
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



7 

Prediction of Elastic Properties of 
Plain Weave Fabric Using Geometrical Modeling 

Jeng-Jong Lin  
Department of Information management, Vanung University  

Taiwan, R.O.C.  

1. Introduction 

Fabrics are typical porous material and can be treated as mixtures of fibers and air. There is 
no clearly defined boundary and is different from a classical continuum for fabrics. It is 
complex to proceed with the theoretical analysis of fabric behavior. There are two main 
reasons (Hearle et al., 1969) for developing the geometrical structures of fabrics. One is to be 
able to calculate the resistance of the cloth to mechanical deformation such as initial 
extension, bending, or shear in terms of the resistance to deformation of individual fibers. 
The other is that the geometrical relationships can provide direct information on the relative 
resistance of cloths to the passage of air or light and similarly it can provide a guide to the 
maximum density of packing that can be achieved in a cloth. The most elaborate and 
detailed account of earlier work is contained in a classical paper by Peirce (Peirce, 1937). A 
purely geometrical model, which involves no consideration of internal forces, is set up by 
Peirce for the determination of the various parameters that were required. Beyond that, the 
geometrical structures of knits are another hot research issue, for instances, for plain-knitted 
fabric structure, Peirce (Peirce, 1947), Leaf and Glaskin (Leaf & Glaskin, 1955), Munden 
(Munden, 1961), Postle (Postle, 1971), DemirÖz and Dias (Demiröz & Dias, 2000), Kurbak 
(Kurbak, 1998), Semnani (Semnani et al., 2003), and Chamberlain (Chamberlain, 1949) et al. 
Lately, Kurbak & Alpyildiz propose a geometrical model for full (Kurbak & Alpyildiz, 2009) 
and half (Kurbak & Alpyildiz, 2009)  cardigan structure. Both the knitted and woven fabrics 
are considered to be useful as a reinforcing material within composites. The geometrical 
structure of the plain woven fabric (WF) is considered in this study. 
Woven fabric is a two-dimension (2-D) plane formation and represents the basic structural 
element of every item of clothing. Fabrics are involved to various levels of load in 
transforming them from 2-D form into 3-D one for an item of clothing. It is important to 
know the physical characteristics and mechanical properties of woven fabrics to predict 
possible behavior and eventual problems in clothing production processes. Therefore, the 
prediction of the elastic properties has received considerable attention. Fabric mechanics is 
described in mathematical form based on geometry. This philosophy was the main objective 
of Peirce’s research on tensile deformation of weave fabrics. The load-extension behavior of 
woven fabrics has received attention from many researchers. The methods used to develop 
the models by the researches are quite varied. Some of the developed models are theory-
based on strain-energy relationship e.g., the mode by Hearle and Shanahan (Hearle & 
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Shanahan, 1978), Grosberg and Kedia (Grosberg & Kedia, 1966), Huang (Huang, 1978), de 
Jong and Postle (Jong & Postle, 1977), Leaf and Kandil (Leaf & Kandil, 1980), and 
Womersley (Womersley, 1937). Some of them are based on AI-related technologies that have 
a rigorous, mathematical foundation, e.g., the model by Hadizadeh, Jeddi, and Tehran 
(Hadizadeh et al., 2009). Artificial neural network (ANN) is applied to learn some feature 
parameters of instance samples in training process. After the training process, the ANN 
model can proceed with the prediction of the load-extension behavior of woven fabrics. The 
others are based on digital image processing technology, e.g., the model by Hursa, Rotich 
and Ražić (Hursa et al., 2009). A digital image processing model is developed to 
discriminate the differences between the image of origin fabric and that of the deformed one 
after applying loading so as to determine pseudo Poisson’s ratio of the woven fabric. 
However, the above-mentioned methods have their limitations and shortcomings. The 
methods based on extension-energy relationship and system equilibrium need to use a 
computer to solve the basic equations in order to obtain numerical results that can be 
compared with experimental data. The methods based on AI-related technologies (i.e., ANN 
model) need to prepare a lot of feature data of samples for the model training before it can 
work on the prediction. Thus, the developed prediction models need quite a lot of tedious 
preparing works and large computation.  
In this study, a unit cell model based on slice array model (SAM) (Naik & Ganesh, 1992) for 
plain weave is developed to predict the elastic behavior of a piece of woven fabric during 
extension. Because the thickness of a fabric is small, a piece of woven fabric can be regarded 
as a thin lamina. The plain weave fabric lamina model presented in this study is 2-D in the 
sense that considers the undulation and continuity of the strand in both the warp and weft 
directions. The model also accounts for the presence of the gap between adjacent yarns and 
different material and geometrical properties of the warp and weft yarns. This slice array 
model (i.e., SAM), the unit cell is divided into slices either along or across the loading 
direction, is applied to predict the mechanical properties of the fabric. Through the help of 
the prediction model, the mechanic properties (e.g., initial Young’s modulus, surface shear 
modulus and Poisson’s ratio) of the woven fabric can be obtained in advance without 
experimental testing. Before the developed model can be applied to prediction, there are 
parameters, e.g., the sizes of cross-section of the yarns, the undulation angles of the 
interlaced yarns, the Young’s modulus and the bending rigidity of the yarns, and the unit 
repeat length of the fabric etc., needed to be obtained. In order to efficiently acquire these 
essential parameters, an innovative methodology proposed in this study to help eliminate 
the tedious measuring process for the parameters. Thus, the determination of the elastic 
properties for the woven fabric can be more efficient and effective through the help of the 
developed prediction model. 

2. Innovative evaluation methodology for cross-sectional size of yarn 

2.1 Definitions and notation for fundamental magnitudes of fabric surface 

A full discussion of the geometrical model and its application to practical problems of 
woven fabric design has been given by Peirce (Peirce, 1937). The warp and weft yarns, 
which are perpendicular straight lines in the ideal form of the cloth, become curved under 
stress, and form a natural system of curvilinear co-ordinates for the description of its 
deformed state. The geometrical model of fabric is illustrated in Fig. 1. The basic parameters 
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consist of two values of yarn lengths l, two crimp heights, h, two yarn spacings, P, and the 
sum of the diameters of the two yarns, D, give any four of these, the other three can be 
calculated from the model. There are three basic relationships as shown in equations 1~3 
among theses parameters. The definitions of the parameters set in the structural model are 
denoted as follows. 

 ( )sin (1 cos )h l D Dθ θ θ= − + −  (1) 

 ( )cos sinp l D Dθ θ θ= − +  (2) 

 w fh h D+ =  (3) 

 

 
Fig. 1. Geometrical model (Hearle et al., 1969) 

• Diameter of warp dw, diameter of weft yarn df, and dw+df=D. 
• Distance between central plane of adjacent warp yarns Pw 
• Distance between central plane of adjacent weft yarns Pf 
• Distance of centers of warp yarns from center-line of fabric, hw/2 
• Distance of centers of weft yarns from center-line of fabric, hf/2 
• Inclination of warp yarns to center-line of fabbric, θw 
• Inclination of weft yarns to center-line of fabbric, θf 
• Length of warp between two adjacent weft yarns lw 
• Length of weft between two adjacent warp yarns lf 
• Warp crimp Cw= lw / Pf -1 
• Weft crimp Cf= lf/ Pw -1 
The woven fabric, which consists of warp and weft yarns interlaced one another, is an 
anisotropic material (Sun et al., 2005). In order to construct an evaluation model to help 
determine the size of the deformed shape (i.e., eye shape) of cross section, Peirce’s plain 
weave geometrical structure model is applied in this study. Because both the warp and weft 
yarns of the woven fabric are subject to the stresses during weaving process by the 
shedding, picking and beating motions, the shapes of cross section for the yarns are not 
actually the idealized circular ones (Hearle et al., 1969). The geometrical relations, illustrated 
in equations 1 and 2, can be obtained by projection in and perpendicular to the plane of the 
fabric. From these fundamental relations between the constants of the fabrics, the shape and 
the size of the cross section of the yarns can be acquired. Through the assistance of the 
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proposed evaluation model, the efficiency and effectiveness in acquiring the size of section 
for warp (weft) yarn can be improved. 

2.2 Yarn crimp  

The crimp (Lin, 2007)(i.e., Cw) of warp yarn and that (i.e., Cf) of weft yarn can be obtained by 
using equation 4. The measuring of yarn crimp is performed according to Chinese National 
Standard (C.N.S.). During measuring the length of the yarn unravelled from sample fabric 
(i.e., with a size of 20 cm × 20 cm), each yarn was hung with a loading of 346/N (g), where 
N is the yarn count (840 yds/1lb) of the yarn for testing. 

 C=(L-L’)/L’ (4) 

Where L denotes the measured length of the warp (weft) yarn, L’ denotes the length of the 
fabric in the warp (weft) direction. 

2.3 Cross sectional shape and size 

Both the warp and weft yarns of the woven fabric are subject to the stresses from weaving 
process during the shedding, picking and beating motions. Due to subjecting to stresses, the 
shapes of cross section for the yarns are not actually the idealized circular ones. Fig. 2 shows 
the deformed eye shape of the yarn with a long diameter “a” and a short diameter “h”. The 
sizes of warp and weft yarn are of denoted as aw, hw and af, hf, respectively. 
 

 
Fig. 2. Deformed shape of yarn 

The Length of warp l1 (weft l2) between two adjacent weft (warp) yarns can be acquired 
using equation 5. The inclination of warp θ1 (weft θ2) yarns to center-line of fabric, can be 
obtained from equation 6, which is proposed by Grosberg (Hearle et al., 1969) and verified 
to be very close to the accurate inclination degree. 

 
1 1 / 2nC

l
N

+
=  (5) 

 106 Cθ =  (6) 

where 
C: Crimp 
n: number of the warp and weft yarns in one weave repeat 
N: Weaving density (ends/in; picks/in) 

By Putting the measured values of l and θ into equations 1 and 2, the summation of the sizes 
of the short diameter for the warp and weft yarns (i.e., D=hw + hf for the warp and weft in 
the thickness direction) and that of the sizes of the long diameter for the warp and weft 
yarns (i.e., D1=aw1 + af1 (D2=aw2 + af2) calculated from the known distance between central 

a 

h 
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plane of adjacent warp Pw (weft Pf) yarns). Because the obtained summation values 
calculated from the known distances between central plane of adjacent warp yarns Pw and 
weft yarns Pf are different, the average value D  of them is calculated. The obtained 
D represents the sum of the long diameters of the warp and weft yarns. The larger the value 
of D is, the more flattened shape the warp and weft yarns are. 
Although the summation for the diameter sizes of the warp and weft yarn in the length 
(thickness) direction of the woven fabric is obtained, the individual one for warp (weft) yarn 
is still uncertain. In order to estimate the individual diameters of warp and weft yarn, the 
theoretical diameter (Lai, 1985) is evaluated using equation 7 in the study. The diameter of 
the individual yarn can be estimated by the weigh ratios shown in equations 8~11. 

 d ( )=11.89
Denier

mμ
ρ

 (7) 

where 
Denier: denier of yarn 
ρ: specific gravity of yarn 

 w
w

w f

d
a D

d d
= ×

+
 (8) 

 f

f

w f

d
a D

d d
= ×

+
 (9) 

 w
w

w f

d
h D

d d
= ×

+
 (10) 

 
f

f

w f

d
h D

d d
= ×

+
 (11) 

where 
aw: Long diameter of eye-shaped warp yarn  
af: Long diameter of eye-shaped weft yarn  
hw: Short diameter of eye-shaped warp yarn  
hf: Short diameter of eye-shaped weft yarn 
D= hw + hf 

D =(D1+D2)/2 
dw: Theoretical diameter of circular warp yarn  
df: Theoretical diameter of circular weft yarn 

3. Geometrical model and properties of spun yarn 

The idealized staple fiber yarn is assumed to consist of a very large number of fibers of 
limited length, uniformly packed in a uniform circular yarn. The fibers are arranged in a 
helical assembly, following an idealized migration pattern. Each fiber follows a helical path, 
with a constant number of turns per unit length along the yarn, in which the radial distance 

www.intechopen.com



 Woven Fabric Engineering 

 

140 

from the yarn axis increases and decreases slowly and regularly between zero and the yarn 
radius. A fiber bundle illustrated in Fig. 3a, which is twisted along a helical path as shown 
in Fig. 3b, is manufactured into a twisted spun yarn. 
 In order to describe the distributed stresses on the body of yarn, a hypothetical rectangular 
element from is proposed and illustrated in Fig. 4. The stresses acting on the elemental 
volume dV are shown in Fig. 4. When the volume dV shrinks to a point, the stress tensor is 
represented by placing its components in a 3×3 symmetric matrix. However, a six-
independent-component is applied as follows.  

 , , , , ,
T

x y z yz zx xyσ σ σ σ τ τ τ⎡ ⎤= ⎣ ⎦  (12) 

Where , ,x y zσ σ σ  are normal stresses and , ,yz zx xyτ τ τ  are shear stresses. 

The strains corresponded to the acting stresses can be represented as follows. 

 , , , , ,
T

x y z yz zx xyε ε ε ε γ γ γ⎡ ⎤= ⎣ ⎦  (13) 

Where , ,x y zε ε ε  are normal strains and , ,yz zx xyγ γ γ  are engineering shear strains. 

 

 

θ

z

R

10
o

 
(a) A fiber bundle as seen under a magnifying

(Curiskis & Carnaby, 1985 ) 
b) fiber bundle twisted along a helical path 

Fig. 3. A fiber bundle  

In the continuum mechanics of solids, constitutive relations are used to establish 
mathematical expressions among the variables that describe the mechanical behavior of a 
material when subjected to applied load. Thus, these equations define an ideal material 
response and can be extended for thermal, moisture, and other effects. In the case of a linear 
elastic material, the constitutive relations may be written in the form of a generalized 
Hooke’s law: 

 [ ]Sσ ε=  (14) 
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Fig. 4. A rectangular element of a fiber bundle (Curiskis & Carnaby, 1985 ) 

That is  

 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

x x

y y

z z

xy xy

yz yz

zx zx

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

σ ε
σ ε
σ ε
τ γ
τ γ
τ γ

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨ ⎬

⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

⎪
⎪
⎪

 (15) 

 [ ]Cε σ=  (16) 

That is  

 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

x x

y y

z z

xy xy

yz yz

zx zx

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

ε σ
ε σ
ε σ
γ γ
γ γ
γ γ

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨ ⎬

⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

⎪
⎪
⎪

 (17) 

Where σ and ε are suitably defined stress and strain vectors (Carnaby 1976) (Lekkhnitskii , 
1963), respectively, and [S] and [C] are stiffness and compliance matrices, respectively, 
reflecting the elastic mechanical properties of the material (i.e., moduli, Poission’s ratios, 
etc.) There are four possible models (Curiskis & Carnaby, 1985) (Carnaby & Luijk, 1982) for 
the continuous fiber bundle, i.e., the general fiber bundle, Orthotropic material, square-
symmetric material, and transversely isotropic material. The orthotropic material model is 
adopted in this study. 
Thwaites (Thwaites, 1980) applied his equations subject to the further constrain of 
incompressibility of the continuum, that is, 
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 0x y zε ε ε+ + =  (18) 

In which case the two Poisson’s ratio terms are no longer independent： 

 
2(1 )

T
TT

TT

E
G

v
=

+
 (19) 

 1TT TLv v= −  (20) 

And 

 /TL LT T Lv v E E=  (21) 

Thus, for the incompressible material of a spun yarn, whose elastic properties can be 
described using the seven elastic constants, i.e., GTT, GLT, ET, EL, vLT, vTL, and vTT, an 
orthotropic material model is adopted to depict it in this study.  The orthotropic material 
model as shown in Fig. 4, the fiber packing in the xy plane and along the z axis is such that 
the xz and yz planes are also planes of elastic symmetry. Furthermore, the continuum 
idealization then allows application of the various mathematical techniques of continuum 
mechanics to simplify the setting-up of physical problems in order to obtain useful results 
for various practical situations. For the study, the yarn (fiber bundle) is mechanically 
characterized as a degenerate square-symmetric homogeneous continuum. The elastic 
compliance relationship (Carnaby, 1980) can be described using the moduli and Poisson’s 
ratio parameters illustrated as follows. 

 

1
0 0 0

1
0 0 0

1
0 0 0

1
0 0 0 0 0

1
0 0 0 0 0

1
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TTyz yz

zx zx
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V V
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G

G

G

ε σ
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ε σ
γ γ
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γ γ
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⎢ ⎥
⎢ ⎥
− −⎢ ⎥⎧ ⎫ ⎧ ⎫⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪− −⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (22) 

Where EL is the longitudinal modulus governing uniaxial loading in the longitudinal (z) 
direction. vLT is the associated Poisson ratio goving induced transverse strains, ET is the 
transverse modulus goving uniaxial loading in the transverse (x or y) direction. vTT is the 
associated Poisson ratio governing resultant strains in the remaining orthogonal transverse 
(y or x) direction. vTT is the associated Poisson ratio governing the induced strain in the 
longitudinal direction, GLT is the longitudinal shear modulus goving shear in the 
longitudinal direction, and GTT is the transverse shear modulus governing shear in the 
transverse plane. 
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The theoretical equation for Young’s modulus of the spun yarn developed by Hearle (Hearle 
et al., 1969) is adopted in the study. It is illustrated in equation 23. The fibers are assumed to 
have identical dimensions and properties, to be perfectly elastic, to have an axis of 
symmetry, and to follow Hooke’s and Amonton’s laws. The strains involved are assumed to 
be small. The transverse stresses between the fibers at any point are assumed to be the same 
in all directions perpendicular to the fiber axis. Beyond these, there are other assumptions 
for the developed equation. Thus, it can not expected to be numerically precise because of 
the severe approximations, can be expected to indicate the general form of the factors 
affecting staple fiber yarn modulus. However, despite the differences between the idealized 
model and actual yarns, it is useful to have a knowledge of how an idealized assembly 
would behave.  

 

1/21/2 1 2 5 1/2

1 2 5 1/2

M M 1 2 5

(1 4 10 )2
1

3 4 [1 (1 4 10 )
y f  

(1 4 10 )

y f

f f

f

a W v

L v

v

γ π ϕ τ
τμ π ϕ τ

π ϕ τ

− −

− − −

− −

⎧ ⎫+⎪ ⎪− ⎨ ⎬− +⎪ ⎪⎩ ⎭= ×
+

 (23) 

Where  
fM: modulus of fiber 
Lf: fiber length 
a: fiber radius 
γ：migration ratio (γ=4 for spun yarn) 
Wy: yarn count (tex) 
vf: specific volume of fiber 
φ: packing fraction 
τ: twist factor (tex1/2 turn/cm) 
μ: coefficient of friction of fiber 

The flexural rigidity of a filament yarns is the sum of the fiber flexural rigidities under the 
circumstance that the bending length of the yarn is equal to that of a single fiber. It has been 
confirmed experimentally by Carlen (Hearle et al., 1969) (Cooper, 1960). The spun yarn is 
regarded as a continuum fiber bundle in the study, so the flexural rigidity of it is 
approximately using the same prediction equation illustrated in equation 24. 

  Gy=NfGf (24) 

Where  
Nf: cross-sectional fiber number  
Gf: flexure rigidity of fiber 

The change of yarn diameter and volume with extension has been investigated by Hearle 
etc. (Hearle et al., 1969) Through the experimental results for the percentage reductions in 
yarn diameter with yarn extension by Hearle, the Poisson’s ratio vLT in the extension 
direction can be estimated to be at the range of 0.6 ~ 1.1. The Poisson’s ratio vLT is set to be 
0.7 for the spun yarn in the study. 
Young’s modulus EL of the yarn in the (length) extension direction can be estimated using 
equation 23. Equation 24 can be applied to estimate the flexure rigidity GTL of the yarn. 
Through putting the obtained EL, GTL, and the set value of 0.7 for the Poisson’s ratio vLT of 
the yarn into equations 19~21, the other four elastic properties (i.e., GTT, ET, vTL, vTT) can be 
acquired, respectively. 
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Now that the elastic properties of a spun yarn can be represented using the above-
mentioned matrix. The simplification for the setting-up of physical problems using various 
mathematical techniques of continuum mechanics can thus be achieved. For the study, the 
yarn (fiber bundle) is mechanically characterized as a degenerate square-symmetric 
homogeneous continuum. The complex mechanic properties of the combination of the warp 
and weft yarns interlaced in woven fabric can be possible to be constructed as follows. 

4. Construction of unit cell model 

4.1 Mechanical properties of unit cell of fabric  

Fig.5a illustrates a unit cell (Naik & Ganesh, 1992) of woven fabric lamina. There is only one 
quarter of the interlacing regin analysed due to the symmetry of the interlacing regin in 
plain weave fabric. 
The analysis of the unit cell, i.e., slice array model (SAM), is performed by dividing the unit 
cell into a number of slices as illustrated in Fig. 5b. The sliced picess are idealized in the 
form of a four-layered laminate, i.e., an asymmetric crossply sandwiched between two pure 
matrix (if any) layers as shown in Fig. 5c. The effective properties of the individual layer 
considering the presence of undulation are used to evaluate the elastical constants of the 
idealized laminate. Because there is no matrix applied, the top and the bottom layer of the 
unit cell are not included in this study. 
There are two shape functions proposed in the study, one as shown in Fig. 6a for the cross-
section in the warp direction and the other as illustrated in Fig. 6b for the one in the weft 
direction. 
Along the warp direction, i.e., in the Y-Z plane (Fig. 5(a)) 

 
1
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2
f

y

yt

h y
z y

a

π
= −  (25) 
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(a)  Unit Cell 

 
(b) Actual Slice 

 
(C) Idealized Slice 

Fig. 5. Illustration for the slicing of unit cell and the idealized slice (Naik & Ganesh, 1992) 

Along the weft (fill) direction, i.e., in the X-Z plane (Fig. 5(a)) 
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(a) Plain weave cross-section: warp (b) Plain weave cross-section: weft (fill) 

Fig. 6. Illustration for the shape functions (Naik & Ganesh, 1992) 
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The local off-axis angles in the weft (i.e.,fill) and warp direction can be calculated using 
equations 31 and 32, respectively. 

 1 1
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w w w w

d h x
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dx a g a g

π πϑ − −= =
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w

f f f f

h yd
y zy y

dy a g a g

π π
ϑ − −= =

+ +
 (32) 

Because the woven fabric is manufactured by the interlacing of warp and weft yarn, there 
exists a certain amount of gap between two adjacent yarns. It is obvious that the presence of 
a gap between two the adjacent yarns would affect the stiffness of the WF lamina. 
Furthermore, the warp and weft yarns interlaced in fabric are undulated. It can be expected 
that the elastic properties of the yarn under the straight form and the undulated one are 
definitely different. 

4.2 Mechanical properties of the undulated spun yarn 

The respective off-axis angles reduce the effective elastic constants in the global X and Y 
directions. The increased compliance can be evatuated as follows. (Lekhnitskii, 1963).  
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Where cosm ϑ= , sinn ϑ= ; LE  and TE are Young’s moduli of yarns in the length direction 
and the cross-sectional direction, respectively; LTG and TTG are the flexure rigidity and 
torsion one, respectively. The value of LE  is calculated by the theoretical equation 23 
developed by Hearle (Hearle et al., 1969). Through the experimental results for the 
percentage reductions in yarn diameter with yarn extension by Hearle, the values 
of TE , LTG , and TTG for the yarns are determined based on the orthotropic material model 
proposed by Curiskis and Carnaby (Curiskis & Carnaby, 1985). 
The compliance of yarn is related to the angle of undulation of the yarn crimped in the fabric. 
The off-axis angle for each specific location at the warp and weft yarn can be acquired from 
equation 31 and 32. In order to precisely evaluate the changed compliances for the warp and 
weft yarn, the mean value of the compliance is applied and illustrated in equation 37. 

 
_

0

1
( )ij ijC C d

θ
ϑ ϑ

θ
= ∫  (37) 

where θ is the angle of undulation for the yarn at x=aw/2+gw/2. 

4.3 Evaluation of mechanical properties of slices and unit cell 

After evaluating the changed elastic constants of the warp and weft yarn using equation 37, 
the extensional stiffness of the slice can be obtained from equation 38. The integration used 
in the equation is fulfilled by neumatic method in the study.  

 
2 _

1

1
( ) ( , )( )sl

ijij k k
k

A y hx x y S
H =

= ∑  (38) 

Where, hxk(x,y) and 
_

( )ij kS  are the thickness and mean transformed stiffness of the kth layer 
in the nth slice.  
The sliced pieces are idealized in the form of a two-layered lamina, i.e., warp and weft 
asymmetric crossply sandwiched between two pure matrix (if any) layers as shown in Fig. 
5c. If there is no matrix applied on the fabric, i.e., the 1st and the 4th layers are vacant; the 
extensional stiffness of the slice consisting of a warp and a weft yarn can still be estimated 
from equation 38. The effective properties of the individual layer considering the presence 
of undulation are used to evaluate the elastical constants of the idealized woven fabric 
lamina. 
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Based on Fig. 5 and Fig. 6, hxk(x,y) is evaluated at constant x, for different values of y. The 
thickness of the warp yarn is maximum at x=0 and zero from x=aw/2 to x=(aw+gw)/2. In 
order to acquire the mean thickness of each layer of different material, the coordinate of x is 
set to be at the middle (i.e., x= (aw/2+gw/2)/2) of the unit cell in the study. The extensional 
stiffness of the unit cell is evaluated from those of the slices by assembling the slices together 
under the isostrain condition in all the slices. In other words, the in-plane extensional 
stiffness of the unit cell is evaluated and can be expressed as follows. 

 
( )/2
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2
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( )

f fa g

sl
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f f

A A y dy
a g

+

=
+ ∫  (39) 

According to Fig. 5a, the unit cell is obviously not symmetric about its midplane, so there 
exist the coupling stiffness terms. However, the coupling terms in two adjacent unit cells of 
the woven fabric lamina would be opposite signs due to the nature of interlacing of yarns in 
the plain weave fabric. Thus, the elastic constants of the unit can be obtained and expressed 
as follows. 
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Where, Ex is the Young’s modulus, Gxy is the flexure rigidity, and vyx is the Poisson’s ratio 
for the fabric, respectively. 
Accordingly, the Young’s modulus in the warp direction can be calculated using the above-
mentioned steps as well.  

5. Experiments 

5.1 Characteristics of sample fabrics 

The measured characteristics of the sample fabric are shown in table 1. The theoretically 
generalized elastic properties of cotton fiber are given in Table 2. Base on the data of the raw 
material cotton fiber, Young’s modulus of the cotton spun yarn (i.e., yM) is predicted to be 6694 
(N/mm2) using equation 23 developed by Hearle (Hearle et al., 1969). The flexure rigidity (i.e., 
GLT) of the spun yarn can be acquired as 0.0031 (N/mm2) using equation 24 as well. 
 

Weave 
Yarn count 

(warp×weft) 
Yarn specific 

volume, cm3/g 
Density, yarns/inch 

(warp×weft) 
Material 

(warp×weft) 

plain 20’S × 20’S 1.22 60 × 60 C × C 

Yarn count ‘S=840 yd/ 1lb, Material: C=cotton 

Table 1. Characteristics of woven fabric sample 

5.2 Preprocessing and procedures 

The sample fabrics are scoured at 30°C for one hour in sodium carbonate. Then they are 
washed and dried at room temperature. Static tensile test specimens are prepared according 
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to Chinese National Standard (C.N.S.). The testing size is 25mm×100mm. The specimens are 
tested at room temperature (25°C) at a crosshead speed of 10 mm/min. A total of ten 
specimens are tested, five of which are the samples made for testing in warp direction and 
the other five are for testing in weft direction direction. An experimental program is 
designed by C language to calculate the elastic constants of the woven fabric lamina along 
the warp and weft directions in the study. The experiment is performed on cotton woven 
fabric lamina according to the essential requirements proposed by Bassett et al.  (Bassett et 
al., 1999). 
 

fM 
( N/mm2) 

Lf 
(mm)

a 
(mm)

γ 
Wy 

(tex) 
vf φ 

τ 
(tex1/2 

turns/cm)
μ 

EL 
(N/mm2) 

GLT 
(Nmm2) 

8000 40 0.0130 4 31.9200 0.6500 0.5300 33.36 0.22 6694 0.0031 

fM: Young’s modulus of fiber, Lf: fiber length, a: fiber radius, γ:migration ratio, Wy: yarn 
count, vf: specific volume of fiber, φ:packing fraction, τ:twist factor(tex1/2turn/cm), 
μ:coefficient of friction 
Table 2. Characteristics of the cotton fiber  

6. Results and discussion 

6.1 Cross-sectional size of yarn 

Woven fabric, which consists of warp and weft yarns interlaced one another, is an 
anisotropic material. Peirce’s plain weave geometrical structure model is used to set up a 
prediction model for the shapes and sizes of warp and weft yarn. Both the warp and weft 
yarns of woven fabric are subject to the stresses from weaving process during the shedding, 
picking, beating motions. Due to the occurred stresses, the shapes of section for yarns are 
not actually the idealized circular ones. It shows that the theoretically calculated results are 
pretty consistent to the experimental. Through the evaluation methodology for cross-
sectional size of yarn based on Peirce’s structure model, the efficiency and effectiveness in 
acquiring the sectional size for warp (weft) yarn can be improved. 
The geometrical scales of the fabric are determined by means of an optical microscope at a 
magnification of 20. The obtained results are used to compare with the calculated ones for 
validation of the innovative evaluation methodology proposed in this study. The measured 
and calculated results are illustrated in Table 3 and Table 4, respectively. Table 5 shows 
there are errors less than 5% for each between the calculated and the tested results. It reveals 
that the proposed method is of good accuracy and can more efficiently acquire the 
geometrical sizes, i.e., the long and short diameters of the warp and weft yarns in the 
fabrics. 
 

Crimp 
Undulation angle 

(degree) 
Length of repeat unit 

(mm) 
Crimped length (mm) 

Cw Cf θw θf Pw Pf lw lf 

0.06 0.06 25.9646 25.9646 0.4305 0.4305 0.4487 0.4487 

Table 3. Measured and induced results of the basic sizes for the fabric 

www.intechopen.com



 Woven Fabric Engineering 

 

150 

Long diameter 
( ) cos sinp l D Dθ θ θ= − +

Short diameter 
( )sin (1 cos )h l D Dθ θ θ= − + −

Diameter 
(circular shape) 

Diameter 
(actual eye shape) 

warp weft warp weft 
D1(mm) D2(mm) D (mm) dw 

(mm) 
df 

(mm)
aw 

(mm) 
hw 

(mm) 
af 

(mm) 
hf 

(mm) 
0.8856 0.8856 

D (mm) 
0.8856 

0.3288 0.2140 0.2140 0.4428 0.1644 0.4428 0.1644 

Table 4. Calculated results by evaluation methodology based on Peirce’s model 
 

Predicted Measured 

warp weft warp weft 

aw (mm) hw (mm) af (mm) hf (mm) aw(mm) hw (mm) af(mm) hf (mm) 

0.4428 0.1644 0.4428 0.1644 0.4348 0.1625 0.4348 0.1625 

Table 5. Comparison between the predicted and the measured sizes 

6.2 Extensional behavior of fabric 

The generalized load-extension curve as illustrated in Fig. 7 (Hearle et al., 1969) shows three 
actions, as in the initial decrimping region the load-extension curve possesses a point of 
inflexion. The initial high modulus of the fabric is probably due to frictional resistance to 
bending of the thread. Once the frictional restraint is overcome, a relatively low modulus is 
obtained which is mainly governed by the force needed to unbend the threads in the 
direction in which the force is being applied, and at the same time, the need to increase the 
curvature in the threads at the right angles to the direction of application of the force. As the 
crimp is decreased the size of this force rises very steeply and, as a result, the fibers 
themselves begin to be extended and in the final region, the load-extension properties of the 
cloth are almost entirely governed by the load-extension properties of the yarns themselves. 
According to the description of the load-extension process, it can be concluded that the 
initial modulus of the fabric is determined by the first part. In other words, the resistance to 
bending of the thread (including frictional forces affected by the surface features of the warp 
(weft) yarns and the bending rigidity of the warp (weft) yarns) governs the initial modulus.  
 

Inter-iber 

Friction efect 

Yarn 
Extension  

region 

Decrimping 

region 

Load 

Extension  

 

(a) Generalized load-extension curve (b) Sample fabric stress-strain curve 

Fig. 7. Comparison between generalized and tested curve 
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This above-mentioned viewpoints on extension-load curve by Grosberg is quite in 
accordance with the equation deduced for Young’s modulus by Leaf & Kandil (Leaf & 
Kandil, 1980). According to the deduced equation, the initial modulus is related to the 
bending rigidities of warp and weft yarns. However, the tested results for the sample fabric 
shown in Fig. 7b, in which there is a lack of level out appearance in the load-extension curve 
for the sample fabric, are different from the generalized load-extension curve. This is mainly 
because the sample fabric used in the study is of a small crimped angle of 26°.  It brings 
about that once the resistances of the friction force occurred from the rough contact surfaces 
of the adjacent yarns and the bending rigidities of the warp and weft yarns are conquered, 
the second stage (i.e., lever out region) is skipped and directly move to the third region (i.e., 
the applied force used to extend the fibers themselves in the yarn). 

6.3 Validation of slice array model 

The slice array model (i.e., SAM) (Naik & Ganesh, 1992), which considers the actual yarn 
cross-sectional geometry and the presence of a gap between the adjant yarns, is presented 
for the elastic analysis of 2-D orthogonal plain weave fabric lamina. The shape functions 
agree well with the actual geometry of the woven fabric lamina. The assumption that the 
locally bending deformations are constrained is realistic considering the nature of 
interlacing of the plain weave fabrics. 
In order to examine the micromechanical approaches for the prediction of the elastic 
constants of a woven fabric lamina, a plain woven fabric with warp and weft spun yarn of 
cotton fibers is selected. The elastic properties of the cotton fiber are given in Table 1. Based 
on the mechanical properties of the raw material cotton fiber, Young’s modulus of the cotton 
spun yarn (i.e., yM) is predicted to be 6694 (N/mm2) using equation 23 developed by Hearle 
(Hearle et al., 1969). However, it is much higher than the actual measured value of 581 
(N/mm2). As Hearle (Hearle et al, 1969) said the prediction equation can not be expected to 
be numerically precise because of severe approximations.  
 

ET 
(N/mm2) 

GTT 
(N/mm2) 

GLT 
(N/mm2) 

vLT vTT vTL 

5592a 1969a 0.0031a 0.70a 0.42a 0.58a 
484b 171b 0.0031b 0.70b 0.42b 0.58b 

a: Calculated based on EL=6694 (N/mm2); b: Calculated based on EL=581 (N/mm2) 

Table 6. Calculated elastic properties of the straight yarn based on  Predicted and Measured EL 

 

Ex (N/mm2) Gxy (N/mm2) vyx 
3622a 669a 1.95×10-5 a 
316b 58b 2.11×10-4 b 
363c --- --- 

a: Calculated based on EL=6694 (N/mm2); b: Calculated based on EL=581 (N/mm2); c: 
measured 

Table 7. Elastic properties of plain weave fabric lamina: Comparison of predicted and 
experimental results 

Once the value of EL is determined and the value of vLT is set at 0.7, those of ET, GLT and GTT 

for the yarns can be calculated based on the orthotropic material model (Curiskis & 
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Carnaby, 1985)  proposed by Curiskis and Carnaby. The obtained results of the mechanical 
properties of the yarn in straight form are illustrated in Table 6. Thus, the elastic properties 
(i.e. compliance coefficients) for the undulated warp and weft yarn in the fabric can be 
estimated by equations 33~36. The compliance matrix for each slice of the unit cell shown in 
Fig. 5b can thus be obtained and the one of the unit cell can be acquired from the summation 
of each of the slices as shown in Fig. 5c by equation 39. Furthermore, the stiffness matrix of 
the unit cell can be calculated from the inverse matrix of the obtained compliance matrix. 
Young’s modulus of the woven fabric in the extension direction can be evaluated using 
equation 40. The predicted results are illustrated in Table 7, in which it reveals that the 
predicted Young’s modulus Ex in the weft extension direction based on the actual measured 
EL (= 581 N/mm2) of yarn is much closer to the measured one than based on the predicted 
EL (=6694 N/mm2) of yarn.  

7. Conclusions 

In this study, a unit cell model for plain weave is developed to predict the elastic behavior of 
woven fabric during extension. A piece of woven fabric is regarded as a thin lamina because 
of its thickness is small. The plain weave fabric lamina model presented in this study is 2-D 
in the sense that considers the undulation and continuity of the strand in both the warp and 
weft directions. The model also accounts for the presence of the gap between adjacent yarns 
and different material and geometrical properties of the warp and weft yarns. This slice 
array model (i.e., SAM), which is used to predict the elastic properties of WF composites by 
Naik and Ganesh, is applied to evaluate the mechanical properties of woven fabric in this 
study. The applicability of SAM to prediction of the elastic properties of fabrics is as good as 
to that of the composites. However, it is necessary to have accurate elastic constants, i.e., 
Young’s moduli of the warp and weft yarn, for the model in order to obtain a promising 
predicted result. It is found that the accuracy of a predicted Young’s moduli of warp and 
weft yarn obtained from a deduced equation by Hearle is not as good as expected. In order 
to help eliminate the tedious measuring process but to obtain the exact sizes of the yarns in 
the fabric, an innovative methodology based on Peirce’s geometrical model is developed in 
the study. It reveals that the proposed method is of good accuracy and can more efficiently 
acquire the geometrical sizes, i.e., the long and short diameters of the warp and weft yarns 
in the fabrics. Through the help of the modified SAM prediction model, the mechanic 
properties (e.g., initial Young’s modulus, surface shear modulus and Poisson’s ratio) of the 
woven fabric can be obtained in advance without being through experimental testing. Thus, 
the determination of the woven fabric can be more efficient and effective through the help of 
the modified SAM model. Another weave structure of woven fabrics, e.g., twill and satin, is 
to be selected to construct the geometrical model and a close examination into the stress-
strain relations of the unit cell by using finite element analysis is interesting to be followed 
in our further study. 
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composites. The advantage of the book Woven Fabric Engineering is its open access fully searchable by

anyone anywhere, and in this way it provides the forum for dissemination and exchange of the latest scientific

information on theoretical as well as applied areas of knowledge in the field of woven fabric engineering. It is

strongly recommended for all those who are connected with woven fabrics, for industrial engineers,

researchers and graduate students.
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