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Abstract 
 

We present a system to increase the performance of feature correspondence based alignment 
algorithms for laser scan data. Alignment approaches for robot mapping, like ICP or FFS, 
perform successfully only under the condition of sufficient feature overlap between single 
scans. This condition is often not met, e.g. in sparsely scanned environments or disaster 
areas for search and rescue robot tasks. Assuming mid level world knowledge (in the 
presented case the weak presence of noisy, roughly linear or rectangular-like objects) our 
system augments the sensor data with hypotheses ('Virtual Scans') about ideal models of 
these objects, based on analysis of a current estimated map of the underlying iterative 
alignment algorithm. Feedback between the data alignment and the data analysis confirms, 
modifies, or discards the Virtual Scan data in each iteration. Experiments with a simulated 
scenario and real world data from a rescue robot scenario show the applicability and 
advantages of the approach. 

 
1 Introduction 
 

Robot mapping based on laser range scans is a major field of research in robotics in the 
recent years. The basic task of mapping is to combine spatial data usually gained from laser 
range devices, called 'scans', to a single data set, the 'global map'. The global map represents 
the environment scanned from different locations, even possibly scanned by different robots 
('multi robot mapping'), usually without knowledge of their pose (= position and heading). 
One class of approaches to tackle this problem, i.e. to align single scans, is based on feature 
correspondences between the single scans to find optimal correspondence configurations. 
Techniques like ICP (Iterative Closest Point, e.g. [2, 24] and [22]) or FFS (Force Field 
Simulation based alignment, [20]) belong to this class. They show impressive results, but are 
naturally restricted: first since they are feature correspondence based, they require the 
presence of a sufficient amount of common, overlapping features in scans belonging 
together. Second, since the feature correspondence function is based on a state describing 
the relation of the single scans (e.g. the robots' poses), these algorithms are depending on 
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sufficiently good state initialization to avoid local minima. In this paper, we suggest a 
solution to the first problem: correct alignment in the absence of sufficient feature 
correspondences. This problem can e.g. arise in search and rescue environments (these 
environments typically show a little number of landmarks only) or when multiple robots 
team to build a joint global map. In this situation, single scans, acquired from different 
views, do not necessarily reveal the entire structure of the scanned object. The motivation to 
our approach is that even if the optimal relation between single scans is not known, it is 
possible to infer hypotheses of underlying structures from the non-optimal combination of 
single scans based on the assumption of certain real world knowledge. Figure 1 illustrates 
the basic 

 
Fig. 1. Motivation of Virtual Scan approach (a-f in reading order): a) rectangular object 
scanned from two positions (red/blue robots). b) correspondence between single scans 
(red/blue) does not reveal the scanned structure c) misalignment due to wrong 
correspondences d) analysis of estimated global map detects structure e) structure is added 
as Virtual Scan f) correct alignment achieved due to correspondences between real world 
scans and Virtual Scans 
 
idea. It shows a situation where the relation between features of single scans can not reveal 
the real world structure, and therefore leads to misalignment. Analysis from a global view 
estimates the underlying structure. This hypothesis then augments the real world data set, 
to achieve a correct result. 
The motivational example shows the ideal case; it doesn't assume any error in the global 
map estimation (the relative pose between red and blue scan), hence it is trivial to detect the 
correct structure. Our system also handles the non ideal situation including pose errors. It 
utilizes a feedback structure between hypothesis generation and real data alignment 
response. The feedback iteratively adjusts the hypotheses to the real data (and vice versa). 
This will be discussed in more detail below. We first want to explain our approach in a more 
general framework. 
Feature correspondence algorithms, e.g. in ICP or FFS, can be seen as low level spatial 
cognition processes (LLSC), since they operate based on low level geometric information. 
The feature analysis of the global map, which is suggested in this paper, can be described as 
mid level spatial cognition process (MLSC), since we aim at analysis of features like lines, 
rectangles, etc. Augmenting real world data with ideal models of expected data can be seen 
as an example of integration of LLSC and MLSC processes to improve the performance of 

spatial recognition tasks in robotics. We are using the area of robot perception for mobile 
rescue robots, specifically alignment of 2D laser scans, as a showcase to demonstrate the 
advantages of these processes. 
In robot cognition, MLSC processes infer the presence of mid level features from low level 
data based on regional properties of the data. In our case, we detect the presence of simple 
mid level objects, i.e. line segments and rectangles. The MLSC processes model world 
knowledge, or assumptions about the environment. In our setting for search and rescue 
environments, we assume the presence of (collapsed) walls and other man made structures. 
If possible wall-like elements or elements somewhat resembling rectangular structures are 
detected, our system generates the most likely ideal model as a hypothesis, called 'Virtual 
Scan'. Virtual Scans are generated from the ideal, expected model in the same data format as 
the raw sensor data, hence Virtual Scans are added to the original scan data 
indistinguishably for the low level alignment process; the alignment is then performed on 
the augmented data set. 
In robot cognition, LLSC processes usually describe feature extraction based on local 
properties like spatial proximity, e.g. based on metric inferences on data points, like edges in 
images or laser reflection points. In our system laser scans (virtual or real) are aligned to a 
global map using mainly features of local proximity using the LLSC core process of 'Force 
Field Simulation' (FFS). FFS was recently introduced to robotics [20]. In FFS, each data point 
can be assigned a weight, or value of certainty. It also does not make a hard, but soft 
decision about the data correspondences as a basis for the alignment. Both features make 
FFS a natural choice over its main competitor, ICP [2, 24], for the combination with Virtual 
Scans. The weight parameter can be utilized to indicate the strength of hypotheses, 
represented by the weight of virtual data. 
FFS is an iterative alignment algorithm. The two levels (LLSC: data alignment by FFS, 
MLSC: data augmentation) are connected by a feedback structure, which is repeated in each 
iteration: 

• The FFS-low-level-instances pre-process the data. They find correspondences based 
on low level features. The low level processing builds a current version of the global 
map, which assists the mid-level feature detection 

• The mid level cognition module analyzes the current global map, detects possible mid 
level objects and models ideal hypothetical sources possibly 
being present in the real world. These can be seen as suggestions, fed back into the 
low level system by Virtual Scans. The low level system in turn adjusts its processing 
for re-evaluation by the mid level systems. 
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correspondences. This problem can e.g. arise in search and rescue environments (these 
environments typically show a little number of landmarks only) or when multiple robots 
team to build a joint global map. In this situation, single scans, acquired from different 
views, do not necessarily reveal the entire structure of the scanned object. The motivation to 
our approach is that even if the optimal relation between single scans is not known, it is 
possible to infer hypotheses of underlying structures from the non-optimal combination of 
single scans based on the assumption of certain real world knowledge. Figure 1 illustrates 
the basic 
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(red/blue) does not reveal the scanned structure c) misalignment due to wrong 
correspondences d) analysis of estimated global map detects structure e) structure is added 
as Virtual Scan f) correct alignment achieved due to correspondences between real world 
scans and Virtual Scans 
 
idea. It shows a situation where the relation between features of single scans can not reveal 
the real world structure, and therefore leads to misalignment. Analysis from a global view 
estimates the underlying structure. This hypothesis then augments the real world data set, 
to achieve a correct result. 
The motivational example shows the ideal case; it doesn't assume any error in the global 
map estimation (the relative pose between red and blue scan), hence it is trivial to detect the 
correct structure. Our system also handles the non ideal situation including pose errors. It 
utilizes a feedback structure between hypothesis generation and real data alignment 
response. The feedback iteratively adjusts the hypotheses to the real data (and vice versa). 
This will be discussed in more detail below. We first want to explain our approach in a more 
general framework. 
Feature correspondence algorithms, e.g. in ICP or FFS, can be seen as low level spatial 
cognition processes (LLSC), since they operate based on low level geometric information. 
The feature analysis of the global map, which is suggested in this paper, can be described as 
mid level spatial cognition process (MLSC), since we aim at analysis of features like lines, 
rectangles, etc. Augmenting real world data with ideal models of expected data can be seen 
as an example of integration of LLSC and MLSC processes to improve the performance of 

spatial recognition tasks in robotics. We are using the area of robot perception for mobile 
rescue robots, specifically alignment of 2D laser scans, as a showcase to demonstrate the 
advantages of these processes. 
In robot cognition, MLSC processes infer the presence of mid level features from low level 
data based on regional properties of the data. In our case, we detect the presence of simple 
mid level objects, i.e. line segments and rectangles. The MLSC processes model world 
knowledge, or assumptions about the environment. In our setting for search and rescue 
environments, we assume the presence of (collapsed) walls and other man made structures. 
If possible wall-like elements or elements somewhat resembling rectangular structures are 
detected, our system generates the most likely ideal model as a hypothesis, called 'Virtual 
Scan'. Virtual Scans are generated from the ideal, expected model in the same data format as 
the raw sensor data, hence Virtual Scans are added to the original scan data 
indistinguishably for the low level alignment process; the alignment is then performed on 
the augmented data set. 
In robot cognition, LLSC processes usually describe feature extraction based on local 
properties like spatial proximity, e.g. based on metric inferences on data points, like edges in 
images or laser reflection points. In our system laser scans (virtual or real) are aligned to a 
global map using mainly features of local proximity using the LLSC core process of 'Force 
Field Simulation' (FFS). FFS was recently introduced to robotics [20]. In FFS, each data point 
can be assigned a weight, or value of certainty. It also does not make a hard, but soft 
decision about the data correspondences as a basis for the alignment. Both features make 
FFS a natural choice over its main competitor, ICP [2, 24], for the combination with Virtual 
Scans. The weight parameter can be utilized to indicate the strength of hypotheses, 
represented by the weight of virtual data. 
FFS is an iterative alignment algorithm. The two levels (LLSC: data alignment by FFS, 
MLSC: data augmentation) are connected by a feedback structure, which is repeated in each 
iteration: 

• The FFS-low-level-instances pre-process the data. They find correspondences based 
on low level features. The low level processing builds a current version of the global 
map, which assists the mid-level feature detection 

• The mid level cognition module analyzes the current global map, detects possible mid 
level objects and models ideal hypothetical sources possibly 
being present in the real world. These can be seen as suggestions, fed back into the 
low level system by Virtual Scans. The low level system in turn adjusts its processing 
for re-evaluation by the mid level systems. 
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Fig. 3. Feedback between Virtual Scans (VS) and FFS. From left to right: a) Initial state of real 
data. b) Real data augmented by VS (red). c) After one iteration using real and virtual scans. 
d) new hypothesis (red) based on (c). e) next iteration. Since this results resembles an ideal 
rectangle, adding a VS would not relocate the scans. The system converged. 
The following example will illustrate the feedback: Figure 3 assumes two scans, e.g. taken 
from robots in two different positions (compare to fig.1). An MLSC process detects a 
rectangular structure (the asumed world knowledge) and adds an optimal generating model 
to the data set. The LLSC module aligns the augmented data. The hypothesis now directs 
the scans to a better location. In each iteration, the relocated real scans are analyzed to adjust 
the MLSC hypothesis: LLSC and MLSC assist each other in a feedback loop. 
 
2. Related Work in Spatial Cognition and Robot Mapping 
 

The potential of MLSC has been largely unexplored in robotics, since recent research mainly 
addressed LLSC systems. They show an astonishing performance: especially advances in 
statistical inferences [5, 10, 13] in connection with geometric modeling of human perception 
[6, 9, 25] and the usage of laser range scanners contributed to a breakthrough in robot 
applications, with the most spectacular results achieved in the 2005 DARPA Grand 
Challenge where several autonomous vehicles were able to successfully complete the race 
[26]. But although the work on sophisticated statistical and geometrical models like 
extended Kalman Filters (EKF),e.g. [12], Particle Filters [10] and ICP (Iterative Closest Point) 
[2, 24] utilized in mapping approaches show impressive results, their limits are clearly 
visible, e.g. in the aforementioned rescue scenarios. These systems are still based on low 
level cognitive features, since they construct metric maps using correspondences between 
sensor data points. However, having these well-engineered low level systems at hand, it is 
natural to connect them to MLSC processes to mutually assist each other. 
The knowledge in the area of MLSC in humans, in particular in spatial intelligence and 
learning, is advancing rapidly [7, 14, 27]. Research in AI models such results to generate 

 
Fig. 2. LLSC/MLSC feedback. The LLSC module works on the union of real scans and the 
Virtual Scan. The MLSC module in turn re-creates a new Virtual Scan based on the result of 
the LLSC module. 

generic representations of space for mobile robots using both symbolic, e.g. [16], and non 
symbolic, e.g. [8], approaches. Each is trying to identify various aspects of the cognitive 
mapping process. Naturally, SLAM (Simultaneous Localization and Mapping [4] is often 
used as an application example [23]. In [28], a spatial cognition based map is generated 
based on High Level Objects. Representation of space is mostly based on the notion of a 
hierarchical representation of space. Kuipers [16] suggests a general framework for a Spatial 
Semantic Hierarchy (SSH), which organizes spatial knowledge representations into levels 
according to ontology from sensory to metrical information. SSH is an attempt to 
understand and conceptualize the cognitive map [15], the way we believe humans 
understand space. More recently, Yeap and Jefferies [29] trace the theories of early cognitive 
mapping. They classify representations as being space-based and object-based. Comparing 
to our framework, these classifications could be described being related to LLSC and High 
Level Spatial Cognition (HLSC), hence the supposed LLSC/MLSC system would relate 
closer to space-based systems. 
In [1], the importance of 'Mental Imagery' in (Spatial) Cognition is emphasized and basic 
requirements of modeling are stated. Mental Images invent or recreate experiences to 
resemble actually perceived events or objects. This is closely related to the "Virtual Scans" 
described in this proposal. Recently, Chang et al. [3] presented a predictive mapping 
approach (P-SLAM), which analyzes the environment for repetitive structures on the LLSC 
level (lines and corners) to generate a "virtual map". This map is either used as a hypothesis 
in unexplored regions to speed up the mapping process or as an initialization help for the 
utilized particle filters when a region is first explored. In the second case the approach has 
principles similar to the presented Virtual Scans. The impressive results of P-SLAM can also 
be seen as proof of concept of integrating prediction into robot perception. 
The problem of geometric robot mapping is based on aligning a set of scans. On the LLSC 
level the problem of simultaneous aligning of scans has been treated as estimating sets of 
poses [22]. The underlying framework for such a technique is to optimize a constraint-
graph, in which nodes are features, poses and edges are constraints built using various 
observations and measurements. 
There are numerous image registration techniques, the most famous being 
Iterative Closest Point (ICP)[2], and its numerous variants to improve speed and converge 
basins. Basically all these techniques do search in transformation space trying to find the set 
of pair-wise transformations of scans by optimizing some function defined on 
transformation space. The techniques vary in defining the optimization functions that range 
from being error metrics like "sum of least square distances" to quality metrics like "image 
distance". 'Force Field Simulation' (FFS), [20], minimizes a potential derived from forces 
between corresponding data points. The Virtual Scan technique presented in this paper will 
interact with FFS as underlying alignment technique. 

 
3. Scan Alignment using Force Field Simulation 
 

The understanding of FFS is crucial to the understanding of the presented extension of the 
FFS alignment using Virtual Scans. We will give an overview here. FFS aligns single scans Si 
obtained by robots, typically from different positions. We assume the scans to be roughly 
pre-aligned (see fig.11), e.g. by odometry or shape based pre-alignment. This is in accord 
with the performance comparison between FFS and ICP described in [19]. FFS alignment, in 
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sensor data points. However, having these well-engineered low level systems at hand, it is 
natural to connect them to MLSC processes to mutually assist each other. 
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generic representations of space for mobile robots using both symbolic, e.g. [16], and non 
symbolic, e.g. [8], approaches. Each is trying to identify various aspects of the cognitive 
mapping process. Naturally, SLAM (Simultaneous Localization and Mapping [4] is often 
used as an application example [23]. In [28], a spatial cognition based map is generated 
based on High Level Objects. Representation of space is mostly based on the notion of a 
hierarchical representation of space. Kuipers [16] suggests a general framework for a Spatial 
Semantic Hierarchy (SSH), which organizes spatial knowledge representations into levels 
according to ontology from sensory to metrical information. SSH is an attempt to 
understand and conceptualize the cognitive map [15], the way we believe humans 
understand space. More recently, Yeap and Jefferies [29] trace the theories of early cognitive 
mapping. They classify representations as being space-based and object-based. Comparing 
to our framework, these classifications could be described being related to LLSC and High 
Level Spatial Cognition (HLSC), hence the supposed LLSC/MLSC system would relate 
closer to space-based systems. 
In [1], the importance of 'Mental Imagery' in (Spatial) Cognition is emphasized and basic 
requirements of modeling are stated. Mental Images invent or recreate experiences to 
resemble actually perceived events or objects. This is closely related to the "Virtual Scans" 
described in this proposal. Recently, Chang et al. [3] presented a predictive mapping 
approach (P-SLAM), which analyzes the environment for repetitive structures on the LLSC 
level (lines and corners) to generate a "virtual map". This map is either used as a hypothesis 
in unexplored regions to speed up the mapping process or as an initialization help for the 
utilized particle filters when a region is first explored. In the second case the approach has 
principles similar to the presented Virtual Scans. The impressive results of P-SLAM can also 
be seen as proof of concept of integrating prediction into robot perception. 
The problem of geometric robot mapping is based on aligning a set of scans. On the LLSC 
level the problem of simultaneous aligning of scans has been treated as estimating sets of 
poses [22]. The underlying framework for such a technique is to optimize a constraint-
graph, in which nodes are features, poses and edges are constraints built using various 
observations and measurements. 
There are numerous image registration techniques, the most famous being 
Iterative Closest Point (ICP)[2], and its numerous variants to improve speed and converge 
basins. Basically all these techniques do search in transformation space trying to find the set 
of pair-wise transformations of scans by optimizing some function defined on 
transformation space. The techniques vary in defining the optimization functions that range 
from being error metrics like "sum of least square distances" to quality metrics like "image 
distance". 'Force Field Simulation' (FFS), [20], minimizes a potential derived from forces 
between corresponding data points. The Virtual Scan technique presented in this paper will 
interact with FFS as underlying alignment technique. 

 
3. Scan Alignment using Force Field Simulation 
 

The understanding of FFS is crucial to the understanding of the presented extension of the 
FFS alignment using Virtual Scans. We will give an overview here. FFS aligns single scans Si 
obtained by robots, typically from different positions. We assume the scans to be roughly 
pre-aligned (see fig.11), e.g. by odometry or shape based pre-alignment. This is in accord 
with the performance comparison between FFS and ICP described in [19]. FFS alignment, in 
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detail described in [20] is able to iteratively refine such an alignment based on the scan data 
only. In FFS, each single scan is seen as a non-deformable entity, a 'rigid body'. In each 
iteration, a translation and rotation is computed for each single scan simultaneously. This 
process minimizes a target function, the 'point potential', which is defined on the set of all 
data points (real and Virtual Scans: FFS cannot distinguish). FFS solves the alignment 
problem as optimization problem utilizing a gradient descent approach motivated by 
simulation of dynamics of rigid bodies (the scans) in gravitational fields, but " replaces laws of 
physics with constraints derived from human perception" [20]. The gravitational field is based on 
a correspondence function between all pairs of data points, the 'force' function. FFS 
minimizes the overlaying potential function induced by the force and converges towards a 
local minimum of the potential, representing a locally optimal transformation of scans. The 
force function is designed in a manner that a low potential corresponds to a visually good 
appearance of the global map. As scans are moved according to the laws of motion of rigid 
bodies in a force field, single scans are not deformed. 
Fig. 4 shows the basic principle: forces (red arrows) are computed between 4 single scans 
(the 4 corners). FFS simultaneously transforms all scans until a stable configuration is 
gained. 

 
Its magnitude \\M ( v i , U j )\\ = C ( v i , U j ) is defined as: 

 
With Si, S2 being two different scans, the force between two single data points vi G S1 and u j  

G  S2 is defined as a vector with parameters at, wi, Wj, Z(vi,u j-) defined as follows: Z(vi,u j-) 
denotes the angle between the directions of points, which is defined as the angle between 
directions of assumed underlying locally linear structures. See fig. 5, left, for an example, 
which especially shows the influence of the cosine-term in eq.2: forces are strong between 
parallel structures only. In eq.2, the forces are strongly depending on at, which is a 
parameter steering the radius of influence. With at decreasing during the iterative process, 
FFS changes the influence of each data point from global to local. In addition, the weight 
w i,w j- (or mass) determines the influence of points vi, Uj. The weight is a parameter which 
can e.g. express the certainty about a point, or it can model the feature importance. We 
utilize this feature of FFS to model the strength of hypothesis in the Virtual Scans. Hence in 
eq.2 the interfacing between LLSC and MLSC can be seen directly: distance and cosine term 
refer to LLSC, while the weights are derived from MLSC (in case of the Virtual Scans). 
To compute the resulting movement from the forces of all point pairs between different 
scans, FFS re-assigns a constant mass to all data points and applies Newton's law of 
movement of rigid bodies in force fields. Constant mass causes data points participating in 
stronger force relations to influence the transformation stronger than those responding to 
weaker forces. For a single transformation step see fig. 5, right. 
The step width At of the gradient descent step in FFS is determinded by a 'cooling process'. 
At It is monotonically decreasing, allowing the system in early iterations to jump out of local 
minima, yet to be attracted by local features in later steps. The interplay between at and At is 
an important feature of FFS. See figures 11 and 12 for an example of the performance of FFS 
on a laser range data set. 

 
Fig. 4. Basic principle of FFS. Forces are computed between 4 single scans. Red arrows 
illustrate the principle of forces. The scans are iteratively (here: two iterations) transformed 
by translation and rotation until a stable configuration is achieved. 
 
FFS is closely related to simultaneous ICP. A performance evaluation of both algorithms [19] 
showed similar results. In general, FFS can be seen as more robust with respect to global 
convergence with non near optimal initialization, since the point relations are not built in a 
hard (nearest neighbor) but soft(sum of forces) way. Also the inclusion of weight parameters 
makes it a natural decision for our purposes of extension using Virtual Scans. 
 

4. Creating Virtual Scans: Mid Level Analysis 
 

The point set used in our system is not the original raw data, but a re-sampled version; two 
pre-precessing steps are performed before the algorithm is applied. First, underlying linear 
structures (line segments) are detected in each single scan. Since line segments rely on local 
linearity of the underlying data points, classic global approaches like Hough line detection 
are not feasible. A recently published technique [21], using a statistical approach, 'Extended 
Expectation Maximization', is specifically tailored to model laser scan data with line seg-
ments. Second, having the line segments, new data points are generated in an equidistant 
way along these segments. The original data is discarded in favor of the newly generated 

Fig. 5. FFS example. Left: Forces (green) between two rigid structures (brown, black). The
black and brown lines connect the actual data set for display reasons only. The figure
shows a magnification of the upper left corner of fig. 11, right. Right: example of force and
movement. Dotted lines show 2 scans (black, brown) and their forces (green) in iteration t.
Solid lines show the resulting transformed scans at iteration t + 1. 
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detail described in [20] is able to iteratively refine such an alignment based on the scan data 
only. In FFS, each single scan is seen as a non-deformable entity, a 'rigid body'. In each 
iteration, a translation and rotation is computed for each single scan simultaneously. This 
process minimizes a target function, the 'point potential', which is defined on the set of all 
data points (real and Virtual Scans: FFS cannot distinguish). FFS solves the alignment 
problem as optimization problem utilizing a gradient descent approach motivated by 
simulation of dynamics of rigid bodies (the scans) in gravitational fields, but " replaces laws of 
physics with constraints derived from human perception" [20]. The gravitational field is based on 
a correspondence function between all pairs of data points, the 'force' function. FFS 
minimizes the overlaying potential function induced by the force and converges towards a 
local minimum of the potential, representing a locally optimal transformation of scans. The 
force function is designed in a manner that a low potential corresponds to a visually good 
appearance of the global map. As scans are moved according to the laws of motion of rigid 
bodies in a force field, single scans are not deformed. 
Fig. 4 shows the basic principle: forces (red arrows) are computed between 4 single scans 
(the 4 corners). FFS simultaneously transforms all scans until a stable configuration is 
gained. 

 
Its magnitude \\M ( v i , U j )\\ = C ( v i , U j ) is defined as: 

 
With Si, S2 being two different scans, the force between two single data points vi G S1 and u j  

G  S2 is defined as a vector with parameters at, wi, Wj, Z(vi,u j-) defined as follows: Z(vi,u j-) 
denotes the angle between the directions of points, which is defined as the angle between 
directions of assumed underlying locally linear structures. See fig. 5, left, for an example, 
which especially shows the influence of the cosine-term in eq.2: forces are strong between 
parallel structures only. In eq.2, the forces are strongly depending on at, which is a 
parameter steering the radius of influence. With at decreasing during the iterative process, 
FFS changes the influence of each data point from global to local. In addition, the weight 
w i,w j- (or mass) determines the influence of points vi, Uj. The weight is a parameter which 
can e.g. express the certainty about a point, or it can model the feature importance. We 
utilize this feature of FFS to model the strength of hypothesis in the Virtual Scans. Hence in 
eq.2 the interfacing between LLSC and MLSC can be seen directly: distance and cosine term 
refer to LLSC, while the weights are derived from MLSC (in case of the Virtual Scans). 
To compute the resulting movement from the forces of all point pairs between different 
scans, FFS re-assigns a constant mass to all data points and applies Newton's law of 
movement of rigid bodies in force fields. Constant mass causes data points participating in 
stronger force relations to influence the transformation stronger than those responding to 
weaker forces. For a single transformation step see fig. 5, right. 
The step width At of the gradient descent step in FFS is determinded by a 'cooling process'. 
At It is monotonically decreasing, allowing the system in early iterations to jump out of local 
minima, yet to be attracted by local features in later steps. The interplay between at and At is 
an important feature of FFS. See figures 11 and 12 for an example of the performance of FFS 
on a laser range data set. 

 
Fig. 4. Basic principle of FFS. Forces are computed between 4 single scans. Red arrows 
illustrate the principle of forces. The scans are iteratively (here: two iterations) transformed 
by translation and rotation until a stable configuration is achieved. 
 
FFS is closely related to simultaneous ICP. A performance evaluation of both algorithms [19] 
showed similar results. In general, FFS can be seen as more robust with respect to global 
convergence with non near optimal initialization, since the point relations are not built in a 
hard (nearest neighbor) but soft(sum of forces) way. Also the inclusion of weight parameters 
makes it a natural decision for our purposes of extension using Virtual Scans. 
 

4. Creating Virtual Scans: Mid Level Analysis 
 

The point set used in our system is not the original raw data, but a re-sampled version; two 
pre-precessing steps are performed before the algorithm is applied. First, underlying linear 
structures (line segments) are detected in each single scan. Since line segments rely on local 
linearity of the underlying data points, classic global approaches like Hough line detection 
are not feasible. A recently published technique [21], using a statistical approach, 'Extended 
Expectation Maximization', is specifically tailored to model laser scan data with line seg-
ments. Second, having the line segments, new data points are generated in an equidistant 
way along these segments. The original data is discarded in favor of the newly generated 

Fig. 5. FFS example. Left: Forces (green) between two rigid structures (brown, black). The
black and brown lines connect the actual data set for display reasons only. The figure
shows a magnification of the upper left corner of fig. 11, right. Right: example of force and
movement. Dotted lines show 2 scans (black, brown) and their forces (green) in iteration t.
Solid lines show the resulting transformed scans at iteration t + 1. 
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points. This solves certain problems of FFS with unequally distributed sample point 
densities. It also reduces the number of points drastically. See fig.6 for an example. 

 
Fig. 6. FFS Pre-processing steps: left: original scan, right: line segments (black) and re-
sampled point data (red) 
 
The line and rectangle analysis is performed on the current, non augmented global map, i.e. 
the Virtual Scan of the previous iteration is discarded. 

 
4.1. Lines 
The usage of lines for our Virtual Scan approach is motivated by the world knowledge 
assumption of scanning a man made environment (e.g. a collapsed house): although these 
environments often locally don't show major linear elements any longer, a global view still 
often reveals an underlying global linear scheme, which we try to capture using a global line 
detection. Here (in contrast to our local line segment detection in the pre-processing step) we 
use the classic line detection approach of Hough transform [11], since it detects globally 
present linear structures. Hough transform does not only show location and direction of a 
line, but also the number of participating data points. We use this value to compute a 
certainty-of-presence measure, i.e. the strength of the line hypothesis. We only use lines 
above a certain threshold of certainty. We will specify below how the detected lines are 
utilized to create the Virtual Scan. The Hough detection is performed on the entire set of (re-
sampled) data points. We do not use the local linear information of the line segment 
representation of the data here, since we aim at global linearity. This is more robustly 
detected by Hough transform. 

 
4.2. Rectangles 
The rectangle detection operates on the entire set of line segments of all scans, gained in pre-
processing step 1. We use a rectangle detection approach described in [17]: each line 
segment (of each single scan) is translated into 'S,L,D space' (Slope,Length,Distance), which 
simplifies the detection of appropriate (rectangular like) configurations of four near parallel 
and near perpendicular segments. For details see [17]. Superimposing all line segments at an 
early stage of FFS leads to an additional problem, due to still imprecise pose estimation. 
Single lines in the environment, present in multiple single scans but not aligned perfectly 
yet, are represented by clusters of many segments, rather than the required single segment. 
We therefore merge similar lines in a cluster to a single prototype using a line merge 

approach described in [18], see figure 7. The rectangle detection module then predicts 
location, dimension and certainty-of-presence of hypothetical, ideal rectangles present in the 
data set of merged line segments. The certainty, or strength of the hypothesis is derived 
from properties (segment length, perpendicularity) of participating rectangle-generating 
line segments. This value is used to create the weight of the rectangle in the Virtual Scan. 
 

Fig. 7. Rectangle detection. a) Global map built by line segments of all single scans. b) result 
of global line merging c) red: detected rectangles (magnification of area encircled in b) 

 
4.3. Creating a Virtual Scan 
A Virtual Scan is a set of virtual laser scan points, superimposed over the entire area of the 
global map. The detected line segments and rectangles are 'plotted' into the Virtual Scans, 
i.e. they are represented by point sets as if they would be detected by a laser scanner. We 
assume a virtual laser scanner that represents each line and rectangle by a set of points, sub 
sampled equidistantly according to the point density of the underlying point data in the 
original data set. All detected elements (lines, rectangles) are plotted into a single Virtual 
Scan. 
An important feature of the Virtual Scan is that each scan point is assigned a weight, 
representing the strength of hypothesis of the generating virtual structure. Utilizing this 
feature, we benefit from the weights that steer the FFS alignment. As defined in eq.2, the 
weight Wi,Wj directly influences the alignment process; stronger points, i.e. points with 
higher value wi, have a stronger attraction. Hence, a strong hypothesis translates into a 
locally strongly attractive structure. The hypothesis value reflects the belief into the 
hypothesis relative to the real data; all data points of the real data are assigned a 'normal' 
weight of 1. 

 
5. Alignment using Virtual Scans: Algorithm 
The algorithm describes the interplay between LLSC (FFS) and the MLSC analysis. Si, i = 
1..n, denotes the real scan data, consisting of n scans. V[tt is the Virtual Scan in iteration t. 
Init: t =1,  Vt° = 0, create set of line segments Li for each scan Si 

1) Perform FFS on (Ji=1 n Si U V[t—1\ resulting in transformations (translation, rotation) Ti[t] 
for each scan Si=i..n 

2) Form global map G of points and GL of line segments, superimposing the transformed 
scans and their line segment representation: G = (Jn T"Jt](Si), GL = (Jn T"Jt](Li) 
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points. This solves certain problems of FFS with unequally distributed sample point 
densities. It also reduces the number of points drastically. See fig.6 for an example. 
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the Virtual Scan of the previous iteration is discarded. 
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assumption of scanning a man made environment (e.g. a collapsed house): although these 
environments often locally don't show major linear elements any longer, a global view still 
often reveals an underlying global linear scheme, which we try to capture using a global line 
detection. Here (in contrast to our local line segment detection in the pre-processing step) we 
use the classic line detection approach of Hough transform [11], since it detects globally 
present linear structures. Hough transform does not only show location and direction of a 
line, but also the number of participating data points. We use this value to compute a 
certainty-of-presence measure, i.e. the strength of the line hypothesis. We only use lines 
above a certain threshold of certainty. We will specify below how the detected lines are 
utilized to create the Virtual Scan. The Hough detection is performed on the entire set of (re-
sampled) data points. We do not use the local linear information of the line segment 
representation of the data here, since we aim at global linearity. This is more robustly 
detected by Hough transform. 

 
4.2. Rectangles 
The rectangle detection operates on the entire set of line segments of all scans, gained in pre-
processing step 1. We use a rectangle detection approach described in [17]: each line 
segment (of each single scan) is translated into 'S,L,D space' (Slope,Length,Distance), which 
simplifies the detection of appropriate (rectangular like) configurations of four near parallel 
and near perpendicular segments. For details see [17]. Superimposing all line segments at an 
early stage of FFS leads to an additional problem, due to still imprecise pose estimation. 
Single lines in the environment, present in multiple single scans but not aligned perfectly 
yet, are represented by clusters of many segments, rather than the required single segment. 
We therefore merge similar lines in a cluster to a single prototype using a line merge 

approach described in [18], see figure 7. The rectangle detection module then predicts 
location, dimension and certainty-of-presence of hypothetical, ideal rectangles present in the 
data set of merged line segments. The certainty, or strength of the hypothesis is derived 
from properties (segment length, perpendicularity) of participating rectangle-generating 
line segments. This value is used to create the weight of the rectangle in the Virtual Scan. 
 

Fig. 7. Rectangle detection. a) Global map built by line segments of all single scans. b) result 
of global line merging c) red: detected rectangles (magnification of area encircled in b) 

 
4.3. Creating a Virtual Scan 
A Virtual Scan is a set of virtual laser scan points, superimposed over the entire area of the 
global map. The detected line segments and rectangles are 'plotted' into the Virtual Scans, 
i.e. they are represented by point sets as if they would be detected by a laser scanner. We 
assume a virtual laser scanner that represents each line and rectangle by a set of points, sub 
sampled equidistantly according to the point density of the underlying point data in the 
original data set. All detected elements (lines, rectangles) are plotted into a single Virtual 
Scan. 
An important feature of the Virtual Scan is that each scan point is assigned a weight, 
representing the strength of hypothesis of the generating virtual structure. Utilizing this 
feature, we benefit from the weights that steer the FFS alignment. As defined in eq.2, the 
weight Wi,Wj directly influences the alignment process; stronger points, i.e. points with 
higher value wi, have a stronger attraction. Hence, a strong hypothesis translates into a 
locally strongly attractive structure. The hypothesis value reflects the belief into the 
hypothesis relative to the real data; all data points of the real data are assigned a 'normal' 
weight of 1. 

 
5. Alignment using Virtual Scans: Algorithm 
The algorithm describes the interplay between LLSC (FFS) and the MLSC analysis. Si, i = 
1..n, denotes the real scan data, consisting of n scans. V[tt is the Virtual Scan in iteration t. 
Init: t =1,  Vt° = 0, create set of line segments Li for each scan Si 

1) Perform FFS on (Ji=1 n Si U V[t—1\ resulting in transformations (translation, rotation) Ti[t] 
for each scan Si=i..n 

2) Form global map G of points and GL of line segments, superimposing the transformed 
scans and their line segment representation: G = (Jn T"Jt](Si), GL = (Jn T"Jt](Li) 
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3) Detect set of lines L in G, set of rectangles R in GL 

4) Create Virtual Scan VM. VM contains scan points representing the elements of L and R. 

5) Compute parameters at and At for the FFS process 

6) Loop: goto 1, or end if FFS converged (stable global map). 

6. Experiments and Results 
 

6.1. Sparse Scanning (Simulated Data) 

This experiment shows the effect of Virtual Scans in a sparsely scanned environment. It 
features a simple environment to highlight the principle of Virtual Scans and to show the 
improvement in the alignment process. Please compare also to the motivational example in 
the introduction, as well as to figures 1 and 3. A simulated arena, consisting of 4 rectangular 
rooms, is scanned from 5 different positions. Each single scan is translated and rotated to 
simulate pose errors, and pre-processed see fig.9,a,b). We first try to align this data set using 
FFS without Virtual Scans. The performance of FFS depends on the initial value of at (see 
eq.2), at=0. at changes the radius of influence of neighboring points. We tried multiple initial 

Fig. 8. Virtual Scans in an early stage of FFS. a) global map b) the Virtual Scan
consisting of points representing detected lines and rectangles c) superimposition of
real data and Virtual Scan. This is the data used in the next FFS iteration. 

values, results of at=0 = 30 and at=0 = 80 are shown (a in units of the data set: the width of 
the simulated arena is 400 units), see fig.9c),d). In c), with a low at=0, local structures are 
captured and aligned correctly, but global correspondences can not be detected (the 
'hallway' between the rooms shows an incorrect offset). Increasing at=0 and therewith 
strengthening the influence of global structures in d) leads to wrong results since local 
correspondences become relatively unimportant: FFS optimizes correspondences of major 
structures (although they are distant from each other in the initial map). The disability of 
balancing the influence of local and global structures is is an inherent drawback of 
alignment processes which are based on point correspondences (e.g. ICP, FFS), and not a 
special flaw of FFS only (other values of a did not improve the alignment). 
Fig.10 shows the improvement using Virtual Scans. This experiment uses the same setting as 
experiment fig.9,c) (at=0 = 30)). FFS is able to detect correct local structures, and the global 
structures are captured through augmentation by Virtual Scans. Also the effect of the 
hypothesis adjustment by feedback is clearly visible: Fig.10a) shows an early hypothesis, 
which contains a wrong rectangle and misplaced lines. This early hypothesis is corrected by 
the feedback process between FFS and the rectangle/line detector. b)shows a later iteration, 
the line position is adjusted (though not perfect yet), 2 rectangle hypotheses compete (lower 
right corner). The final result is shown in c )  and d). The detected lines adjusted expected 

Fig. 9. (in reading order): a)simulated arena, scanned from 5 positions (crosses). Points of
same color belong to same scan. b) After adding pose error to the data of (a) and pre-
processing: underlying segments of (a) and re-sampled point data. c/d) result of FFS
without Virtual Scans, intialized with configuration in (b). c) <7t=o = 30 d) <7t=o = 80 
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5) Compute parameters at and At for the FFS process 

6) Loop: goto 1, or end if FFS converged (stable global map). 

6. Experiments and Results 
 

6.1. Sparse Scanning (Simulated Data) 

This experiment shows the effect of Virtual Scans in a sparsely scanned environment. It 
features a simple environment to highlight the principle of Virtual Scans and to show the 
improvement in the alignment process. Please compare also to the motivational example in 
the introduction, as well as to figures 1 and 3. A simulated arena, consisting of 4 rectangular 
rooms, is scanned from 5 different positions. Each single scan is translated and rotated to 
simulate pose errors, and pre-processed see fig.9,a,b). We first try to align this data set using 
FFS without Virtual Scans. The performance of FFS depends on the initial value of at (see 
eq.2), at=0. at changes the radius of influence of neighboring points. We tried multiple initial 

Fig. 8. Virtual Scans in an early stage of FFS. a) global map b) the Virtual Scan
consisting of points representing detected lines and rectangles c) superimposition of
real data and Virtual Scan. This is the data used in the next FFS iteration. 

values, results of at=0 = 30 and at=0 = 80 are shown (a in units of the data set: the width of 
the simulated arena is 400 units), see fig.9c),d). In c), with a low at=0, local structures are 
captured and aligned correctly, but global correspondences can not be detected (the 
'hallway' between the rooms shows an incorrect offset). Increasing at=0 and therewith 
strengthening the influence of global structures in d) leads to wrong results since local 
correspondences become relatively unimportant: FFS optimizes correspondences of major 
structures (although they are distant from each other in the initial map). The disability of 
balancing the influence of local and global structures is is an inherent drawback of 
alignment processes which are based on point correspondences (e.g. ICP, FFS), and not a 
special flaw of FFS only (other values of a did not improve the alignment). 
Fig.10 shows the improvement using Virtual Scans. This experiment uses the same setting as 
experiment fig.9,c) (at=0 = 30)). FFS is able to detect correct local structures, and the global 
structures are captured through augmentation by Virtual Scans. Also the effect of the 
hypothesis adjustment by feedback is clearly visible: Fig.10a) shows an early hypothesis, 
which contains a wrong rectangle and misplaced lines. This early hypothesis is corrected by 
the feedback process between FFS and the rectangle/line detector. b)shows a later iteration, 
the line position is adjusted (though not perfect yet), 2 rectangle hypotheses compete (lower 
right corner). The final result is shown in c )  and d). The detected lines adjusted expected 

Fig. 9. (in reading order): a)simulated arena, scanned from 5 positions (crosses). Points of
same color belong to same scan. b) After adding pose error to the data of (a) and pre-
processing: underlying segments of (a) and re-sampled point data. c/d) result of FFS
without Virtual Scans, intialized with configuration in (b). c) <7t=o = 30 d) <7t=o = 80 
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global structures (the walls of the 'hallway') correctly, the winning rectangle hypothesis 
'glued together' the corners of the bottom right room. Please notice that this room is a 
structure that is not entirely present in any single scan, but only detectable in the global 
map. Hence only the Virtual Scan enhanced FFS could perform correctly.  

 
6.2. NIST Disaster Area 
This experiment shows the improved performance of the alignment process on a real world 
data set. The data set consists of 60 single laser scans, taken from 15 different positions in 4 
directions (N,W,S,E) with 20° overlap. It can be interpreted as a scene scanned by 15 robots, 
4 scans each. No order of scans is given. The scans resemble the situation of an indoors 
disaster scenery, scanned by multiple robots. The scans have little overlap and no distinct 
landmarks. The initial global map was computed using a shape based approach described in 
[19]. See fig. 11 for example scans and the initial map. We used the initial global map for two 
different runs of FFS, one using Virtual Scans, one without Virtual Scans. The increase in 
performance was evaluated by visual inspection, since for this data set no ground truth data 
is available. Comparing the final global maps of both runs, the utilization of Virtual Scans 
leads to distinct improvement in overall appearance and mapping details, see fig.12. 

Fig. 10. Same experiment as in fig. 9, but using FFS (<7t=o = 30) and Virtual Scans.
Elements of Virtual Scans (lines and rectangles) are shown in black. In reading order: a)
iteration 10, b) iteration 20 c) iteration 30 (final result) d) same as (c), but virtual scan not
shown. 

Overall, the map is more 'straight' (compare e.g. the top wall), since the detection of globally 
present linear structures (top and left wall in fig.12) adjusts all participating single segments 

to be collinear. These corrections advance into the entire structure. 
The improvements can even better be seen in certain details, the most distinct ones encircled 
in fig.12, d) , f ) .  Especially the rectangle in the center of the global map is an excellent 
example for a situation where correct alignment is not achievable with low level knowledge 
only. Only the suggested rectangle from the Virtual Scan (see fig.12,c), can force the low 
level process to transform the scan correctly. Without the assumed rectangle the low level 
optimization process necessarily tried to superimpose 2 parallel sides of the rectangle to 
falsely appear as one (magnification of both situations in 12e). 

 
7. Conclusion and Outlook 
 

The presented implementation of an extension to the FFS alignment process using Virtual 
Scans containing hypothetical mid level real world structures could significantly improve 
the results for the alignment task. The implementation proves the applicability of the 
presented concept for the combination of LLSC and MLSC processes. The detection of 
simple elements (lines, rectangles) based on weak real world assumptions could improve 
the performance. We are aware that adding domain knowledge certainly enhances the risk 
of wrong inferences. The proposed system handles errors caused by premature belief in mid 
level features by implementing the feedback principle, which evaluates a single hypothesis. 
It is known that single hypothesis systems introducing higher knowledge tend to be not 

Fig. 11. The NIST disaster area data set. Left: 6 example scans (from a total of 60). Crosses
show each robot's position. Right: 60 scans superimposed using a rough pre-estimation. 
This is the initial global map for the experiment in fig.12 
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only. Only the suggested rectangle from the Virtual Scan (see fig.12,c), can force the low 
level process to transform the scan correctly. Without the assumed rectangle the low level 
optimization process necessarily tried to superimpose 2 parallel sides of the rectangle to 
falsely appear as one (magnification of both situations in 12e). 
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The presented implementation of an extension to the FFS alignment process using Virtual 
Scans containing hypothetical mid level real world structures could significantly improve 
the results for the alignment task. The implementation proves the applicability of the 
presented concept for the combination of LLSC and MLSC processes. The detection of 
simple elements (lines, rectangles) based on weak real world assumptions could improve 
the performance. We are aware that adding domain knowledge certainly enhances the risk 
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robust. Under certain circumstances this behavior could also be observed in experiments 
with our system, which needed manual parameter adjustment to steer the influence of the 
hypotheses. It can be embedded into a multiple hypotheses framework, e.g. particle filters, 
which will be part of future work. 
Additional future work also has to determine the (geometric) level of elements which are 
meaningful enough to improve the alignment process, yet not too dominant. The current 
elements were chosen to model assumptions of indoor disaster areas. Future research about 
assumed real world elements will adjust to outdoor disaster settings. 
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robust. Under certain circumstances this behavior could also be observed in experiments 
with our system, which needed manual parameter adjustment to steer the influence of the 
hypotheses. It can be embedded into a multiple hypotheses framework, e.g. particle filters, 
which will be part of future work. 
Additional future work also has to determine the (geometric) level of elements which are 
meaningful enough to improve the alignment process, yet not too dominant. The current 
elements were chosen to model assumptions of indoor disaster areas. Future research about 
assumed real world elements will adjust to outdoor disaster settings. 
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Fig. 12. Alignment of NIST data set (initial alignment see fig. 11). (a-f in reading order) a) iteration 
4. b) iteration 8. c) iteration 10. In (a-c) red lines show the data of the Virtual Scan (VS). Please 
notice the mutual adjustment of hypotheses and real data. d) final result using Virtual Scans, after 
100 iterations. The VS is not shown for clarity of display. Compare to f): final result of alignment 
without VS. Encircled areas show examples of improvement between (d) and (f). e) The center 
rectangle could only be aligned correctly using VS information. Please compare (e) to 
motivational examples fig. 1 and 3. 
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