 34. Relative position of F1 generating helicoid and F21 generated worm surface 
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For the practical generation in SC only a segment of the F1 intermediary surface was 
applied, and instead of rotation of the generating helicoid the translation of the helicoid 
segment along its axis was applied exploiting the property that a helicoid can be twisted in 
itself. This speeded up the trial and error method which is used to determine suitable 
DELTAX and DELTAY values to ensure continuous intersection of contact curves. The circle 
arc profile generator curve was given in the K70 frame, the F1 generating helicoid segment 
was fixed to frame K100. The generating motion of helicoid segment F1 relative to the 
rotating F21 generated worm can be analysed in Figure 35. The generated F21 worm was 
calculated in the K130 frame using the K160 frame. This frame had an angle position in K130 
determined by ZETA1 parameter (see Figure 36). The reaching direction RHO1 and division-
coordinate TAU1 was defined in this K160 frame as shown on the right side of Figure 36. 
 

 
Fig. 35. The generating motion between K100 and K130 frames 
 
Because the gearing has to work in the opposite rotational direction as well, the other side of 
the worm tooth requires the F1 surface to be rotated around Y101 axis by 180 degrees, as can 
be followed in Figure 37. 
 

        
Fig. 36. Positioning the slicing plane X160-Z160 by ZETA1 angle parameter and determining 
the RHO1 reaching direction in the X160-Z160 co-ordinate plane 

 

 
Fig. 37. The relation of the generating helicoid segments to the worm and worm gear 
 
After determining the suitable F1 surface and position settings that would guarantee the 
continuous intersection of k1 and k2 contact lines, the finishing steps were the generation of 
the missing tooth surfaces of the F21 three-start worm and the generation of the missing 
surface parts of the F22 worm-wheel segment. The algebraic sign of DELTAX was different 
for the two sides of the teeth. For the calculations the global method was selected in SC for 
both generated gearing elements.  
 

 
Fig. 38. Determining the relation of the generating helicoid segment (K100) and worm-wheel 
(K230) frames 

www.intechopen.com



New way for the innovation of gear types 137
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After determining the suitable F1 surface and position settings that would guarantee the 
continuous intersection of k1 and k2 contact lines, the finishing steps were the generation of 
the missing tooth surfaces of the F21 three-start worm and the generation of the missing 
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Fig. 38. Determining the relation of the generating helicoid segment (K100) and worm-wheel 
(K230) frames 
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The kinematical arrangements applied in the generation of the F22 worm gear surface are 
described below. The kinematical relation between the F1 generating helicoid segment and 
the generated gear tooth surface is sketched in Figure 39. F1 is fixed to the K100 frame and 
performs a linear motion determined by the Fi2 motion parameter while the calculated gear 
surface rotates around an X230 axis. Similarly to the generating process of the F21 worm 
surface, the calculation of F22 points required the determination of the ZETA2-dependant 
position of the RHO2-TAU2 plane. This relation is similar to solutions showed in Figure 26. 
Figure 39 shows the SC gearing design tool in the midst of development. The upper left 
window shows a triple start worm and the worm-wheel segment in the midst of motion 
simulation. Under it the intermediary F1 generating helicoid segment, the generated F21 
worm and the constant k1 contact line can be checked. The upper right window shows the 
F1 generating helicoids segment and the generated F22 worm-wheel segment. The 
momentary contact curve forms an arc. The lower-left display window shows the generated 
worm, the generated worm-wheel and the intermediary generating helicoid segment. The 
point-like contact of the worm and worm-wheel appears as a darker spot on the contact arc of 
the generating surface and the worm-wheel. This spot can also be seen in the fifth window. 
 

       
Fig. 39. To the left: The Surface Constructor kinematical modelling and simulation software 
visualises the gearing elements 
To the right: Analysis of contact pattern in different moments of meshing. The darker ‘patch’ 
is the location of the point-like contact 
 
The meshing analysis proved that the contact is continuous and the engagement factor 
never goes below one. This can be checked in Figure 39, to the right, in the uppermost sub-
figure, where contact patterns appear on two teeth simultaneously. The results of global cuts 
were detected and evaluated. While there is a large interference region on the tooth of the 
worm wheel, this does not affect the meshing. 
The goal of the research documented here was to prove the viability of a new type of worm 
gearing that has localised contact pattern but works with zero transmission error. 

 

5. Conclusion 

This chapter has reviewed some results achieved using the Surface Constructor gears 
connection modelling application in the area of gearings development. The importance of 
the Reaching Model theory as the foundation of the tool was discussed. Then a short 
description presented the structure of the software and some capabilities of it. The 
emphasised versatility originates from the symbolic algebraic calculation, which is one of 
the special features of the software. In the main part of the chapter, some solved tasks were 
shown. The first investigation gave a possible solution for the problem of grinding of the 
non-helical worms in a theoretically exact way. The second demonstration presented a 
double modified worm gearing having a localised bearing pattern. The last example was a 
method of producing gearings having point-like connection, which was demonstrated by 
the creation of a novel worm gearing type characterised by continuous meshing in a point, 
resulted from the use of an intermediary generating surface, thus avoiding transmission 
error. These examples prove the applicability of Surface Constructor for gear investigation 
and innovation. 
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The kinematical arrangements applied in the generation of the F22 worm gear surface are 
described below. The kinematical relation between the F1 generating helicoid segment and 
the generated gear tooth surface is sketched in Figure 39. F1 is fixed to the K100 frame and 
performs a linear motion determined by the Fi2 motion parameter while the calculated gear 
surface rotates around an X230 axis. Similarly to the generating process of the F21 worm 
surface, the calculation of F22 points required the determination of the ZETA2-dependant 
position of the RHO2-TAU2 plane. This relation is similar to solutions showed in Figure 26. 
Figure 39 shows the SC gearing design tool in the midst of development. The upper left 
window shows a triple start worm and the worm-wheel segment in the midst of motion 
simulation. Under it the intermediary F1 generating helicoid segment, the generated F21 
worm and the constant k1 contact line can be checked. The upper right window shows the 
F1 generating helicoids segment and the generated F22 worm-wheel segment. The 
momentary contact curve forms an arc. The lower-left display window shows the generated 
worm, the generated worm-wheel and the intermediary generating helicoid segment. The 
point-like contact of the worm and worm-wheel appears as a darker spot on the contact arc of 
the generating surface and the worm-wheel. This spot can also be seen in the fifth window. 
 

       
Fig. 39. To the left: The Surface Constructor kinematical modelling and simulation software 
visualises the gearing elements 
To the right: Analysis of contact pattern in different moments of meshing. The darker ‘patch’ 
is the location of the point-like contact 
 
The meshing analysis proved that the contact is continuous and the engagement factor 
never goes below one. This can be checked in Figure 39, to the right, in the uppermost sub-
figure, where contact patterns appear on two teeth simultaneously. The results of global cuts 
were detected and evaluated. While there is a large interference region on the tooth of the 
worm wheel, this does not affect the meshing. 
The goal of the research documented here was to prove the viability of a new type of worm 
gearing that has localised contact pattern but works with zero transmission error. 

 

5. Conclusion 

This chapter has reviewed some results achieved using the Surface Constructor gears 
connection modelling application in the area of gearings development. The importance of 
the Reaching Model theory as the foundation of the tool was discussed. Then a short 
description presented the structure of the software and some capabilities of it. The 
emphasised versatility originates from the symbolic algebraic calculation, which is one of 
the special features of the software. In the main part of the chapter, some solved tasks were 
shown. The first investigation gave a possible solution for the problem of grinding of the 
non-helical worms in a theoretically exact way. The second demonstration presented a 
double modified worm gearing having a localised bearing pattern. The last example was a 
method of producing gearings having point-like connection, which was demonstrated by 
the creation of a novel worm gearing type characterised by continuous meshing in a point, 
resulted from the use of an intermediary generating surface, thus avoiding transmission 
error. These examples prove the applicability of Surface Constructor for gear investigation 
and innovation. 
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