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1. Introduction 

Evolutionary algorithms (EA) are randomized heuristic search methods based on the 
principles of natural evolution (Banzhaf et al., 1998; Goldberg, 1989; Holland, 1975; Bäck, 1996; 
Koza, 1992). If we know how to describe the problem using the terminology of artificial 
evolution, the EAs are quite easy to apply. Actually, the search for solution(s) is transformed 
into a search for the best EA setup – a mixture of highly correlated settings and functions 
(encoding scheme, run-time parameters, fitness (objective) function, selection mechanism. . .). 
Finding a good EA setup is a problem because EAs are chaotic systems where small variations 
in initial setup produce large variations in the long-term behavior of the model. A good setup 
for one problem is mostly unusable for another, although similar problem. 
Evolutionary algorithm that would be easy to apply in any problem domain would have to 
be autonomous in a sense that it would regulate its own behavior and would have no need 
for human intervention (except for the preparation phase, of course). This article discusses 
the operating principles of such an algorithm and presents its implementation. The 
Autonomous EA (AEA) is an experiment in the evolution of evolutionary algorithms. It is not 
much different from existing EAs and the line between the two is sometimes very blurred. 
Actually, AEA combines known concepts, insights and solutions from EAs, artificial life, 
chaos theory and complex adaptive systems theory into a new form of evolutionary 
algorithm. 
The nomenclature used in different fields is overlapping (for example individual/ 
solution/object/agent). In AEA the evolving individual represents the solution: a 
population of individuals (solutions) is evolved in order to find a solution (individual) for 
the problem at hand. Population is just a limited representation of the vast search space of 
all possible solutions. 

1.1 Controlling evolution 

Evolutionary computing is an artificial world where computer-based models are directly 
written in terms of conditional actions and operations. These models can then be “run” in a 
simulator. Like any other, the EA simulation is controlled by many parameters. There are 
numerous studies of EA parameters giving suggestions on their “correct” values. Different 
types of control of algorithm parameters can be classified as either parameter tuning, 
deterministic parameter control, adaptive or self-adaptive parameter control (Eiben et al., 
1999). 
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The EA implementers always try to create the system with as little parameters as possible. 
To reduce this already minimal number of parameters even further, two possibilities exist: 
1. make the parameter fully self-adaptive; or 
2. remove the need for a parameter. 
Self-adaptation effectively “hides” a parameter and can be used for most, but not all 
parameters. Because self-adaptation is a much explored topic (Angeline, 1995; Eiben et al., 
1999), we chose to investigate the second possibility more. We can try to remove a 
parameter either by replacing it with some non-parametric value/principle or by changing 
the operating principle( s) of the EA. Certain parameters, however, cannot be removed – for 
example the hardware limitations (amount of memory, available CPU time. . .). 
EAs are complex systems with numerous algorithm parameters to set. For example, Genetic 
Programming (GP) in the Open Beagle evolutionary framework by default already includes 
over 20 different parameters that directly control the behavior of the underlying evolutionary 
computation (ec.pop.size, ec.repro.prob, ec.sel.tournsize, . . . ) (Gagne & Parizeau, 2006). 

1.2 Objective 

The objective of Autonomous EA is to decrease the number of algorithm parameters to a 
bare minimum. The population size, for example, is one problematic parameter despite 
numerous attempts and claims of the ‘optimal’ value. Next problematic parameter is the one 
that controls the termination criterion. The most troublesome, however, is the fitness 
function. Although the fitness function does not seem to be a parameter, it is a rather 
complex mixture of criteria of unknown/changing importance. It must be “input” to all 
existing EAs by the human operator, therefore it is a parameter. Fitness can not be self-
adapted (only the constraint weights of fitness function can be self-adapted) or self-induced 
as EAs will quickly learn to “cheat” by producing worthless individuals with good fitness. 
Fitness is fundamental and is actually a reason for many other control settings. 

2. Fitness – the core of the problem 

Nature is using simple atomic rules to guide the evolution. Paradoxically, canonical EAs are 
already too complicated to follow this simple rule. They constantly apply the same orthodox 
idea of fitness and associated complex mechanisms in their evolutionary loops. Small 
mistake in fitness and EA will fail to find an otherwise obvious solution altogether. Creation 
of adequate fitness functions demands significant knowledge of the environment to be 
evaluated – this can imply that the problem might have already been solved or that other, 
non evolutionary technique(s) might be more efficient (Angeline & Pollack, 1994). 
Inadequate fitness makes EA focus on sub-optimal solutions. To avoid local optima different 
“corrections” and “tweaks” are usually applied. These corrections need further corrections 
resulting in complex EAs. In EAs, fitness is at the core of everything. 
Fitness function is the engineer’s interpretation of the problem and is as such affected by the 
computational biases of human cognition (Stanovich, 2003). Biased EA is unable to discover 
the generalists – solutions with the capability to generalize – because generalization can only 
be the (emergent) property of solutions produced by the unbiased EA. Solutions produced 
by biased EA are on the contrary often brittle – they fail on the previously unseen/new data. 
Unless EA is used to find specialists (optimizations of a single fitness peak), this is a major 
problem. Solution is either to make the fitness unbiased or to “remove” it altogether. 
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2.1 The search space 

The success of search depends mostly on the distribution of solutions within the search 
space and this distribution is determined/described by fitness. For the same simple problem 
a perfect fitness, for example, defines a gradual landscape well suited for deterministic 
methods like gradient descent; sub-optimal fitness defines a more complicated space with 
many spikes; and bad fitness creates a chaotic space where any informed search is 
impossible – in such space a random search is as successful as any other search (Wolpert & 
Macready, 1997). 
Existing fitness-based EAs are efficient in beautiful fitness problem spaces. Differential 
Evolution (DE), for example, is an effective, simple and fast optimization algorithm (Price & 
Storn, 1997). However, EAs are mostly tested on clean mathematical problems where fitness 
optimization is the problem. More difficult learning problems (for example data mining or 
genetic programming) require searching in unknown spaces for solutions of unknown 
structures – there, fitness itself is the problem (at least the fitness in a form needed by EAs). 

2.2 The essence of fitness 

The idea behind fitness is to produce a single number that will (magically) create a hierarchy 
of candidate solutions – the individual at the top better than the ones underneath. The 
tendency to over-simplify by squeezing into one single fitness number matters that are too 
rich to be described by it is a typical human mistake (an example is stock market analysis 
(Mandelbrot & Hudson, 2004)). It results in a fragile system. In EAs the concept of fitness 
looks simple and because all other mechanisms are crafted to suit the concept of fitness, the 
resulting system is extremely complex and not at all simple. In fact, the complexity of EAs is 
reflected in the number of necessary algorithm parameters. 
In the real world, there is no ultimate hierarchization of individuals nor are individuals living 
under the same conditions. Darwin’s survival of the fittest should not be interpreted as 
“evaluate, pick the best and kill the rest”, it should be a “live and let die and the best will 
prevail with more offspring” approach. This way the butterfly-effect the discarded (presumably 
insignificant) solutions might have had on the evolutionary process would not be lost! 
The dictionary defines Darwinian fitness as the number of offspring or close kin that survive 
to reproductive age (Dictionary.com, 2006). This definition is impossible to directly 
implement in EAs because artificial individuals do not live a life. Fitness is a shortcut that 
allows EAs to by-pass the phase of life of individuals. Fitness effectively determines the 
number of surviving offspring and replaces the individual’s true Darwinian fitness! This 
shortcut only seemingly produces a desired result because life is a chaotic process, 
extremely susceptible to initial conditions. Ignorance of this results in many problems 
associated with EAs (Toffoli, 2000). 

2.3 Limitations and assumptions 

The EAs are always limited by the availability of computational resources. Bremermann 
states that faster computers are insufficient, “we must look for quality, for refinements, for 
tricks, for every ingenuity that we can think of.” (Bremermann, 1962). This is why the EA 
community regards early Friedberg’s approach (Friedberg, 1958; Friedberg et al., 1959) as 
being immature, attributing this mostly to the fact, that he used the so-called binary fitness. 
EAs are going in the direction of establishing more elaborate fitness measures and selection 
schemes. The argument for this is the belief that without an accurate enough ranking, the 

www.intechopen.com



 Products and Services; from R&D to Final Solutions 

 

298 

natural dynamics of artificial evolution might be compromised (Banzhaf et al., 1998; 
Angeline & Pollack, 1994). If unlimited computational resources were available, EAs could 
operate without discarding any individuals. Because this is not the case, EAs must employ 
some sort of artificial selection, selection being “a name for the ability of those individuals 
that have outlasted the struggle for existence to bring their genetic information to the next 
generation” (Bäck, 1996). The EAs fail to follow this simple definition because they falsely 
assume that: 
1. evolution is a process of fitness-based ordering and selection; and 
2. the individual’s fitness is measurable and is independent of the fitness of its offspring. 
Firstly, individual’s fitness is based on the observed performance and EAs use this score to 
justify the selection, although biologists argue that “fitness cannot be used as a cause but 
merely as a description of natural selection” (Henle, 1991). EAs mistake the measurement of 
ability to fit the purpose for survival. Interestingly, EA researchers are aware of the fact that 
biological struggle for existence has no counterpart in EAs, yet they ignore this or find it at 
most an interesting research field (Bäck, 1996). 
Secondly, EAs calculate the fitness ( f ) without considering the individual’s potential to have 
better offspring. EAs rely on false impression that only fitness for purpose is important. In fact, 
the ability to create good offspring and forward the genetic information into next generations is 
what survival is about, yet this can not be computed in advance. If one were trying to compute 
it anyway, fitness values of all of individual’s offspring would be needed and for that the 
fitness values of all of the offspring’s offspring would be needed, etc.: 

 ˆ( ) ( ) ( ),f x u x f x= +  (1) 

where u is a performance/utility function (for example accuracy) measuring the success of x 

at solving the given problem and x̂  is x’s offspring ˆ ˆ( ( ) ( )).if x f x= ∑  This is a highly 
recursive definition. Canonical EAs assume that the individual with better fitness will 
produce better offspring than the competing individual with worse fitness score, or at least 
that the probability for the opposite is low enough: 

  ˆ ˆ( ( )> ( ) | ( )> ( )) 0P f y f x u x u y ≈ , (2) 

A basic assumption of the fitness function, namely that seemingly-better individual is 
assigned a better (in example higher) score, neglects the fact that the seemingly-worse 
individual can posses the much-needed building block of the global solution. The search 
space is normally so enormous that EA must not afford to lose this building block although 
located in a seemingly bad individual. But because of the limited computational resources, 
EAs use 

 ( ) ( ) ( ) ( )u x u y f x f y> ⇒ > , (3) 

to simplify (1) into 

 ( ) ( )f x u x≈ . (4) 

For fitness calculation standard EAs rely on (4) because it’s easy to implement and execute. 
The problem is that (4) does not link the ability to survive with the ability to solve a problem 
in any way, whereas (1) automatically makes this link. In standard EAs, survival is 
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artificially directed by the selection of survivors. Eq. (4) makes the evolution discover local 
solutions because of premature convergence problems. EAs acknowledge this and try to 
compensate by applying special mechanisms, which again have side-effects for which 
additional fixes are needed. . . In EA literature, numerous statements like: “the niching 
methods have been developed to reduce the effect of genetic drift resulting from the 
selection operator in the standard GA (Sareni & Krähenbühl, 1998)” can be found. 
Something similar occurs, for example, when evaluating the chess board position. The 
quality of a player’s move is determined by evaluation of the board after the move. If  
perfect fitness were available, the computer would always beat the human champion. Even 
worse, it could tell the winner right from the start! However, perfect fitness would only be 
possible to compute if fitness values of all successive moves were available; for these the 
scores of all the successive’s successive moves would be needed. . . In computer chess the 
effort has not gone to teaching computers about chess, but to improving the algorithms for 
deciding when to cut off calculations and when to calculate more deeply. Something similar 
occurs in EAs, where special fitness-based mechanisms (e.g. different criteria weights, 
selection schemes . . . ) are introduced and “improved” all the time, but fitness as a concept 
is never questioned. 

2.4 Implicit perspective 

The quality and quantity of population’s members are coupled properties – quality affects 
quantity and vice versa. Holland described this phenomena in the terms of adaptive complex 
systems (cas) (Holland, 1995). He, like many others, recognized that fitness must “depend on 
the context provided by the site”. Unlike EAs, however, he placed particular emphasis on 
avoiding an overt fitness criterion. He introduced the concept of a resource and his agent could 
reproduce only after it had acquired enough resources to make a copy of itself. Holland 
effectively replaced traditional explicit fitness with fully implicit resource acquisition. He 
avoided the fitness calculation because fitness is implicitly defined by the resource acquisition 
of his agents, which live or die in terms of their ability to collect critical resources. 
Holland’s principles were never successfully applied to engineering problems (where 
emphasis is put on finding best solutions). Rather, they’ve been used for studying complex 
adaptive systems, natural systems and in Artificial Life (AL) research. Artificial evolution in 
engineering was always based on explicit fitness; the numerous constraints implied by 
engineering problems make application of Holland’s ideas troublesome because they’re not 
directly goal driven as the engineer needs it. 

2.4.1 Co-evolution 

Co-evolutionary search should be more successful than ‘complete’ static fitness evaluation 
because co-evolving individuals sample the problem space more efficiently (Angeline & 
Pollack, 1994; Pagie & Mitchell, 2002; Hillis, 1990). Paredis, however, observed that in some 
cases co-evolution does not lead to better results (Paredis, 1997). These cases are often 
characterized by the occurrence of the so-called Red Queen dynamics1 (Pagie & Hogeweg, 
2000; Juille & Pollack, 2000), which can be prevented from persisting by the heterogeneity in 
the populations (Pagie & Mitchell, 2002). 

                                                 
1 Evolutionary change may be required to stay in the same place. Cessation of change may result in 
extinction. 
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Co-evolutionary search in EAs is mostly said to use “implicit” fitness, where the fitness of 
evolving solutions depends on the state of other, co-evolving individuals. This, however, is 
not implicit according to Holland’s definition because co-evolution is still calculating and 
using fitness. Fitness must not be a calculated value but rather an observed property of an 
individual; this observation can only be made after the individual has performed actions in 
its world (lived a life)! 

3. Autonomous Evolutionary Algorithm 

To achieve autonomy from human intervention AEA employs co-evolution of two 
competing populations. The fight for survival between two individuals, one from each 
respective population, simulates life and determines survivors in the simplest and most 
unbiased manner possible; in the process the number of offspring and individuals to be 
discarded are determined (this is necessary to keep the simulation within the available 
memory limits). The co-evolution terminates automatically2 after one population dominates 
the other. 
Standard EAs use fitness to create a hierarchy (ranking) of individuals. Position within this 
hierarchy defines the number of offspring. AEA, on the contrary, does not rank the 
individuals. Rather, it mimics a predator-prey like system, where individual survives only 
by outperforming another individual. In the process an individual holds and collects a 
virtual resource – energy – which is needed to create and shape the offspring. AEA 
essentially simulates the flow of energy between the two co-evolving populations. 

3.1 Life of an individual 

Standard EAs treat individuals as non-living objects. Individuals are created, evaluated and 
very likely also immediately destroyed without any impact whatsoever on the rest of the 
population. AEA, on the contrary, makes each individual alive – each living individual has 
to fight for survival and only surviving individuals reproduce. 
AEA maintains two separate populations of individuals of the same type. Fight for survival 
is a simple competition between two randomly chosen individuals, one from each respective 
population. The competition is about solving an atomic task from the problem at hand. The 
better of the two competing individuals at this atomic task is the survivor. By using an 
atomic task we make this process as unbiased as possible3. 
AEA never tries to judge how-much-better one individual is compared to another. By making 
every individual “alive” (putting him through the fight-for-survival test) we get a list of 
survivors, what effectively removes the need for a selection phase. 
The loser’s energy reserves are transferred to the winner and then the loser is removed from 
the system – the allocated spatial resources (every individual occupies a certain amount of 
available virtual space / physical memory) are again made available for offspring. The 
energy determines the creation (number and genetic structure) of offspring. The main result 
of individual’s life are fluctuations in quantity and distribution of virtual energy within the 
AEA system. 

                                                 
2 Of course the evolution run can also be terminated artificially. 
3 Typical atomic task is one fitness case from the learning database. 
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3.1.1 Compared to traditional EA 

The regular EAs look similar – the selection operator can give an individual zero, one or 
even more chances to “survive” and reproduce (this number is either random (e.g. 
tournament selection) or based on the fitness (e.g. roulette-wheel selection)). AEA, on the 
contrary, selects individuals to be removed only after they participated in the fight-for 
survival and lost their energy to the winning individuals. Effectively this is a “select all” 
selection strategy followed by a necessary4 removal of some individuals. 
Next important difference is how the fight for survival is made. To make the outcome as 
unbiased as possible, AEA employs the stochastic sampling of a single problem instance 
(atomic task) as the minimal measure of competence. Consequently also an overall bad 
performer can win against the almost perfect opponent, especially if the learning data 
contains noise. AEA lets the evolution decide which individual is better in the long run. . . 
AEA goes the opposite way of traditional fitness. Instead of using all available information, 
AEA makes use of only the tiniest fraction of it. AEA does not give importance to how many 
problem instances does one solution solve nor does it make any biased presumptions whether 
it is better to solve one instance over another. It just says: for this atomic task, this solution is 
better. The worry of handling noisy or missing data is left to the evolution. Sometimes a good 
individual will be defeated by a weak one; good individuals, however, have more energy and 
more offspring and will therefore probably survive at other opportunities. 

3.2 The core of the autonomous algorithm 

The main resource needed for reproduction is energy, which is exchanged only between 
competing individuals. The winning individual simply collects the loser’s energy reserves. 
Second resource in AEA is the space – each individual occupies a certain amount of 
memory. Each gene in individual’s genotype occupies one unit of memory space – size of an 
individual equals to number of its genes. Both populations have limited space for holding 
individuals. After the population space is full, offspring production is suspended until 
further individuals are removed from the population. 
The algorithm 1 shows AEA’s core. At start, the two co-evolving populations P1 and P2 are 
created and randomly initialized to fully occupy the assigned memory space. Individuals x 

∈ P1 and y ∈ P2 are fully qualified solutions. The initial sizes of populations (|P1|, |P2|) 
depend on the average size of fresh individuals created by a typical initialization routine. 
Individuals should live simultaneously but because today’s computers employ serial CPUs 
we can only simulate this parallelism. First, random interaction pairs (x,y) are determined 
using the random pairs function, which selects two random, previously unprocessed 
members, one from P1 and the second from P2, respectively. This creates a set of random 
pairs Q. Because P1 and P2 in general differ in size (|P1| ≠ |P2|) only the smaller of the two 
populations is fully used in one cycle of the main loop (|Q| = min(|P1|,|P2|)); the 
remaining individuals will be processed in the next cycle(s)5. 
Next is the actual life of an individual: from each available pair (x,y) ∈ Q the winner is 
determined. Winner takes the loser’s energy and waits for breeding, while the loser is 
discarded in order to free its memory space in its native population. Fight for survival 
redistributes the energy and frees the spatial resources. 

                                                 
4 Limited computational resources require a limited population. 
5 This must be guaranteed by the random pairs function. 
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Ideally, the surviving (active) individual would get one chance to breed and produce active 
offspring. This is unfortunately impossible to implement because the offspring would 
quickly overfill the population’s memory space. To avoid this AEA employs a simple 
waiting list (children), where the inactive offspring waits to be included in the active 
population. Until the list is emptied no further breeding takes place. Of course, other 
workarounds are possible. Before the main cycle is repeated and only after all of 
population’s members participated in a fight for survival, the breed function produces 
offspring for respective population (Algorithm 2). New children are produced only if all 
previous children were processed by the main loop. Function create child produces one child 
using traditional variation operators (sexual crossover and mutation). The number of 
inactive children that are transferred into active population depends on the number of free 
spatial resources. This is to ensure as parallel evolution of all individuals as possible. The 
size of the resulting population is not calculated nor artificially maintained at a certain level 
as is common in EAs; it is only limited by the available memory space. 
 
 
Algorithm 1 The core loop of AEA.

// two competing populations

population P1(memory/2), P2(memory/2);

while ( true ) {

// create a set of random pairs of individuals

// not all individuals are necessarily paired

Q = random_pairs( P1, P2 );

// fight-for-survival

for-each ( pair ( x, y ) in Q ) {

if ( x wins against y ) {

x.energy += y.energy;

P2.erase( y );

} else {

y.energy += x.energy;

P1.erase( x );

}

}

// termination criteria: empty population

if ( P1.empty() ) return P2;

if ( P2.empty() ) return P1;

// only breed the fully processed population

if ( P1 has been fully processed ) P1.breed();

if ( P2 has been fully processed ) P2.breed();

}
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Algorithm 2 Breeding of individuals within population.

population::breed()

{

if ( children.empty() ) {

// create offspring

for-each ( individual x in this population ) {

e = x.energy;

while ( e>0 ) {

individual y = random_member( this population );

child = crossover( x, y );

child.mutate( e );

child.energy = 1;

children.enque( child );

e = e-1;

}

x.energy = x.energy / 2;

}

}

// try to move children into active population

this population.transfer( children );

}

 
 

The new-born individuals have by default exactly one energy point; this allows the system 
to grow and sustain larger individuals because energy is a vital resource in reproduction. 
The number of descendants equals the leading parent’s energy. The higher the collected 
energy the more offspring the individual has. Each individual is a result of sexual 
reproduction of the primary parent with a random partner. The main parent produces a 
child by investing a certain portion (reproductive energy – e) of its energy into creation of 
the child’s genotype. The amount of energy invested directs the creation phase, in particular 
the selection of mutation point and the probability of mutation of that point. The completion 
of the breeding phase also takes away 1/2 of the main parent’s energy. The energy of the 
partner does not influence creation of main parent’s child; partner only provides its 
genotype for copying. 

3.2.1 Energy and reproduction 
The individual’s energy level determines: 
1. the number of offspring, 
2. the mutation probability, 
3. the mutation point. 
Crossover and mutations are interdependent: a new child is constructed from copies of both 
parents’ genes. Size of the child directly depends on the selection of the random crossover 
point within each parent. For a duplication of 1 gene 1 reproductive energy point must be 
provided. When this energy is exhausted, the gene about to be copied is subject to mutation 
with probability mut_prob = φ/(1.0 + e), where φ is a random number from interval [0,1]. For 
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linear genomes the mutation point is therefore the eth gene in the sequence. Tree-like genomes 
can be copied in either breadth-first or depth-first order. The remaining genes are copied 
without further energy consumption. The same result can also be achieved by making a 
mutation-free child and then mutating its eth gene – the procedure used in Algorithms 2 and 3. 
 
Algorithm 3Mutation depends on available energy.

void individual::mutate( e )

{

mut_prob = φ/(1+e);

if ( random(mut_prob) ) {

if (e < |genome|) {

gene = genome[e];

mutate( gene );

}

}

}

 
 

The parent’s energy is not always used in full when making children. Rather, children are 
created with decreasing amounts of energy. This way a constantly changing number and 
position of possible mutations is introduced in offspring – the first child’s reproductive 
energy e equals parent’s energy, the second child’s reproductive energy is one less etc. A 
“good” parent has enough energy to copy most of its genetic material faithfully and 
produce offspring with little or no mutations. The children of larger individuals without 
large energy reserves, however, are more likely to undergo mutations. 
If energy > |genome| no mutation is performed (as it is impossible to mutate a non-existing 
gene!). This is advantageous in creating offspring of parents with high energy status with 
respect to their size – higher energy suggests the parent is successful thus its genes should 
be preserved. Reproduction code in AEA (Alg. 2) makes pressure for many “good” copies of 
energy-full individuals. Parents with low energy reserves will have few and less-similar 
children. 

3.3 Example of reproduction 

For illustration of the reproduction consider Fig. 1, where a crossover of two GP-trees is 
shown: the first 5-node parent (“1 + (7 – 4)”) holds energy = 8 energy points; for the creation 
 

energy=8, e=5

size=5
energy=1

size=5

size=5

g

8

 
Fig. 1. Crossover without mutations. 
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of the fourth child e = 5 energy points are designated. The partner individual is “g(2, 5 ∗ 6, 
8)”. The randomly chosen crossover points in both parents are ‘-’ and ‘*’. Regular crossover 
results in a 5 node expression “1 + (5 ∗ 6)”. Because e ≥ 5 (size of the child), all nodes are 
copied/created without mutations. 
If the crossover point in Fig. 2 was selected at ‘4’ then regular EA crossover would produce 
the expression “1 + (7 − (5 ∗ 6))” with 7 nodes. Because there were only (e = 5) energy points 
available for creating this child, AEA is unable to reproduce all 7 nodes. Instead the first five 
nodes are copied (‘+’, ‘1’, ‘-’, ‘7’ and ‘*’) and the sixth node is mutated with probability φ/(1 
+ 5) from ‘5’ → ‘3’; the remaining node(s) are copied without mutations. 
 

energy=8, e=5

size=5 energy=1

size=7

8

g

 
Fig. 2. Crossover with mutations. 

3.4 Population size 

Autonomous EA does not have any population size setting. This parameter is made obsolete 
by the idea of co-evolving populations in a spatially limited environment, where energy is 
used to direct the reproduction phase. An upper limit to population size must exist (or else 
population’s size would explode in a matter of few generations); AEA implements this 
limitation through a total number of genes a population can hold. Consequently, a 
population can hold a large number of small individuals or a small number of very large 
individuals. One gene is said to occupy one unit of computer memory. Available memory is 
the first unavoidable setting of AEA. 
The phase plot in Fig. 3 displays three possible scenarios of how the populations’ sizes 
change during evolution. The evolution generally starts in the point S0 and progresses 
through S1 to terminate in either S2 or S3. The area of S1 is an ever-changing state, where 
small improvements or changes in P1 are counterbalanced by changes in P2 and vice versa. 
From state S1 the AEA can escape into either S2 or S3. However, if AEA is unable to break 
out of S1 in “reasonable” time, it must be terminated artificially. 
If one population is initialized to contain “much” better individuals the system will be 
unable to reach S1. Instead, the weaker population will vanish too quickly and the system 
will follow dotted arrows in Fig. 3. The evolution needs to cycle in S1 for some time before 
any significant progress can be expected. The prerequisite for this is the balanced quality of 
initial two populations. Only two populations of the roughly same quality level can obey the 
interaction principles from Fig. 4. 
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Figure 4 depicts the influences the two populations’ quality and size have on each other. 
Solid arrows represent positive influence and dashed arrows represent the negative impact 
of one entity on another. The “quality” is impossible to define (or else we’d have a perfect 
fitness function!) but is a property that should be maximized. This goal is achieved by the 
positive reinforcing loop: higher quality population will probably remove “low-quality” 
members from the lower quality population resulting in improvement of the average 
“quality” and reduction in size of the weaker population. The influence of increase in size 
on the opposing population’s size and quality is sometimes positive and sometimes negative 
– many trivial solutions can be beneficial for the opposing population, large number of good 
solutions, however, can be catastrophic. 
 

|P1|

|
P
2
|

S2

S0
S3

S1

0
 

Fig. 3. Typical evolutionary scenarios. 
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Fig. 4. Relations between quality and number of individuals. 
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This picture displays the complex interactions that drive the evolutionary search. The link 
between size and quality is dynamic. In the much studied predator-prey model (Blanchard 
et al., 1997), only the size of both populations is relevant while the quality by definition 
remains constant. In AEA the quality is expected to vary making this model more complex, 
though it should exhibit behavior similar to that of the predator-prey model. 

3.5 Run termination in AEA 

In standard EAs, run termination seems a non-problematic parameter: the EA run simply 
terminates if fitness hits a pre-set threshold or after a certain amount of processing has been 
done. The problem is again fitness. As discussed before, fitness is not an objective measure 
of success and can thus not be used as a termination criterion (see also section 4). The 
processing time, unfortunately, must remain a mandatory parameter for AEA, too. 
Natural populations live in an ever-changing environment (S1 area), where they’re constantly 
challenged to improve their qualities. In history, the species became extinct for various reasons 
(for example the meteorite (supposedly) wiped out the dinosaurs, humans killed the dodo 
birds. . . ). AEA treats one population as a species fighting for supremacy over another species. 
Because the two populations (P1 and P2) are genetically fully isolated, they can physically 
represent the same but “logically” different species. The main auto-termination criterion for 
the main loop is therefore the moment of absolute victory – the |Pi|→0 moment. 
If there’s no such event for a predefined amount of time, the evolution run can be 
interrupted artificially (just like in standard EAs). The problem remains, however, how to 
recognize/select the “best” solution from the remaining individuals. In traditional EAs, 
fitness-best individuals are proclaimed general solutions, yet there is no fitness criterion 
integrated within the AEA. One option is to use the classical fitness function just to select the 
resulting individual from the final population. This fitness is not used to guide the evolution 
in any way; it is rather calculated only after the evolution has already (been) stopped! 

4. Case study 

Symbolic function identification is often used as an illustrative example for evolutionary 
methods, especially genetic programming (Koza, 1992). Although simple regression 
problems are quite quickly solved by most GP implementations, more complicated or noisy 
problems remain a challenge. The presented case study focuses on the robustness of the 
evolved symbolic functions. 
AEA can easily be used to evolve genetic programs. The standard GP representation of an 
individual – a tree-like structure – is convenient also for AEA. The tree consist of a number 
of nodes, each node representing one instruction to be executed. Size of the individual 
corresponds to the number of nodes in the tree. 
The success predicate introduced by Koza requires perfect knowledge whether the solution is 
correct. The symbolic regression with noisy data set does not have a perfect fitness function nor 
perfect termination criterion. In order to determine the probability of satisfying the problem’s 
success predicate, Koza measured the number of processed individuals. Here, we’ll use the 
number of “function executions” as a measure of processing done by both algorithms. 

4.1 Symbolic regression 

Objective of this study is the discovery of a symbolic expression that satisfies a set of data 
points. Target function is the well known t(x) = x4 + x3 + x2 + x (Koza, 1992). In a perfect 
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learning environment GP excels in finding an exact solution because the data set includes no 
noise and an obvious fitness function is available. 
To test the robustness of standard GP (SGP) and AEA-GP produced solutions, three data 
sets (L0, L1 and L2) were created. Each data set included 41 points {(xi,yi) with x0 = −1, xi+1 = xi 
+0.05}. In L0 the dependent values yi equaled t(xi). In L1 and L2, however, Gaussian noise 
N(μ,σ) was added. For L1 and L2 the dependent variables were yi = t(xi) + N(0,0.02) and  
yi = t(xi) + N(0,0.5), respectively. Figure 5 shows the data points of all three learning data 
sets. 
 

-1

 0

 1

 2

 3

 4

-1 -0.5  0  0.5  1

L0

L1

L2

 
Fig. 5. The three data sets L0, L1 and L2. 

4.1.1 Standard GP 

All SGP runs in this section were done by the OpenBeagle library (Gagne & Parizeau, 2006). 
When not explicitly stated otherwise, the default settings were population size 50, 
tournament selection 2, mutations 0.05 (including shrink-mutation), swap-sub-tree mutation 
0.5, standard random-node mutation 0.05, crossover 0.9 and crossover point inside a tree 0.7. 
OpenBeagle used an adjusted fitness measure based on the accumulated error. The fitness 
value F of a symbolic function f on data L was calculated by 

 
[ ] 2

1
( , )

( ( ) )
1

| |
i i

F f L
f x L x

L

=
−

+ ∑
 (5) 

Another important criteria for a solution is size. In general, however, it is impossible to say 
whether a function comprising, for example 21 nodes, is always superior to the one 
comprising 25 nodes. Another problem are the introns. The effort to count function’s introns 
would require additional processing and would slow down the evolution considerably. 
Because of this we chose to use the simple adjusted fitness measure only. 
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The described fitness measure needs to execute the function f exactly |L|-times, in our case 
41-times. With the non-corrupted data set (L0), the target function t(x) had a fitness of 1. 
With noise the situation changed. Properties of the three data sets (L0, L1 and L2) and the 
fitness values of target function t(x) are shown in table 1. 
 

data set y F(y, Li)
L0 t(x) 1
L1 t(x) + N(0,0.05) 0.9588
L2 t(x) + N(0,0.2) 0.8470  

Table 1. Properties of the three data sets. 

Both, OpenBeagle and AEA-GP, were equipped with the same function (FS) and terminal 
(TS) set: 
 

FS = {+, -, *, \%, SIN, COS, EXP, RLOG}, 
TS = {x} 
 

where ’%’ and ’RLOG’ are protected division and protected logarithm, respectively. In order 
to choose the final solution from the evolved population, and to allow for a comparison with 
OpenBeagle, AEA-GP was equipped with the fitness measure (5). 

4.1.2 OpenBeagle results 

OpenBeagle offers a large number of available run-time options. The tests were performed 
using four different population sizes (P=50, 100, 200, 500). The evolution was interrupted if 
fitness hit the maximum or if the total number of fitness evaluations exceeded 1 million. 
Each configuration setup was used for 10 independent runs and the best-of-run individuals 
were recorded. Table 2 shows statistics for the hall-of-fame individuals of all 10 runs in each 
 

data set min max mean ± σ t(x)
P=50

L0 0.9990 1.0000 0.9999 ± 0.0003 9/10
L1 0.9704 0.9797 0.9744 ± 0.0034 0/10
L2 0.8732 0.9295 0.9110 ± 0.0173 0/10

P=100

L0 0.9977 1.0000 0.9998 ± 0.0007 9/10
L1 0.9540 0.9802 0.9706 ± 0.0081 0/10
L2 0.9060 0.9513 0.9228 ± 0.0146 0/10

P=200

L0 0.9959 1.0000 0.9993 ± 0.0015 8/10
L1 0.9628 0.9801 0.9742 ± 0.0053 0/10
L2 0.9024 0.9441 0.9233 ± 0.0141 0/10

P=500
L0 1.0000 1.0000 1.0000 ± 0.0000 10/10
L1 0.9597 0.9767 0.9707 ± 0.0054 0/10
L2 0.8937 0.9310 0.9146 ± 0.0124 0/10  

Table 2. OpenBeagle-GP scores for best-of-run individual’s fitness values for respective data 
sets using different populations sizes, averaged over 10 independent runs. 
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category. It shows results for respective data sets (column 1), the minimum achieved fitness 
(column 2), maximum fitness (column 3), mean fitness with standard deviation (column 4) 
and count of runs producing the target t(x) (column 5). 
The clean learning data set L0 was not problematic – OpenBeagle found the target t(x) in 36 
out of 40 runs. If the population size was set to 500 it even scored 10/10! 
Due to the noise in L1 and L2, the fitness function was unsuccessful in recognizing the target 
t(x) and headed straight towards functions that were over-fitted to the learning data. In 80 
runs it never recognized t(x) as the final solution and only once evolved a solution with a 
fitness score below F(t(x)). For both, L1 and L2, GP almost always encountered the function 
t(x) during the run, but discarded it and proceeded towards greater fitness. This was because 
the chosen (or any other) fitness function could not compensate for the noise in the data. 

4.1.3 Autonomous EA 

The interaction between the two opposing AEA-GP individuals was based on the comparison 
of the absolute error both candidate functions made on one random learning instance. AEA-
GP was set to terminate artificially if the number of function executions reached 41 million 
executions (one fitness evaluation in OpenBeagle was a calculation of 41 function values, thus 
the SGP run executed at most 41*1M=41M functions). Of course, AEA GP also auto-terminated 
if any population lost all of its members (P → 0). At the end, the population was inspected and, 
according to the SGP’s fitness measure, “best” solutions were recorded. 
Table 3 shows statistics for best-fitness individuals averaged over 10 independent runs for 
three different memory settings per respective data set. The minimum, maximum, mean and 
standard deviation of highest fitness values at the end of each AEA run are presented. 
Additionally, the average number of interactions I  pro run is displayed. Column 5 shows the 
count of perfect solutions t(x) produced in auto terminated runs (P → 0). Last column counts 
the number of runs producing target function t(x) regardless of the termination criteria. 
 

data set min max mean ± σ I tP→0/P→ 0 t(x)/n
M = 50000, Imax=41M

L0 0.8171 1.0000 0.9353 ± 0.0840 ≈ 8.8M 4/6 6/10
L1 0.8195 0.9588 0.8907 ± 0.0597 20.5M 0 4/10
L2 0.7819 0.8553 0.8081 ± 0.0223 20.5M 0 0/10

M = 250000, Imax=41M

L0 0.8355 1.0000 0.9550 ± 0.0728 ≈ 16.2M 3/3 7/10
L1 0.8562 0.9588 0.9434 ± 0.0324 20.5M 0 7/10
L2 0.7785 0.8573 0.8215 ± 0.0302 20.5M 0 0/10

M = 500000, Imax=41M

L0 0.8476 1.0000 0.9706 ± 0.0620 ≈ 15.0M 4/4 8/10
L1 0.9077 0.9600 0.9403 ± 0.0215 20.5M 0 4/10
L2 0.7913 0.8676 0.8419 ± 0.0239 20.5M 0 0/10  

Table 3. AEA statistics for best-of-run solutions with respective memory settings M. 

Like SGP, AEA-GP was also successful in finding the target function t(x) in problem set L0. The 
more memory was available, the better were the results. The first row of table 3 shows that 
AEA-GP produced target function t(x) 6 times in 10 runs; in 4 out of 6 cases, the perfect 
solution t(x) was found after the evolution auto-terminated; in two cases the t(x) was present in 
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the population P after the time-out of 20.5M interactions (2 evaluations per interaction make 
41M evaluations). Interestingly, 2 auto-terminated runs did not produce t(x). This could be 
attributed to smaller populations; M, set too low, increased the probability of the type S1—S3 

scenario (Fig. 3). Average AEA run on L0 with M = 50000 nodes took 8.8M interactions. 
When describing L1 and L2 with 100% accuracy, no straightforward function exists. The 
termination criterion P→0 was even less likely to be satisfied (as was the case with L0) as the 
noise disturbed each partially winning function. Consequently, AEA-GP always terminated 
only after 20.5M interactions and most6 fit individual was the pronounced solution of the run. 
With L1, AEA-GP was able to find target function t(x) in 15 out of 30 runs. SGP, on the 
contrary, almost always ended up with an excessively over-fitted solution; only in one run out 
of 40 did it evolve a population with a maximal fitness lower than 0.9588. AEA-GP managed 
just the opposite: it evolved a solution with a fitness higher than 0.9588 in one run only. 
With L2, AEA-GP did not find target t(x) in any of the 30 runs, but neither did SGP. SGP 
encountered several t(x) quite early in the run but then discarded them in favor of other 
excessively over-fitted solutions. AEA, on the contrary, evolved towards t(x) but failed to 
produce the desired target at the termination time7. 
Interestingly, with L2, SGP’s terminal population included the t(x) once, yet SGP failed to 
recognize it. AEA-GP also saw t(x) during the evolution. Due to the noise in L2, however, the 
target vanished and was not present at termination time. If present, it would have been 
mostly recognized because the best individuals’ mean fitness (0.8419) was always lower 
than F(t(x)) = 0.8470. SGP’s achieved minimum fitness was always over-fitted well above 
that (0.8732). 

4.2 Remarks 

When comparing AEA with other evolutionary computing techniques, e.g. GP, special 
attention should be paid to the interpretation of the inherent time-line. GP terminates 
immediately upon encountering the first solution with the perfect fitness score (e.g. f = 1). 
Autonomous EA, on the contrary, auto-terminates only when P gets exhausted – this may 
have been long after the first 100% solution ( f = 1) is found. It can be said that AEA is more 
time consuming than EA even though the AEA’s interaction operator is mostly much faster 
than the full fitness calculation. On the other hand, the presented termination criterion is more 
problem independent than the common generational and/or success-oriented predicates, 
especially when without a perfect measure of quality – the case of most real-world problems. 
Therefore, the traditional fitness-based EAs should be preferred over AEA if the search 
space is free of noise and if the learning set includes all possible instances and if it remains of 
manageable size (e.g. the n-multiplexer problem etc.). Namely, EAs converge faster if the 
solution can be described perfectly by a fitness function. In such cases their tendency to 
over-fit the training data is not problematic. 

5. Conclusions 

The presented AutonomousEA exploits and simplifies existing EA philosophy. It is based on 
a simulated interaction between two populations competing in a tournament-like manner. 

                                                 
6 Again, fitness F is not optimal, but is most convenient. 
7 In some of the unofficial runs set to terminate at 40M interactions, AEA eventually produced t(x) 
even in L2. 
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The main loop guarantees each individual a momentarily action (life!) in a quasi-parallel 
style. The core algorithm continuously creates interactions of two random individuals from 
two opposing populations and takes care, that every individual gets its turn as soon as 
possible. The dynamic sizing of both populations is implicitly governed by the self-
regulating principles (as in the predator-prey system), which determine the number of 
offspring and amount of mutations. The population size is therefore a direct consequence of 
individuals’ ability to survive. This is how the AutonomousEA creates a link between the 
immeasurable qualitative and measurable quantitative properties. 
Both initial random populations always include incompetent individuals, which are 
terminated during the evolution yet are necessary to shape the content and size of the 
population. Most of the processing time is used to create a population with precisely the 
right density of quality solutions. Higher density increases the probability of successful 
crossover and the creation of even better offspring, which in turn eliminates all individuals 
from the competitive environment. Empty environment is the termination criterion and 
signals a successful completion of the evolutionary search. 
The AEA is based on the co-evolution of two populations of the individuals of the same type. 
The smaller (endangered) population evolves faster because all of its members are always 
active thus they have additional breeding chances compared to the larger population. 
The concept of autonomous evolutionary algorithm needs only three run-time parameters: 
- Initialization setting is a parameter needed in the initialization phase of the algorithm. It 

can be used to tailor the first evolvable objects (for example the GP tree initial depth 
setting). 

- Memory space limits the population’s size. The larger the value, the larger the two 
populations. This setting should be set high to fully exploit the available hardware, 
because large population sizes do not result in over-fitting problems as in standard EAs. 

- Processing time is the artificial termination criterion because certain results must be 
delivered in due time. 

AutonomousEA is very simple to run – the set-up phase is very similar to that of an EA yet 
for the run-phase only the memory space must be specified, all other details are self 
regulated. Traditional EAs, on the contrary, require much effort to determine just-the-right 
values for numerous parameters of the run phase. 
Natural evolution is not under pressure to discover or optimize something. Rather, it goes 
different ways and something always pops out. The engineer, on the contrary, must hold 
artificial evolution in one direction. Use of fitness to specify this direction is problematic 
unless we’re unable to create perfect fitness, because evolution will find a solution with best 
fitness but of small value. 
The last section documented the AEA’s performance in evolving genetic programs for the 
noisy symbolic regression problem. Comparison with standard GP gave an insight into the 
power of the AEA’s principles regarding generalization capabilities of the produced 
solutions. Main problem of EAs was their tendency to over-fit the training data – the longer 
they were allowed to run or the larger the population size, the larger the discrepancy. AEA, 
on the contrary, kept close to the global generalization level. It found better solutions when 
more processing power (time) or memory was available. 

5.1 Future work 

Interesting sub-project was to use the adjusted fitness F instead of atomic tasks to decide the 
winner of an interaction. Although not in line with the AEA philosophy, it proved beneficial 
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for the symbreg example. On more difficult problems, however, it showed typical fitness-
related problems (over-fitting. . .). 
Also, different types of populations could compete under the AEA – for example a 
population of solutions could compete against a population of problems, what would allow 
for very elegant interaction implementation. This option, however, is problematic for many 
problem domains as it leads to premature convergence problem with instant AEA auto-
termination. Fact is that both population must evolve in parallel. We cannot create a random 
initial population and expect it to solve difficult problems in the first try. A mechanism that 
would allow for “evolution” of problems is needed. 

5.2 The code 

Autonomous evolutionary algorithm relies on the best-ideas-are-simple philosophy – better 
EAs are more simple, not more complex. The AEA library and example projects in C++ are 
available from the author per email request (matej.sprogar@uni-mb.si). 
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