
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

7

Operating System Kernel Coprocessor
for Embedded Applications

Domen Verber and Matjaž Colnarič
University of Maribor, Faculty of Electrical Engineering and Computer Science

Slovenia

1. Introduction

The silicon evolution yields advances in contemporary processor architecture. As a result of

the ever-increasing number of components in a chip, multi-core solutions have emerged. In

general computing systems, their goal is to accommodate the parallel execution of processes,

tasks or threads. Apart from general computing, the parallel execution of tasks is

characteristic of asynchronous and dynamic embedded applications like automotive

systems, process control, multimedia processing, security systems, etc., for which, in recent

times, multi-core architecture has also raised interest [Lee (2010)].

However, in the case of processors for embedded systems and their ultimate requirement

being predictability of temporal behaviour, the implementation of traditional

multiprocessing is not straightforward. Their advanced architecture features (pipelines,

cache, etc.), which are devised to improve average computing speed, may introduce severe

sources of non determinism and unpredictability.

Instead of symmetrical multiprocessing, it is more adequate to employ multi-core processors

for specialised operations. One of these is the execution of operating system services with a

goal to deal with the nondeterministic and unpredictable time delays caused by the very

nature of asynchronous events by separating the execution of process control tasks from real

time operating system (RTOS) kernel routines. This approach is similar to the idea of math

coprocessors, graphical accelerators, intelligent peripherals, etc. These specialized units are

able to perform operations much faster than general processors that implement them as

software programs.

The idea of migrating scheduling out of the main processor is already old [Halang (1988);

Cooling (1993); Lindh et. all. (1998), etc.] However, with the advent of multi-core

processors on one hand, and programmable hardware devices for prototyping on the

other, its implementation has become much more feasible and realistic. In this

contribution we are presenting a prototype of a separate Application specific integrated

circuits (ASIC) implemented coprocessor performing operating system kernel

functionalities.

First, some background regarding the real-time properties of embedded systems is given,

and some of the most characteristic solutions of real-time operating systems which

jeopardise predictability are pointed out. Then, an architectural solution to the problem is

proposed and validated with the prototype.

www.intechopen.com

 New Trends in Technologies: Devices, Computer, Communication and Industrial Systems

136

2. Real-time properties of the embedded system

An embedded system is a special-purpose computer system designed to control or support
the operation of a larger technical system which usually has mechanical and electrical
components in which the embedded system is encapsulated. Unlike a general-purpose
computer, it only performs a few specific, more or less complex pre-defined tasks. It is
expected to function without human interaction and therefore, it usually has sensors and
actuators, but no peripheral interfaces like keyboards or monitors, except if the latter are
required to operate the embedding system. Often, it functions under real-time constraints,
which means that service requests must be handled within pre-defined time intervals.
Embedded systems are composed of hardware and corresponding software parts. The

complexity of the hardware ranges from very simple programmable chips (like field

programmable gate arrays or FPGAs) over single micro-controller boards to complex

distributed computer systems. In simpler cases, the software consists of a single program

running in a loop, which is started on power-on, and which responds to certain events in the

environment. In more complex cases, operating systems are employed. The application for

the embedded system (and the others) usually consists of several processes or tasks that

must be executed more or less simultaneously. The operating system (OS) provides features

like multitasking and scheduling to allocate the active tasks to limited processing resources

by means of different scheduling policies. The OS also provides task synchronisation,

resource management, etc. [Silberschatz et. all. (2009)].

The main focus of this paper is the scheduling of processes operating under hard real-time
constraints as a basis for other operating system kernel services (event management,
synchronisation, etc.). For such systems, the essential and characteristic requirement is that
each task, regardless of circumstance, must finish its work prior to the predefined deadline.
Here, obviously, task scheduling is the critical operation. Some functionalities of operating
systems (e.g., virtual memory, mass storage device management, etc.) are rarely relevant for
the embedded system and are not considered here.
Although the discipline of real-time research was established thirty years ago, even now
inappropriate scheduling policies (e.g., fixed priority) are very often employed. For
singleprocessor systems operating in the real time regime, theoretical aspects of task
scheduling have been acknowledged at least since the well-known paper [Liu-Layland
(1973)]. The advantage of the often used, although inadequate, fixed priorities-based
scheduling is that in most cases, it is built into the processors themselves in the form of
priority interrupt handling systems. Thus, implementation is fast and simple. However, it is
difficult to assign adequate priorities to tasks, which leads to the starvation of other tasks
which are waiting for blocked resources. Usually, priorities are not flexible enough and
cannot adapt to the current behaviour of systems. With rate-monotonic scheduling, a set of
periodic tasks is considered. In this case, the tasks are scheduled according to their periods.
In the paper mentioned above, the scheduling of such a task set is proven to be feasible,
however, only if the utilisation of the processor is less than approximately 70%.
It is widely accepted that in a general case, the deadline-driven scheduling policy is the most
appropriate, more specifically, the Earliest Deadline First (or EDF). In this case, the priority
of the task is determined by its deadline. The task with the closer deadline has higher
priority than the task with the more distant one.
When the deadline-driven scheduling is employed, the actual schedule can and should be

tested for feasibility during run-time (schedulability check). Each time a new task is added

www.intechopen.com

Operating System Kernel Coprocessor for Embedded Applications

137

to the system, a test must assess whether the deadlines of all active tasks will be met. To

perform this test, the sum of the (remaining) execution times of each task and the tasks that

will be executed before it must be smaller than or equal to its designated deadline. The

schedulability check depends on the accurate estimation of the execution times of tasks. To

calculate this properly, all aspects of the embedded systems (hardware, operating systems

and application) must behave with temporal predictability.

Typical embedded systems are expected to react to events from the environment.

Traditionally, this is implemented by means of interrupts that signal the main processor

when a specific event occurs. The problem with this method is that the interrupts and

interrupts handling also introduce sporadic delays asynchronous to the execution of the

running processes, and this jeopardises the temporal predictability of the latter.

Another problem facing the real-time behaviour of embedded applications is the operating

system itself. Traditionally, operating systems are software services running on the same

processor along with the application software, with the goal to support the application

execution on the target hardware systems. Each call of the operating system routines

prolongs the execution of the application. It is usually very difficult to get adequate

execution times for these routines because the calculation depends on the number of active

tasks currently running.

3. Outline of the architectural solution

Embedded applications usually consist of several tasks or processes, and the OS is

responsible for scheduling these for execution on devices with limited processing resources.

In addition, the OS is responsible for proper task synchronisation, inter-task

communication, reaction to events in the system, etc. The reason adequate OS operations for

real-time systems are seldom supported is that their implementation is difficult and

impractical due to their complexity and often unacceptable overhead. By implementing the

scheduling in hardware operating in parallel, complexity is not an issue any more, and the

overhead becomes negligible. First, the hardware implementation usually outperforms any

software execution. Second, in hardware, many operations can be executed in parallel,

further speeding up the execution. In addition, the ever-decreasing cost of hardware devices

on one hand, and a steadily increasing degree of integration on the other, justifies the use of

a hardware approach even for complex solutions.

The outlook of the hardware architecture is shown in Figure 1. The main processor, where

the tasks’ code is executed, accesses the operating system services via its system bus. The set

of registers implemented within the coprocessor are thus addressable within its memory

space, providing communication with the OS kernel functions. Instead of executing the

specific function on its own, the OS system routines set the appropriate parameters in the

coprocessor’s registers and issue a specific command. After that, the OS responses are read

from the coprocessor’s registers.

Task administration is split into two parts. The internal states (contexts) of tasks are kept at

the main processor. The coprocessor only maintains the statuses and the essential

parameters of tasks, and determines which task must be executed next. Furthermore, the

coprocessor also maintains synchronisers, shared variables, etc., and is responsible for

controlled system event management.

www.intechopen.com

 New Trends in Technologies: Devices, Computer, Communication and Industrial Systems

138

Main

processor

FPGA

OS kernel
functions

...

Interface

System
bus

Fig. 1. General scheme of the implementation

4. Coprocessor instruction execution

The coprocessor operates by means of instructions (requests for operations) issued by the
main processor (the host). Each instruction consists of an operation code and associated
parameters (operands). For example, in the case of task activation, these parameters are the
task identification number and the task scheduling constraints. Usually, the instruction is
executed immediately after it is put into the interface registers. In addition, the coprocessor
can store several instructions for future execution.
Such instructions are triggered by certain conditions that are also set by the host. When
these conditions are satisfied, the instruction is issued to the instruction execution unit.
There the operation code is decoded and an appropriate set of signals is generated to carry
out the required operation. The process of instruction execution and its implementation is
presented in Figure 2.

In
s
tru

c
tio

n
 re

g
is

te
r s

e
ts

E
v
e

n
t g

e
n

e
ra

tio
n

 u
n

its

In
s
tru

c
tio

n
 d

is
p

a
tc

h
 u

n
it

Execution
Unit

Fig. 2. The instruction execution implementation

www.intechopen.com

Operating System Kernel Coprocessor for Embedded Applications

139

Several instruction register sets hold the operation code and parameters of the specific
instructions. The instruction dispatch unit is constantly monitoring which of the stored
instructions is ready and forwards them further for execution. When the conditions of
several instructions are fulfilled at the same time, the instruction register with the lowest
number takes precedence.
The readiness of the instruction for execution is determined by one of the event generation
units (event generators). These units generate signals when specific conditions are met, and
these signals in turn may then initiate the instruction execution. Which event generation
unit is connected to a specific instruction register set is determined by the application. Each
register set may also be configured for immediate instruction execution. In this case, the
instruction is issued immediately when the operation code is placed (i.e. the application first
sets the instruction parameters and then triggers the instruction execution by writing the
operation code). In this way, parameters for several instructions may be pre-set in advance.
For command execution, only the operation code must be set.
There are different kinds of event generation units. The so-called external event reaction unit
reacts to the events generated outside of the system. This is similar to interrupt and event
handling in traditional microprocessors. The events from different external and internal
sources can be combined, and some events may be masked.
Another event generation unit is the periodic event generator. This unit generates signals for
periodic instruction execution. The main application may set the time of the instruction’s
first occurrence, the period of the repetition and the overall duration interval.
An additional unit observes the shared variable registers (described in more detail later).
When a new value is written into a shared variable, a signal is generated, which can be used
for instruction execution. In addition, the relevance range of the value can be associated
with each shared variable separately. In this case, the signal is generated only if the value
written into the register is outside of the predetermined range. In this way, different
message-passing algorithms for inter-task communication may be implemented, and the
system may react to some conditions which are related to the values of some parameter
(e.g., temperature too high).
As will be described later, the event generators can also be used as a part of the task
synchronization mechanisms. Furthermore, the event generator can be configured to
generate interrupts to the main processor.

5. Operating system functions implementation

The execution unit implements specific operating system functionalities. One of the primary
goals of this research was to eliminate operating system temporal interference. The main
processor should read the results of the operation as soon as the operation is written into the
coprocessor. When implemented in software, the execution times of most OS instructions
depend on the number of tasks that are currently active. With the appropriate approach it
was possible to achieve a constant execution time for each OS instruction, independent of
the number of tasks (i.e., time complexity of O(1)). The consequence of this is increased
silicon consumption, which is not an issue anymore. There are several groups of OS
instructions that were implemented with the coprocessor.

5.1 Task scheduling

For the implementation of task scheduling, a sorted list of tasks is maintained. Each element
of the list holds relevant parameters of an active task: the task ID number and the

www.intechopen.com

 New Trends in Technologies: Devices, Computer, Communication and Industrial Systems

140

parameters related to scheduling. For EDF scheduling, the latter would be the deadline of
the task, remaining execution time, etc. For other scheduling policies, it would be the
priority or period of a task. Each time the task information is added to, or removed from the
list, the parameters are updated accordingly. Some parameters are also updated periodically
during this time. For example, the remaining execution time of the task that is currently
running must be periodically decreased. Other parameters related to task synchronization
and other operations, is described in the next sections. Other parameters of tasks, not
relevant to the OS coprocessor (e.g., the context of the task), are kept in the main processor.
Data in the list are sorted according to the scheduling policy. In the case of EDF scheduling,
this is done based on their increasing deadlines. For priority-based systems, it would
depend on priorities. For rate monotonic scheduling, the sorting criterion would be the
period of tasks. The list can be observed as a set of independent cells or components with
the same functionalities. This is illustrated in Figure 3.

ShiftMark1

ErrMark1

...

Parameters

...
ShiftMark2

ErrMark2

...

ErrMarkn

...

Fig. 3. Implementation of task scheduling

The parameters of the current OS instruction (such as the index of the task, its deadline and

remaining execution time) are put on the common bus. Then, a series of control signals (not

shown in the picture) are generated to execute different steps of the specific instruction.

Each cell contains a set of registers that hold the task’s parameters. Apart from the registers,

each cell has two sets of inputs and outputs that are used during different phases of some

OS instructions. The data from a single cell may be shifted into the next or into the previous

cell. Several logical signals are used to synchronize these shift operations (ShiftMark) or to

signal if there is a deadline violation or some other error (ErrMark). In addition, each cell

consists of digital logic divided into several parts, which are responsible for executing

different OS operations. Such division allows for parallel execution during the completion of

OS instruction. One part of this digital logic is responsible for the identification of the cell by

means of its task ID, the second part is responsible for the deadline comparison, and yet

another part performs the arithmetic for cumulative execution time calculation, etc. In this

way, it is possible to achieve the same execution time for each instruction. For example,

when a new task is being added to the list, a proper position is determined: First, the

deadline for the arriving task is compared with the deadlines for all tasks already in the list.

Then, room is made by shifting the proper set of cells to the end of the list and finally, the

www.intechopen.com

Operating System Kernel Coprocessor for Embedded Applications

141

new task information is put into place. The removal of a task from the list is performed in a

similar fashion. A more detailed elaboration of the procedure is given in Verber (2009). A

dedicated logic within the cell also signals the current state of the task (i.e., if it is ready for

execution or if it is suspended for some reason). In parallel to the list of tasks, an additional

component determines which task must be executed next by detecting the first task in the

list that is not in a suspended state. This variable may change every time an instruction is

executed. An instruction may be executed independently from the main processors by

means of instruction register sets and event generators as described above. In this case,

when the new task must be dispatched for execution, an interrupt signal to the main

processor is generated. The interrupt service routine may access the ID of the executing task

through the coprocessor interface. This component also incorporates support for the so-

called non-interruptible critical sections. A task, executing in a non-interruptible critical

section, cannot be replaced by another one even if there is an active task with a shorter

deadline. There are two instructions for entering and leaving such a section.

When using the EDF policy, another important part of task scheduling is the schedulability

check. Each time a new task is put into the list, it must be proven that the deadlines of all

active tasks will be met. To this end, each element of the list maintains the remaining

execution time of the current task, as well as the cumulative execution time of the tasks to be

executed prior to and including the current one. For the schedule to be successful, the latter

must be smaller than or equal to the designated deadline of the current task. To maintain the

sum of execution times, when a task is added to the list, its execution time is added to all

cumulative execution times of the elements which come after the newly arrived one.

Similarly, when the task is removed, its remaining execution time is subtracted from sums

in subsequent elements of the list.

5.2 Task synchronisation

Occasionally, an active task may not be in a position to continue the execution due to the

unavailability of exclusive resources, because it must wait for another task to complete its

job, etc. In such cases, the OS puts the task in a suspended state. When, for example, the

exclusive resource becomes available, one of the tasks waiting for it is removed from the

suspended state. The main difficulty in this execution is that some sort of queue of waiting

tasks must be implemented. This is easily done in the software, however, maintaining

several queues in hardware would consume too many resources. Instead, each element of

the sorted list contains a set of bits that represent the various synchronisers for which the

current task is waiting. These bits are shifted together with every task addition/removal

operation and are maintained by the synchroniser control circuits. Each sychronisation unit

can be associated with the specific synchronisation bit in each cell. The task is suspended if

either of these synchronisation bits in the cell is set to one. This is achieved with a simple

logical operation of disjunction (or). Different synhronisation control units can be used to

implement different synchronization mechanisms. In these experiments, the binary

semaphore primitives Lock and Unlock have been implemented. When a Lock instruction is

executed for a semaphore for a certain task, the control unit checks to see if the semaphore is

already locked. If it is, a corresponding bit in the cell is set and the task becomes suspended.

In other cases, if the semaphore is unlocked, the control logic marks it locked and the task

remains non suspended. Upon the Unlock operation, when several tasks are waiting for the

www.intechopen.com

 New Trends in Technologies: Devices, Computer, Communication and Industrial Systems

142

same synchroniser, the left-most one in the list becomes ready. In the case of the EDF

scheduling algorithm, this is the task with the shortest deadline. In this way, the possibility

of deadline violation is minimized. The binary semaphore is implemented with simple flip-

flop logic. The control logic for other synchronization mechanisms may be easily

implemented.

5.3 Inter task communication

To serialize the data-dependent operation between tasks or to employ inter-task

communication in general, a set of common shared variables is used. A value, written into a

shared variable by one task, may be read by the others. Using the common shared variables,

tasks may also be synchronised. For example, one task is waiting until another one changes

a value of a variable. This can be implemented by combining the synchronization control

logic with shared variable event generators. The same method is used for the

implementation of traditional OS signals. Shared variables are mapped into the memory

space of the main processor. The shared variables may also have a very important role in

distributed embedded systems. In a previous research [Colnaric and Verber (2004)], the

hardware support for transparent interprocessor communication in distributed

environments was studied and implemented. In order to accomplish this, a new value’s

contents, when put into the shared variable, is distributed (replicated) to the other nodes in

the system. In this way, inter-task communication and synchronization may be

implemented between tasks running on different processors. In the current work, those

mechanisms are not yet implemented.

5.4 Real-time clock

Although a typical processor may have implemented a real-time clock by other means, its

integration into the kernel coprocessor may allow other operations to use and react to the

same absolute time source. However, a proper real-time clock must operate even when the

system is switched off. This requires battery-powered circuits. Currently, it is not possible to

put part of an FPGA device into an operational state during the shutdown of the system

Therefore, it is the responsibility of the main processor to set the proper time of the real-time

clock at startup. Implementation of the reading and maintenance of the precise real-time

clock by means of a dedicated battery-powered real-time clock chip is under development.

For an even more precise clock source, the use of a GPS receiver may be considered.

5.5 Support for fault tolerance

Apart from operating within real-time constraints, the embedded systems are frequently

used in situations where faults may result in large material losses or even the endangerment

of human safety. There are several aspects of fault tolerance that may be incorporated into

the coprocessor. For example, in the case of event generators, different self-monitoring

circuits may be implemented in hardware in order to detect hardware-related faults. The

event generators related to the shared variables can be used to detect abnormal values of a

certain variable. The task scheduler is also capable of detecting deadline violation errors.

However, for more subtle fault detection and fault management, the coprocessor is usually

not adequate. If a fault is detected, a contingency plan must be employed and a new set of

tasks should usually be introduced. This can only be done by the main processor.

www.intechopen.com

Operating System Kernel Coprocessor for Embedded Applications

143

6. Results of the experiments

To support the theoretical research, studies on an experimental hardware platform were
conducted. The main processor is Texas Instruments’ digital signal processor TMS320C6771
running at 150 Mhz [Texas Instruments (2010)]. The coprocessor is implemented with Xilinx
FPGA device Spartan2E xc2s300e running at 50 Mhz [Xilinx (2010)]. This device consists of
1536 so-called Configurable Logic Blocks (CLBs). Each CLB is capable of performing simple
logical functions and/or to be used as a memory element. This is a relatively low
performance and low-cost device. In the experiments, four event generators, four
synchronisers, eight shared variables and eight task scheduling cells were implemented. By
this method, approximately half of the available silicon resources were used. Another half, it
is planned, will be used in future work. The newest FPGA devices and dedicated ASIC chips
may have hundreds of times more silicon resources and are much faster. On the main
processor the artificial tasks were used for the test bed. The tasks were created with a
proprietary realtime operating system on the evaluation board. Nevertheless, the OS
operations were issued through the coprocessor. The task IDs and the operation codes are
one byte in size. All other parameters require 16 bits. All temporal values and constraints
are represented in a relative fashion (i.e., as a number of basic clock cycles relative to the
current moment in time).
Each instruction is executed in four basic clock cycles. This is 80 ns at 50 Mhz. Some

instructions could be executed in fewer clock cycles, however, we found that it is much

easier to implement the instruction execution unit if the same four cycles are used every

time. For simple instructions during some execution cycles, the instruction execution unit is

idle. In any case, the execution time of a single instruction is shorter than the memory access

time of the main processor. I.e., the main processor may read the results as soon as the

operation code is provided.

7. Conclusion

With the ever-increasing density of silicon chips, it is possible to dedicate some areas on the
chip to the implementation of operating system functionality. The situation is similar to that
of the early 1990s. In the beginning, floating-point operations were implemented in
software, then math coprocessors replaced software routines and execution times shrunk to
only a small portion of their original. Later on, with miniaturization, the coprocessors were
integrated into the processor cores. In the research described here, it was shown that the
same scenario may be applied to the implementation of OS functionalities. If consumption
of silicon is not an issue, the functionalities of the coprocessor may be executed in constant
time (i.e., with O(1) time complexity). Hardware implementation of the operating system’s
functionalities has little impact on application development. Within traditional development
tools, the OS support is usually considered on the application programming interface (API)
level. If only the inner parts of the API to OS routines are modified, no change in the
development tools is required.
Although the number of components in the experiment were limited, the proposed
implementation is modular enough to be easily expanded and modified to manage a
different number of tasks, synchronisers, shared variables, etc.
The main focus of our research is real-time systems. However, the principle of the OS
coprocessor can be effectively used with any kind of operating system. For example,

www.intechopen.com

 New Trends in Technologies: Devices, Computer, Communication and Industrial Systems

144

priority-based scheduling can be implemented much easier than EDF. In this case, the
number of parameters in each element of the task list is greatly reduced and there is no need
for the feasibility check of the schedules. The synchronisation mechanisms, shared variables
and other elements of the coprocessor may remain the same.

8. References

Edward Lee (2010). Design Challenges for Cyber Physical Systems, In: Strategies for
Embedded Computing Research, Eutema, Vienna, March 2010.

Halang,W. A. (1988). Parallel Administration of Events in Real-Time Systems, Microprocessing
and Microprogramming, Vol. 24, Jan 1988, pp. 678 – 692, North–Holland.

Cooling, J. (1993). Task Scheduler for Hard Real-Time Embedded Systems, Proceedings of
Int’l Workshop on Systems Engineering for Real-Time Applications, pp. 196–201,
Cirencester, 1993, IEE, London.

Lindh, L., Strner, J., Furuns, J., Adomat, J. and Shobaki M. E. (1998), Hardware Accelerator
for Single and Multiprocessor Real-Time Operating Systems, In Seventh Swedish
Workshop on Computer Systems Architecture, Sweden, 1998.

Silberschatz, A., Galvin, P. B., Gagne, G. (2009). Operating System Concepts. Wiley, 2009.
Liu, C.L. and Layland, J.W. (1973). Scheduling algorithms for multiprogramming in a hard real-

time environment, Journal of the ACM, Vol. 20, No. 1, 1973, pp. 46–61, IEE, London.
Verber, D. (2009). Attaining EDF Task Scheduling with O(1) Time Complexity Proceedings of

7th Workshop on Advanced Control and Diagnosis, November 2009, Zielona G´ ora,
Poland.

Colnarič, M., Verber, D. (2004). Communication infrastructure for IFATIS distributed
embedded control application PRTN 2004 : proceedings of 3rd intl. workshop on real-
time networks, pp. 7-10. June 2004, University of Catania, Italy.

Texas Instruments (2010). http://www.ti.com.
Xilinx (2010). http://www.xilinx.com.

www.intechopen.com

New Trends in Technologies: Devices, Computer, Communication

and Industrial Systems

Edited by Meng Joo Er

ISBN 978-953-307-212-8

Hard cover, 444 pages

Publisher Sciyo

Published online 02, November, 2010

Published in print edition November, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The grandest accomplishments of engineering took place in the twentieth century. The widespread

development and distribution of electricity and clean water, automobiles and airplanes, radio and television,

spacecraft and lasers, antibiotics and medical imaging, computers and the Internet are just some of the

highlights from a century in which engineering revolutionized and improved virtually every aspect of human life.

In this book, the authors provide a glimpse of new trends in technologies pertaining to devices, computers,

communications and industrial systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Domen Verber and Matjaž Colnarič (2010). Operating System Kernel Coprocessor for Embedded Applications,

New Trends in Technologies: Devices, Computer, Communication and Industrial Systems, Meng Joo Er (Ed.),

ISBN: 978-953-307-212-8, InTech, Available from: http://www.intechopen.com/books/new-trends-in-

technologies--devices--computer--communication-and-industrial-systems/operating-system-kernel-

coprocessor-for-embedded-applications

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

