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1. Introduction 

Synthetic Aperture Radar (SAR) systems are all-weather, night and day, imaging systems. 
Automatic interpretation of information in SAR images is very difficult because SAR images 
are affected by a noise-like characteristic called speckle that arises from an imaging device 
and strongly data and makes automatic image interpretation very difficult. The speckle 
noise in SAR images can be removed using an image restoration technique called 
despeckling. The goal of despeckling is to remove speckle-noise from SAR images and to 
preserve all image’s textural features. The statistical modeling of SAR images has been 
intensively investigated over recent years. In statistical image processing an image can be 
viewed as the realization of a joint probability density function. Since joint probability 
functions have analytical forms and few unknown parameters usually, the efficiency of the 
denoising algorithm depends on how well the chosen model approximates real data. 
The wavelet Daubechies (1992) based despeckling algorithms are proposed in Dai et al. (2004), 
Argenti et al. (2006), Foucher et al. (2001). The second-generation wavelets like Contourlet 
Chuna et al. (2006) have appeared over the past few years. Despeckling using Contourlet 
transform Li et al. (2006) and Bandelet Sveinsson & Benediktsson (2007) transforms show 
superior despeckling results for SAR images compared with the wavelet based methods. 
Model based despeckling mainly depends on the chosen models. Bayesian methods have been 
commonly used as denoising methods, where the prior, posterior and evidence probability 
density functions are modeled. The image and noise models in the wavelet domain are well-
defined using the results in Argenti et al. (2006), Gleich & Datcu (2007) and the noise free 
image is estimated using a MAP estimate. The speckle noise in the SAR images is considered 
as a multiplicative noise Walessa & Datcu (2000), and can be also presented as a signal-
dependent additive noise Argenti et al. (2006). The log transformed image is modeled using 
zero location Cauchy and zero-mean Gaussian distributions in order to develop minimum 
means absolute error estimator, and maximum a posteriori estimator. This paper presents the 
state-of the art methods for information extraction and their comparison in efficiency of 
despeckling and information extraction. This paper presents three methods for despeckling 
and information extraction. The first method is wavelet-based despeckling and information 
extraction method using the General Gauss-Markov Random Field (GGMRF) and Bayesian 
inference of first and second order. The second and third methods use the GMRF and Auto-
binomial model with the Bayesian inference of first and second order. The despeckling 
performance is compared and the texture parameters estimation is presented. 
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2. Synthetic Aperture Radar System 

The Synthetic Aperture Radar systems are all weather, day and night monitoring systems, 
which use the electromagnetic radiation for image retrieval. SAR is one of the most 
advanced engineering inventions systems in the last decade. Specific radar systems are 
imaging radars, such as side looking SAR and SAR. Practical restriction to the length of the 
antenna resulted in very coarse resolution in the flight direction. Using a fixed antenna, 
illuminating a strip or swath to the sensor’s ground track, resulted in the concept of 
stripping mapping. Modern phased-array antennas are able to perform even more 
sophisticated data collections strategies, as ScanSAR, spotlight SAR, but the strip map mode 
is the most applied mode on current satellites [1]. The concept of using frequency (phase) 
information in the radar signal’s along-track spectrum to discriminate two scatters within 
the antenna beam goes back to 1951 (Carl Wiley). The key factor is coherent radar,, where 
the phase and amplitude are received and preserved for later processing., but long antenna 
was required. The early SAR systems were based on optical processing of the measured 
echoed signal using the Fresnel approximation for image formation and are known as 
range-Doppler Imaging or polar format processing. The experience on airborne SAR 
systems in 60’s and 70’s culminated in L-band SAR system Seasat, a satellite launched in 
June 1978, primarily for ocean studies, the live time was 100 days, but the imaginary was 
spectacular, highlighting if geologic information and ocean topography information. Since 
1981 Shuttle missions carried SAR systems. The first instrument was the Shuttle Imaging 
radar SIR laboratory and operated for 2.5 days. An improved version of SIRA orbited the 
Earth in 1984 and was able to steer the antenna mechanically to enable different angels. 
Cosmos 1870 was the first S-band SAR satellite of former Soviet Union, launched in 1987 
and orbited at a height of 270 km and operated for 2 years, ALMAZ-1 was the second 
satellite launched in 1991 and operated for 1.5 years. First European Remote Sensing 
Satellite ERS-1 was operational in 1991 and operated until March 2000. Japan started space-
borne SAR program in 1992 with JERS in 1992, SIR-C/X-SAR was developed by JPL, DLR 
and ASI operated with C, L and X band. Canadian Space Agency lunched Radarsat in 1995. 
A SRTM (Shuttle Radar Topography mission) was carried out between 11 and 23 February 
2000. In last decade many other satellites with SAR were lunched: Radarsat-2, ENVISAT, 
TerraSAR-X, Tandem-X, ALOS, Cosmo-Skymed, SAR lupe and forth coming constellation of 
Sentinel satellites. 

2.1 Principles of SAR 
The central idea of SAR processing is based upon matched filtering of the received signal in 
both the range and azimuth directions. Matched filtering is possible because the acquired 
SAR data are modulated in these directions with appropriate phase functions. The 
modulation in range is provided by the phase encoding of transmitted pulse, while the 
modulation in azimuth is created by the motion in the signal. The point targets are arrayed 
in a Cartesian type Coordinate system space defined by range, azimuth, and altitude as 
analogs of x, y and z directions. The altitude direction is omitted in the two-dimensional 
simulation. The platform in this simulation is an antenna attached to a plane traveling at an 
orbital velocity, along the azimuth direction and at the midpoint in the flight, the distance to 
the target equals the range of closest approach or minimum range to target. As an satellite 
platform is used in the simulation, the curvature of the earth is considered negligible and 
the orbital velocity is approximately equal to the platform velocity. The transmitted radar 
signal, x(t), is assumed to be a chirp pulse (linearly frequency modulated signal) given by 
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Fig. 1. Chirp signal (left) and its Fourier transform (right). 
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where f0 = 9.63GHz, pulse duration Tr = 25μs, (frequency bandwidth of the chirp=300MHz), 
Kr is range of the FM rate, measured MHz/μs. The chirp signal in time domain and its 
impulse response and its Fourier transform are shown in Fig. 1. 
The transmitted radar signal as a cosine with a linearly ramping up frequency over a 
transmit duration followed by a null receive duration. The transmit window is called the 
pulse envelope, and defines the duration of the transmission. During the receive duration, 
the antenna waits to receive reflected radar signals from the targets contained in a one-
dimensional range slice echo as function of quick time. One over the combined transmit and 
receive duration is called the pulse repetition frequency, PRF, and defines the amount of 
pulses transmitted per second. 
The chirp signal is complex and has a complex envelope g(t) 

 0( ) ( )exp( 2 )x t g t j fπ τ=  (2) 

Let a point scatterer has a dimension, smaller then the wavelength λ = c/ν0 be located at a 
distance R - range away from the radar. The radar platform has a velocity v. The point is 
seen at the elevation angle and azimuth angle from the antenna main pointing direction. The 
received echo is proportional to the transmitted wave and delayed by the round-trip delay 
2R/c. In the receiver the echo signal is coherently demodulated, i.e. carrier frequency is 
removed, resulting echo signal of the point scatterer. The phase term depends on R, governs 
the interference of echoes from different scatterers. The shape of the pulse envelope g(τ) 
determines the range resolution of the radar, it is the ability of radar to distinguish two 
scatterers at slightly different ranges. g(τ) = sinc(τB). The achievable range resolution defined 
as half power width of g(τ). 

 
0

0.885
2

c
R

B
=  (3) 

The chirp functions can be compressed to a sinc function by correlation with a chirp 
function with the same frequency rate, thus leading to the resolution. This so-called range 
compression is often the first step in SAR data processing. The only relevant parameter 
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influencing on range resolution is range pulse bandwidth. In range only one pulse was 
considered for explanation. As the sensor advances along its path, subsequent pulses are 
transmitted and received by radar. The pulses are transmitted every 1/PRF (pulse 
repartition frequency). The target is illuminated by many pulses. The strength of each pulse 
varies, primarily because of the azimuth beam pattern. The signal strength decreases until 
target lies in the first null of the pattern beam. The energy in outside the main beam 
contributes to the azimuth ambiguities in the processed image. The received signal has the 
same waveform as transmitted signal, but it is much weaker and has a frequency shift 
governed by the relative speed of the sensor and the scatterer. If the distance between target 
and antenna is decreasing, the frequency of the received signal decreases. This effect is 
called SAR Doppler frequency. The received signal from the target consists of several 
parameters, which depicts azimuth chirp and range migration effect. The received signal 
consists of (i) amplitude range dependence and the elevation antenna pattern, (ii) part which 
reflects 2-way antenna pattern of the sensor, which represents the synthetic aperture length 
and is proportional to range r0, (iii) echo signal envelope and its position in fast time, (iv) 
the factor, which translates the range trajectory of the point scatterer into a phase history, it 
is called azimuth chirp and its frequency is given by 

 
2

0 0
0

1 2
( ) ( )

2D

d v
f t t t t

dt r
φ

π λ
= − = − −  (4) 

It is also called Doppler frequency. The Doppler frequency at the beam center is Doppler 
Centroid fDC 

 ( )DC D c cf f t t FMt= − =  (5) 

Where FM is frequency modulation rate of the azimuth chirp. The FM rate is always negative. 

 
2

0

2 v
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rλ
= −  (6) 

The azimuth resolution is given by 

 
0.866 cos

2DC

v L
A

f

θ
= ≈  (7) 

The azimuth resolution is independent of range, velocity or wavelength. The actual 
resolution is a function of how much of the bandwidth is processed and the combined shape 
of the beam pattern and the weighting function. The received and demodulated radar signal 
is referred to as the SAR signal space as it is still in its raw form and the two-dimensional 
image of the magnitude of the two-dimensional imaginary signal would not allow 
recognition of targets. 

2.2 Range Migration algorithm 
The range Doppler algorithm (RDA) was developed in 1976-1978 for processing SEASAT 
SAR data. Later it was used to digitally process space borne SAR image in 1978 and it is still 
the most widely used algorithm today. RDA operates in range and azimuth frequency 
domain, but it has the simplicity of one-dimensional operations. The reflected energy from 
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areas on the earth’s surface in the same range but in different azimuth, are located on the 
same azimuth frequency. So, when this frequency is adjusted, the whole target areas with 
the same frequency (which means in the same range) are adjusted. RDA uses the large 
difference in time scale of range and azimuth data and approximately separates processing 
in these two directions using Range Cell Migration Correction (RCMC). RCMC is the most 
important part of this algorithm. RCMC is performed in range frequency and azimuth 
frequency domain. Since, azimuth frequency is affected by Doppler Effect and azimuth 
frequency is bonded with Doppler frequency, it is called Range Doppler Algorithm. RDA 
can be implemented in three different ways. But they all have similar steps and their 
difference is only in Secondary Range Compression (SRC). The main steps of RDA are: 1- 
Range compression 2- Azimuth FFT (transform to range Doppler domain) 3- RCMC 4- 
Azimuth filtering 5- Inverse FFT (return to range azimuth time domain) 6- Image formation. 
Range compression is implemented using matched filter. The filter is generated by taking 
the complex conjugate if the FFT of the zero padded pulse replica, where the zeros are 
added to the end of the replica array. The output of the range matched filter is the inverse 
transform between range Fourier transformed raw data and the frequency domain matched 
filter. Each azimuth signal is Fourier transformed via an azimuth FFT and RCMC is 
performed before azimuth matched filtering in the range-Doppler domain. After azimuth 
matched filtering of each signal and azimuth inverse fast Fourier transforms (IFFTs), the 
final target image is obtained. 
Fig. 2 shows, real and imaginary part of the received signal, The simulated raw data and its 
real part and phase are shown in Fig. 3. Fig.4 shows the process of range compression with 
RCMC and its phase. 

  
Fig. 2. Real and imaginary part of the received signal. 

   
Fig. 3. Simulated SAR raw data: amplitude (left), real part (middle)and phase (right) 
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Fig. 4. Phase of spectra in range direction. RCMC. Phase of spectra after range compression. 
Phase of spectra in azimuth direction. 

3. Image and speckle models 

SAR images are affected by a noise-like characteristic called speckle that affects all coherent 
imaging systems and, therefore, can be observed in laser, acoustic and radar images. 
Basically, this usually disturbing effect is caused by random interferences, either 
constructive or destructive, between the electromagnetic waves which are reflected from 
different scatterers present in the imaged area. SAR images appear to be affected by a 
granular and rather strong noise named speckle. Speckle becomes visible only in the 
detected amplitude or intensity signal. The complex signal by itself is distorted by thermal 
noise and signal processing induced effects only. As a consequence of the speckle 
phenomenon, the interpretation of detected SAR images is highly disturbed and cannot be 
done with standard tools developed for non-coherent imagery. Magnitude and phase of the 
scatterers are statistically independent, allowing to obtain the received signal by a simple 
summation of the individual contributions. Interactions between scatterers are neglected. 
The phase of the scatterers is uniformly distributed between 0 and 2π, i.e. speckle is 
assumed to be fully developed. 

3.1 SAR image statistics 
The SAR image is a complex image, where the real and imaginary part have Gaussian 
distribution, with zero mean and its real and theoretical distributions are shown in Fig. 5(a) 
and 5(b). The amplitude of the SAR image is obtained using the absolute value and can be 
modeled using Gamma distribution 

 
2 1 2

( ) 2 exp
( )

L Lx L x
p x L

Lμ μ μ

− ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟Γ⎝ ⎠ ⎝ ⎠⎝ ⎠
 (8) 

where L represents equivalent number of looks L = μ 2/σ 2, μ and σ 2 represent the mean 
value and variance of the image, respectively. Histograms of amplitude, phase, real and 
imaginary part of the SAR image are shown in Figs. 5(c)-5(d), respectively. 

3.2 Markov random fields 
Bayesian data analysis is well suited to image interpretation in combination with 
appropriate prior models for the noiseless scene. The quality of the estimate, however, 
depends largely on the employed model and its ability to describe the image content. In this 
context, Markov and Gibbs random fields (MRFs and GRFs) play an important role, since  
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                                          (a)                                                                              (b) 

  
                                           (c)                                                                             (d) 

Fig. 5. Histograms of (a) real part, (b) imaginary part, (c) amplitude, (d) phase 

they are able to statistically describe correlations, or even more generally, any kind of 
statistical dependence between neighboring pixels. Furthermore, they are easily applicable 
within the Bayesian framework. Originating from statistical physics, where they have been 
used for the study of phase transitions, they are now widely employed to model two-
dimensional lattices, such as image data. In the beginning, the use of Markov models in 
image processing was limited due to the constraint of causality, but after a solution to this 
problem had been found, they quickly became one of the standard image processing tools. 
The information of digital images is not only encapsulated in gray-values of individual 
pixels. More than that, images are usually composed of different regions and features with 
similar statistical properties, such as textures, lines and contours. As of this, several 
independently considered pixels usually are not significant to describe all information of a 
certain image region, but become important by their relations and interactions with pixels in 
a neighborhood. The characteristics of these local interactions between pixels, defining 
different regions of an image, can be modeled by a Markovian formalism, which is suitable 
for the envisaged framework of Bayesian data analysis. The MRF model characterize the 
spatial statistical dependency of 2-D data by symmetric set called neighbor set. The 
expression ( )

s

r s r s r
r

x x
ζ

θ + −
∈

+∑  represents the sum of all the distinct cliques of neighboring 

pixels at a specific subband. For the first order model of MRF, a sum is performed over 
horizontal and vertical neighboring pixels. The neighbor set for a first model order is 
defined as ζ = {(0,1), (0,–1)(1,0), (–1,0)} and for a second model order ζ = {(0,1), (0,–1)(1,0),  
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(–1,0), (1,1), (–1,–1), (1,–1), (–1,1)}. The MRF model is defined for symmetric neighbor set, 
therefore, if r ∈ ζs then –r ∉ ζs and ζ is defined as ζ = (r : r ∈ ζs) [ (–r : r ∈ ζs). MRF can be 
described by potential functions working on a local neighborhood due to the Gibbs-Markov 
equivalence. In principle, there are no restrictions to the contents of these potential 
functions. The potentials attached to different cliques do not even have to be stationary but 
can vary throughout the image. For the problem of image restoration or information 
extraction, however, a certain number of ”standard” potential functions exist. 
Local interactions can be described by potentials Vc for different cliques c. These potentials 
are a function of the gray-values of the pixels belonging to a clique. Hence, the global energy 
of the whole image can be written as the sum over all potentials 

 ( ) ( )c
c C

U x V x
∈

= ∑  (9) 

In the same way, the local energy at pixel xi 

 
,

( ) ( )i c i
c C i C

U x V x
∈ ∈

= ∑  (10) 

which is the sum of the potentials over all cliques that include pixel xi. As a result, the local 
statistical interactions of pixels within an image can be described by an appropriate set of 
potential functions Vc and a corresponding clique system C. 

3.3 Gauss-Markov model 
Gauss-Markov model is defined by the local energy function 

 
2

, , ,2
,

( )
( ) , ( )

2
i i

i i i k l k l k l
k j C

x
U x x x

μ μ θ
σ ∈

− ′= = +∑  (11) 

Parameter θk,l represents the model vector parameter. The neighborhood configuration is 
encapsulated in a weighted sum over all neighboring pixels resulting in a prediction μi for 
the center pixel. Assuming some distortion of the prediction μi by additive Gaussian noise Ni 

of zero mean and variance σ 2 the corresponding conditional pdf of Gauss-Markov random 
fields can be written in a closed form as 

 
2

22

( )1
( ) exp

22
i ix

p x
μ

σπσ

−
= −  (12) 

which corresponds to a linear auto-regressive process with xi = μi + ni, where ni is a 
realization of Ni. 

3.4 Auto-binomial model 
An autobinomial distribution is given by 

 ( ) ( )1
( ) 1 , ,

1 exp( )
G xx r r r

r C

G b x x
p x a

x G
ρ ρ ρ η

η
−

∈

⎛ ⎞ ′+
= − = = +⎜ ⎟

+ −⎝ ⎠
∑  (13) 

where θ = a, b11, b12, b21, b22, ... represents avto-binomial model (ABM) parameters and G the 
maximal value in the image. A value a parameterizes the pdf of x without spatial  
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                 (a)                                      (b)                                   (c)                                   (d) 

Fig. 6. (a)-(b) Generated textures using GMRF. (c)-(d) Generated textures using ABM. 

interactions. The number of parameters bij depends on the model order. Figs. 6(a)-6(d) show 
textures generated using the GMRF model and the auto-binomial model. The auto-binomial 
model generates more blob-like textures, while the GMRF model produces more natural and 
not very sharp textures. 

4. Bayesian statistical modeling 

Noise-free image models and noise models should be defined in order to remove noise from 
SAR image using Bayesian inference. The marginal distribution of wavelet subbands is well 
approximated by generalized Gaussian distribution. It is assumed that the image model in 
the wavelet domain is well approximated using general Gaussian distribution, and the noise 
distribution is non-stationary Gaussian noise with zero mean and locally varying variance, 
which is estimated from a given spatial neighborhood. We assume that the speckle noise in 
the wavelet domain can be approximated well using Gaussian distribution. The first level of 

Bayesian inference is 
( | , ) ( | )

( | , )
( | )

p p
p

p
=

y x x
x y

y

θ θ
θ

θ
 where y is a noisy image, x is a noise-free 

image, θ represents the model’s parameter, p(y|x, θ) denotes the conditional pdf of y over x 
and its so-called likelihood pdf, p(x|θ) denotes prior pdf and p(y|θ) represents evidence 

pdf. The p(y|θ) pdf does not play a role in the maximization over x and, therefore, the 
Maximum A Posteriori (MAP) estimator is given by x̂(y) = argmaxx p(y|x, θ)p(x|θ) where 
likelihood and prior pdf’s should be defined. The MAP estimator is an optimal estimator 
and minimizes the cost function. 

5. Maximum a posteriori despeckling using Gauss-Markov Random Field 

Model based despeckling using Gauss-Markov Random Field (GMRF) model, a maximum a 
posteriori (MAP) estimation and evidence maximization framework was proposed in 
Walessa & Datcu (2000). It uses the Bayesian approach using the first level of Bayesian 
inference to obtain the maximum a posteriori (MAP) estimate of despeckled image. This 
method uses gamma pdf (8) as likelihood p(y|x, θ) and as prior p(x|θ) a GMRF (12), which 
models and preserves textures within the image. The MAP estimate is obtained by 
maximizing a product p(y|x, θ)p(x|θ). is given by 

 4 3 2 2 2 22 2 0.j j
j n

x x x L x L yθ σ σ
∈

− + − =∑  (14) 
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The equation is solved analytically for variable x. The solution represents the approximated 
noise-free coefficients, which depends on texture parameter θ. The parameter estimation θ is 
determined using the second level of Bayesian inference using evidence maximization. Due 
to the complexity of the integral it can not be computed analytically. The evidence integral 
consists of mutually independent process. Multidimensional probability density function is 
approximated by a multivariate Gaussian probability density function with Hessian matrix 
H, which is centered on the maximum of a posteriori pdf. Approximation of the evidence 
p(y|θ) is given by 

 
2

1

(2 )
( | ) ( | , ) ( | ) ( | ) ( | )

| |

m

MAP MAP

m

i i i
i

p p p dx p y x p x
π

=

= ≈ ∏∫y y x x
H

θ θ θ θ  (15) 

where xiMAP is the MAP estimate of xi obtained using the fixed parameter vector θ and H is 
the Hessian matrix. In order to obtain the highest evidence the set of chosen parameter 
θ changes iteratively. H denotes Hessian matrix, which is the square matrix of the second 
order partial derivatives of a univariate function given by 

 
1

log( ( | ) ( | ))
N N

s s s
s

H p y x p x θ
×

=
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where index s denotes the index in the 2D lattice. 
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where hii are the main diagonal elements of the Hessian matrix H. The second derivate can 

be computed analytically. The final approximation is given by 
1

.
N

ii
i

H h
=

≈ ∏  

The parameter θ requires sequential computation of the MAP estimate and its evidence 
p(y|θ). In the first step the MAP estimate is computed using initial parameter θ. For those 
MAP estimates within window size of N × N the evidence is computed. One parameter θi is 
changed and the evidence is computed. If the evidence is increased, new estimate is kept, 
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and second parameter θi+1 is changed and the evidence is computed. If the evidence 
decreases the parameter θi is unchanged. All parameters θi are changed until the evidence is 
growing. When the evidence is not changing any more, θ represents the final solution. 

6. Maximum a Posteriori despeckling using Auto-binomial Model (MAP-ABM) 

A Maximum a Posteriori despeckling using Auto-binomial Model method Hebar et al. 
(2009) is also based on the Bayesian approach. The likelihood probability is modeled using 
the Gamma distribution (8) and an auto-binomial model (13) is used as a prior pdf. The 
auto-binomial model is discrete function, therefore, the differential is introduced to solve the 
MAP estimation numerically. The MAP estimate is given by 

 
2 1 2

log ( | ) log 2 exp log (1 )
( )

i i

L L
x G xi i

i i
ii i i i i i

Gy yL
p x y L

xx x x x L x x
ρ ρ

−
−

⎡ ⎤⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ Δ Δ⎢ ⎥⎜ ⎟= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟Δ Δ Γ Δ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎝ ⎠⎣ ⎦

 (20) 

The first expression can be solved analytically. However, the second expression which 
represents the Auto-binomial model is solving subtracting log p((xi + 1)|θi) – log p(xi |θi) 
numerically. The result is given by the zeros of 
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i ii
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ρ
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 (21) 

The MAP estimate was found using Brent’s method algorithm for numerical solution of 
roots. In the second level of Bayesian inference, the evidence maximization was adapted to 
logarithm form using the Auto-binomial model. The parameter ρ in (20) depends on model 
parameter θ, defined in (13). The parameter θ define ABM and it is determined using the 
evidence maximization approach. The evidence is given by 
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The evidence maximization is very similar to the algorithm MAP-ABM. The texture 
parameters are changed in order to increase the evidence. The evidence shows how good 
the model fits to the original data. The synthetic generated data are fitted to the original 
data. 
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7. Maksimum a posteriori despeckling using generalized Gaussian-Markov 
Random field model 

The wavelet subbands represents coarse to fine representation of the image in the terms of 
frequencies and spatial orientation. The reader is pointed to the literature for details 
regarding the wavelet transform Daubechies (1992), Chan (1995), Chui (1992). The 
decomposition is implemented using high and low pass filters, therefore the subbands at the 
high scale represents subbands with high frequencies and subbands at the low scale 
represents subbands with low frequencies. The time-frequency analysis can be easily done 
using the properties of subband decomposition. The subbands, in general, have Generalized 
Gaussian distribution and zero mean. The despeckling and information extraction using 
Bayesian inference, therefore, require models based on Gaussian distribution. The speckle 
within the wavelet domain is approximated using the Gaussian distribution and an image 
model can be approximated by the Generalized Gaussian distribution. Information 
extraction using GMRF can be extended using the generalized GMRF. The prior pdf p(x), 
which has the form of a Generalized Gaussian Markov Random Field (GGMRF), is given by 
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Let σx and θ define the GGMRF with a neighbor set ζs. The parameter ν represents the shape 
parameters of the GGMRF. The MAP estimate using GGMRF prior and the Gaussian 
likelihood is given by 
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The variance σx of a noise-free image and variance of speckle noise σn are estimated using 
the results of Foucher et al. (2001): 
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where μx = E[x] and 2
xC  is the normalized standard deviation of noisy wavelet coefficient is 

CWy = σWy/μy and the normalized standard deviation of noise 1 /FC L=  for intensity 

images (where L is the number of looks) and (4 / 1) /FC Lπ= −  for intensity images. The 

parameter ψj is defined as a product of the high pass gk and low pass hk filter coefficients 

used at j-th level of wavelet decomposition ( ) ( )2 2( 1)2 2 .
j

j k kk k
ψ h k
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= ∑ ∑  Finally, the noise 

variance is given by: 
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where μy = E[y]. The estimate for σn is used for all values of parameter ν. The texture 
parameter θ of GGMRF was estimated using minimum mean square estimate. 
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µ = 127.94 MAP-GMRF MAP-ABM MAP-GGMRF 
MSE 264.34 259.31 245.45 
Mean 127.84 127.86 127.89 
ENL 651 539 826 
Speckle 3.15 3.18 3.15 
Mean(y/ x̂ ) 0.97 0.95 0.94 

Table 1. Filter Evaluation for Synthetic test images. 
 

    
                  (a)                                    (b)                                    (c)                                     (d) 

    
                  (e)                                    (f)                                    (g)                                     (h) 

Fig. 7. (a)Original mosaic image. (b) Speckled mosaic. (c) Despeckled obtained with 
MAPGMRF. (d) Despeckled obtained with MAP-ABM. (e) Despeckled obtained with 
wavelet MAP-GGMRF. (f) Ratio image obtained with the MAP-GMRF. (g) Ratio image 
obtained with the MAP-ABM (h) Ratio image obtained with the wavelet MAP-GGMRF. 

8. Experimental results 

This section presents the efficiency of the proposed methods using objective and subjective 
criteria. The synthetic image, shown in Fig. 7(a), which is affected by a simulated 
multiplicative speckle is shown in Fig. 7(b). The MAP-GMRF and the MAP-ABM methods 
operate within the image domain and use the same model parameters. The window size is 
15×15 the MRF order is 2 for all experiments and the step size is 1. The reconstructed image 
obtained with the MAP-GMRF, MAP-ABM and the MAP-GGMRF algorithms are shown in 
Figs. 7(c)- 7(e), respectively. The mean square error (MSE), mean of the reconstructed image, 
ENL of the reconstructed image, ENL of the ratio images and mean of the ratio images are 
reported in Table 1. The best results in the objective measurements gives the wavelet based 
methods, which uses the GGMRF model and is followed by the MAP-ABM and the MAP-
MBD methods. All methods well reserve the mean of the reconstructed image and from the 
ENL results can be concluded that the MAP-GGMRF method gives the most smoothes  
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                  (a)                                    (b)                                    (c)                                     (d) 

Fig. 8. (a)Original image of Cairo, Egypt (©DLR). (b) MAP-MBD despeckled (c) MAP-ABM 
despeckled. (d) MAP-GGMRF despeckled. 

 
µ = 190.4  MAP-GMRF  MAP-ABM  MAP-GGMRF  
Mean 190.6  190.2  190.3   
ENL  90  96  118  
Speckle  4.15  4.18  4.15  
Mean(y/ x̂ )  0.99  0.98  0.99  

Table 2. Filter Evaluation for Synthetic test images. 

reconstructed image and the MAP-ABM gives the most sharpest image. The ratio images 
shown in Figs. 7(f)-7(h), which represent the speckle, because speckle is multiplicative y = xn 

and the ratio images represents y/x = n. The speckle in Table 1 represents the ENL of ratio 
images and should be around 3, because original images were affected by speckle with 3 
ENL. All methods well estimate the speckle. The mean of speckle should be 1 and all 
presented methods well estimate the speckle. 
Presented methods were tested using the real SAR image of Cairo, Egyipt, provided by the 
TerraSAR-X satellite. The resolution is 1.1 m in azimuth and 0.86 m in range. It was acquired 
using 300 MHz chirp. The original image is shown in Fig. 8(a) and despeckled using GMRF, 
ABM and GGMRF models on Figs. 8(b)-8(d). The MAP-ABM method gives very good 
results using, because structures are good modeled, speckle well removed and the mean of 
the reconstructed image is preserved well, as reported in Table 2. The MAP-GMRF method 
well estimates speckle, but introduces GMRF based structures, which appear, as inability of 
the model to adapt to the real textures. The MAP-GGMRF well remove speckle and models  
 

       
                                   (a)                                      (b)                                     (c) 

Fig. 9. (a)Ratio image obtained with the MAP-GMRF. (b) Ratio image obtained with the 
MAPABM(c) Ratio image obtained with the wavelet MAP-GGMRF. 

www.intechopen.com



Recent Advances in Synthetic Aperture Radar Enhancement and Information Extraction   

 

241 

    
                  (a)                                    (b)                                    (c)                                     (d) 

  
                                                          (e)                                   (f) 

Fig. 10. Horizontal (HH) and vertical (VV) textural parameters (a)HH, MAP-GMRF. (b) VV, 
MAP-GMRF. (c) HH, MAP-ABM. (d) VV, MAP-GMRF. (d) HH, MAP-GGMRF. (e) VV, 
MAPGGMRF. 

textures in the real-SAR image. Figs. 9(a)-9(c) show the ratio images of real SAR images. The 
speckle is well estimated with all presented methods. 
The MRF based methods are able to extract features parameters. In this case the texture can 
be extracted using texture models. The texture parameters obtained with the GMRF, ABM 
and GGMRF models are shown in Figs. 10(a)-10(f), where the horizontal and vertical cliques 
are shown. The ABM model well models homogeneous and heterogeneous regions, as well 
it separates different kind of textures, as show the ABM’s texture parameters on Figs. 10(c)-
10(d). The GMRF model is not as efficient as the ABM model in modeling real textures, but 
it is still able to model homogeneous and heterogeneous regions and the parameters 
estimated with the GMRF model are shown in Figs. 10(a)-10(b). The wavelet based method 
has difficulties in modeling textures. This can be the consequence of the linear model used 
for the texture parameter estimation. The texture parameters obtained with the GGMRF 
model are shown in Fig. 10(e)-10(f). 
The computational efficiency of the proposed methods were tested on real SAR image with 
1024 ×1024 pixels and the execution times were 414, 560 and 103 seconds for MAP-GMRF, 
MAP-ABM and MAP-GGMRF methods. 

9. Conclusion 

Presented methods in this paper are based on Markov Random Fields. The efficiency of two 
methods, which work within the image domain and the wavelet based method is compared. 
The wavelet-based method gives good results in the objective measurements on simulated 
data, well preforms in the terms of despeckling, but its ability of information extraction in 
very poor. The ABM in GMRF based methods well despeckles the real and simulated data 
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and the ABM gives very good results using real SAR data. The ABM has better ability to 
separate blob-like textures, which occur in the real SAR images for city areas. The GMRF 
model is more appropriate for the natural textures. 
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