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1. Introduction 

In Parallel computing environments, each user can submit his job that is represented as a 
workflow composed of tasks that require multiple types of computational resources. How to 
develop a mechanism that ensures the success of these workflows is a challenging issue 
because the resources they use are dynamic and heterogeneous. 
In order to schedule these workflows conveniently, a model is needed to describe them in a 
simple, intuitive way. Script-based method is a simple way to describe workflows. 
However, because those scripts often consist of so many elements with complex syntax that 
the users cannot understand them quickly. The graphic description for a workflow is an 
intuitive way, such as directed acyclic graph (DAG) and Petri Net. Compared to script-
based descriptions, DAG is easier to use and more intuitional. However, DAG offers only a 
limited expressiveness [1], e.g. loops cannot be expressed directly. Moreover, as DAG only 
has a single node type, data flowing through the net cannot be modeled easily. 
Petri net [2] is a modeling tool used for modeling discrete, dynamic, parallel and asynchronous 
system. Because of the function of simple graphical description and interpretation ability, Petri 
net is widely used for system modeling and performance analysis in recent years. Many 
researches have already introduced this method to model workflow [3-5].  
In this paper, we model scheduling nets and job nets based on Petri Net techniques. To be 
convenient to analyze the performance of parallel jobs and to make net models compact and 
intuitional, we separate the scheduling net from the job net and model them respectively. A 
hierarchical colored Petri Net is proposed for the scheduling net that is designed into four 
levels according to the granularity of parallel applications. The hierarchical scheduling 
model makes each level scheduling only pay attention to its responsibility and it can reduce 
the structure complexity of the scheduling net at the same time. This paper also designs a 
extended Petri net with changeable structure for the job net model, which can change its 
structure dynamically according to the real-time state of running job. This model supports 
the mergence and division of subtasks and has ability to deal with the abnormity of 
subtasks. The models are validated with reachability tree techniques and their performances 
are analyzed with transition trees. 

                                                 
1 This work is supported by the project of Research on Regional Observation Technology about Slow-
roll Stabilization Satellite (GYHY201006046). 
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2. Related work 

Jia Yu and Rajkumar Buyya et al[6-8] have done many researches on workflow in parallel 
environments. They propose a taxonomy that characterizes and classifies various 
approaches for building and executing workflows on Grids. They model workflow 
applications as a DAG and present many algorithms to address scheduling optimization 
problems in workflow applications based on QoS constraints. The emphases of their 
researches are the development of workflow management systems and scheduling 
algorithms. 
BPEL4WS[9] builds on top of XML and web services specifications and provides a rich 
method for modeling web services based on the description of business process. However, 
its representation is script-based and it only composes workflows from web services. 
Jin Hai et al[10] propose a workflow model based on colored Petri net for grid service 
composition, in which the image date transmission was taken as requirements for the 
service flow to improve the efficiency of settling service flow and reduce tasks’ execution 
time. However, the model does not take the failure of task into consideration and does not 
support dynamic structures.    
A general scheduling framework[11] modeled by Petri net is proposed, which locates on the 
layer of Grid scheduler and is used for independent tasks in computational Grid.  
A three-level scheduling scheme[12] is proposed based on a high-level timed Petri net. The 
scheme divides Grid scheduling into three levels: Grid scheduler, Local Scheduler and 
Home Scheduler. It constructs different Petri net models for these levels. However, this 
scheme only focuses on independent tasks. In order to deal with the scheduling problem of 
task that consists of a set of communicating subtasks, an extended timed Petri net model[3] 
is proposed. Based on composition and reduction of Petri nets, the model can reduce the 
complexity of model and solve the state explosion problem in reachability analysis of Petri 
nets. But this model does not concern about the abnormity of running tasks and has no 
ability to change structure dynamically. 

3. Definitions of extended Petri Nets 

The jobs are dynamic and hierarchical in a parallel environment. According to these 
characteristics, we design two types of enhanced Petri Net, which are extended from the 
original Petri Net.  
Definition 1 A Hierarchical Color Petri Net (HCPN) is designed into 9-tuple. 

{ }0, ; , , , , , ,HCPN P T F D C I O K M=  

1. P  is a finite set of places.  

2. T  is a finite set of transitions and { }s cT T T= ∪ , where sT  is a set of simple transitions, 

cT  is a set of complex transitions and ( )( )P T P T∪ ≠∅ Λ ∩ =∅ . 

3. F  is a finite set of arcs and ( ) ( )( )F P S S P⊆ × ∪ × . 

4. D  is a finite set of colors. 

5. C  is a finite set of color functions. : ( )C P T Dψ∪ → , where ( )Dψ is the power set of 

colors. 

6. I  and O  are the input and output arc functions respectively.  
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( ) ( ) ( ) ( ) ( ), ,
MSMS L

p t P T I p t C p C t⎡ ⎤∀ ∈ × ⇒ ∈ →⎣ ⎦  

( ) ( ) ( ) ( ) ( ), ,
MS MS L

t p T P O t p C t C p⎡ ⎤∀ ∈ × ⇒ ∈ →⎣ ⎦  

When a transition needs to consume all tokens in a place, the input arc function is 

( ), ( )I p t C pγ= . 

7. K  is a set of capacity functions. :K P N ω→ ∪ , { }1,2,3,N = A  and ω  denotes infinite. 

8. 0 : MSM P D→  is the initial token marking. ( ) ( )0:
MS

p P M p C p∀ ∈ ∈ , where ( )
MS

C p  is 

the multiple set of the color tokens in p . 
Definition 2  

1. { }, |p t p t T• = < > ∈ , { }, |p p t t T• = < > ∈ , 

{ }p p p• • • •= ∪ .  

2. { }| ,p t t p F⊗ = < >∈ , { }| ,p t p t F⊗ = < >∈ . 

3. { }| ,t p p t F⊗ = < >∈ , { }| ,t p t p F⊗ = < >∈ . 

4. { | , }t t p t t p F⊗⊗ ⊗′ ′= ∈ ∧ < >∈ , 

{ | , }t t p t p t F⊗⊗ ⊗′ ′= ∈ ∧ < >∈ . 

5. In HCPN , the firing rules of transition is 

: ( ) ( , ) :

( ) ( , ) ( ).

p t M p O p t p t

M p I p t K p

⊗ ⊗∀ ∈ ≥ ∧∀ ∈
+ ≤

 

6. There exist  only one kp  and one lp  in HCPN , which satisfy the 

condition: k l k lp p p p⊗ ⊗= ∅ ∧ =∅ ∧ ≠ . kp  and lp  are called Beginning Place and End 

Place of HCPN  respectively. 
Definition 3  

Any complex transition in HCPN  can be extended to a subnet. The subnet of complex 

transition it  is defined as: 

{ }0, ; , , , , , , i
i i i i i i i i iS HCPN P T F D C I O K M− = . 

1. { }, ,i i
i begin end iP p p P′=  is a set of places. iP′  is the set of inner places in iS HCPN− . i

beginp  

and i
endp  are additional places used to denote the beginning and end places of 

iS HCPN− . 

i
beginp• = ∅ ， ( )i

endp • = ∅ ; 

1( ) { ( )| }i m
begin k k k iC p C p p t⊗

== ∪ ∈ ; 

1( ) { ( )| }i m
end k k k iC p C p p t⊗== ∪ ∈ . 

2. { }( )i i
i begin end iF p p F• • ′= ∪ ∪  is a set of arcs. iF′  is the set of inner arcs in iS HCPN− . 

3. iT , iD , iC , iI , iO , iK  and 0
iM  are the sets of transitions, colors, color functions, input 

arc functions, output arc functions, capacity functions and initial token marking 

respectively.  
Definition 4  
A Petri Net with changeable structure is designed to11-tuple. 
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{ }1
0 0, ; , , , , , , , ,k k

k k k k k k k k k kCSCTPN P T F D C I O Q M M −= Γ    

4. kP , kT , kF , kD , kC , kI , and kO  are the sets of places, transitions, arcs, colors, color 

functions, input arc functions and output arc functions respectively after the structure 

of CSCTPN  is changed k  times. 

5. 2) kΓ  is a set of times after CSCTPN  have changed k  times. Its element is defined as 

, , ,i b l dt τ τ τ< > , which denotes the earliest start time, the latest start time and duration 

time of transition it  are bτ , lτ , and dτ  respectively. ( )b i bt τΓ = , ( )l i lt τΓ = , ( )d i dt τΓ = . 

6. kQ  is a set of cost after CSCTPN  have changed k  times. Its element is defined as 

, ,i r mt q q< > , which denotes that the maximal cost of transition it  is mq and the real cost 

is rq . ( )r i rQ t q= , ( )m i mQ t q= , and r mq q≤  

7. 0
kM  is the initial token marking after CSCTPN  have changed k  times and 1 0

0 0M M− = . 

4. Parallel application scheduling model 

In this section, we propose a four-level scheduling model firstly according to the 
characteristics of parallel jobs. Then, Parallel job net is designed based on Petri Net with 
changeable structure and the conversion rules of the job net are presented at the same time. 

4.1 Four-level scheduling net 

In a Parallel environment, users use resources by submitting their applications. A user 
application is called a parallel job that can implement some functions specifically. A parallel 
job is usually composed of many steps and each step has certain input and output sets. Each 
step is called a subjob that can be divided into two types: computing subjob and data 
transferring subjob. A computing subjob needs to transfer its inputs firstly and then perform 
computing operation, so a computing subjob can be divided into transferring tasks and 
computing tasks. Similarly, a data transferring subjob often has many data inputs and it can 
be divided into many transferring tasks. A data transferring task has only one input and one 
output. The input data of a computing task is already transferred to local computing node. 
Because a data resource may have many replicas that locate on different nodes, to speed up 
the transfer a data transferring task can be divided into many subtasks according to the 
number of replicas and the QoS requirements of the user. Each subtask transfers a part of 
data from different replicas. If a computing task can be processed in parallel we call it a 
parallel computing task, otherwise we call it an unparallel computing task. A parallel 
computing task can be divided into many subtasks that run on different computing node. 
According to job, subjob, task and subtask, the parallel allocation scheduling model is 
designed into four levels: job scheduling net, subjob scheduling net, task scheduling net and 
subtask scheduling net. Only subtasks use computing or data resources directly, so all 
resource allocations take place in subtask scheduling net. 

4.1.1 Job scheduling net.  
The job scheduling net mainly manages the states of jobs. Its function includes job selection 
and monitoring. There are four states of a job: waiting, running, completed and failed. When 
all subjobs of a job are completed, the job is completed. If any subjob failes, the state of the 
job is failed. When a job has running subjobs and has no failed subjobs, the state of the job is 
running. The job scheduling net is modeled based on HCPN, which is shown as Fig.4-1. The 
detailed definition is shown as follows:  
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{ }0, ; , , , , , ,HCPN P T F D C I O K M=  

1. { |1 7}iP p i= ≤ ≤ ; 

2. { |1 7}iT t i= ≤ ≤ , 1t : select a job for running; 2t : start a job; 3t : select a job for 

monitoring; 4t : check the states of jobs, which is a complex transition; 5t : mark a job; 

6t : return a completed job; 7t : return a failed job. 

3. { |1 8}iD d i= ≤ ≤ , 1d : jobs submitted by users; 2d : jobs waiting to be started; 3d : 

running jobs; 4d : jobs waiting for being checked; 5d : jobs validated to run normally; 

6d : completed jobs; 7d  :failed jobs; 8d : returned jobs; 9d : tokens used for restricting 

the number of jobs that are running at the same time. 

4. 1 1( ) { }C p d= , 2 2( ) { }C p d= , 3 3( ) { }C p d= , 4 4( ) { }C p d= , 5 5 6 7( ) { , , }C p d d d= , 

6 9( ) { }C p d= , 7 8( ) { }C p d= ; 1 1( ) { }C t d= , 2 2 9( ) { , }C t d d= , 

3 3( ) { }C t d= , 4 4( ) { }C t d= , 5 5( ) { }C t d= , 6 6( ) { }C t d= , 7 7( ) { }C t d= . 

5. 1 2( ) ( )K p K p m= = , 3( )K p n= , 4 5( ) ( ) 1K p K p= = , 6( )K p n= , 7( )K p ω= . 

0 { ,0,0,0,0, ,0}M k n= , where 1 k m≤ ≤ . 
 

1p

7p
5p4p3p2p

1t 2t 3t 4t

5t

6t

7t

3{ }d1{ }d 2{ }d
4{ }d2{ }d 3{ }d 4{ }d

3{ }d

5 6 7{ , , }d d d

5{ }d

6{ }d

7{ }d

8{ }d

8{ }d
9{ }d

9{ }d
6p

 

Fig. 4.1. Job Scheduling Net 

4.1.2 Subjob scheduling net.  

The subjob scheduling net is a subnet of the job scheduling net, which is extended from the 
complex transition t4. The subjob scheduling net mainly manages the states of subjob and is 
used to analyze jobs, create subjobs, order the running sequence of subjobs and monitor the 
states of subjobs. The subjob scheduling net is shown as Fig.4-2, which is modeled based on 
S_HCPN and the detailed definition is shown as follows: 

{ }4
4 4 4 4 4 4 4 4 4 0, ; , , , , , ,S HCPN P T F D C I O K M− =  

1. 4 4 4
4 { , , |1 10}begin end iP p p p i= ≤ ≤ . 

2. 4
4 { |1 15}iT t i= ≤ ≤ , 4

1t : check whether a job is initialized; 4
2t : analyze a job net; 4

3t : get 

the set of running subjobs; 4
4t : start subjobs; 4

5t :  select a subjob for monitoring; 4
6t : 

monitor subjobs, which is a complex transition; 4
7t : creat a token for clearing out all 

subjobs; 4
8t : mark a normal subjob; 4

9t : mark a completed subjob; 4
10t : check whether all 

subjobs of the job have already been checked in this scheduling round; 4
11t : creat a 

token for selecting a subjob; 4
12t : mark a failed job; 4

13t : check whether all subjobs of the 

job have already accomplished. 4
14t : mark a completed job; 4

15t : mark a normal job. 
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3. 4 4 4
4 { ( ) ( ) }begin endD C p C p d= ∪ ∪ , where  
4 4{ |1 15}id d i= ≤ ≤ , 4

1d : initialized jobs; 4
2d : uninitialized jobs; 4

3d : subjob nets; 
4
4d :running subjobs; 4

5d : subjobs waiting to be checked; 4
6d : subjobs running normally; 

4
7d : completed subjobs; 4

8d : failed subjobs; 4
9d : marked subjobs; 4

10d : jobs whose 

subjobs have been checked completely in this scheduling round; 4
11d : jobs whose 

subjobs have been checked incompletely in this scheduling round; 4
12d : tokens for 

selecting a subjob; 4
13d : tokens for clearing out all subjobs; 4

14d : jobs whose subjobs have 

accomplished completely;  4
15d : jobs whose subjobs have accomplished incompletely. 

4. 4
4( ) { }beginC p d= , 4

5 6 7( ) { , , }endC p d d d= , 

4 4 4
1 1 2( ) { , }C p d d= , 4 4

2 3( ) { }C p d= , 4 4
3 4( ) { }C p d= , 4 4

4 5( ) { }C p d= , 4 4 4 4
5 6 7 8( ) { , , }C p d d d= , 4 4

6 9( ) { }C p d= , 

4 4 4
7 10 11( ) { , }C p d d= , 4 4

8 12( ) { }C p d= , 4 4
9 13( ) { }C p d= , 4 4 4

10 14 15( ) { , }C p d d= ; 4
1 4( ) { }C t d= , 4 4

2 2( ) { }C t d=

, 4 4
3 1( ) { }C t d= , 4 4

4 3( ) { }C t d= , 4 4 4
5 4 12( ) { , }C t d d= , 4 4

6 5( ) { }C t d= , 4 4
7 8( ) { }C t d= , 4 4

8 6( ) { }C t d= ,

4 4
9 7( ) { }C t d= , 4 4

10 9( ) { }C t d= , 4 4
11 11( ) { }C t d= , 4 4 4

12 4 13( ) { , }C t d d= 4 4
13 10( ) { }C t d= , 4 4

14 14( ) { }C t d= ,

4 4
15 15( ) { }C t d= . 

5. 4
3( )K p n=  and others are 1. 

6. 4
0 {1,0,0,0,0,0,0,0,0,0,0,0}M = . 

 

4

beginp

4

endp

4

2p
4

1p

4

1t

4{ }d 4 4
1 2{ , }d d

4

3p

4

2t

4

3t

4

4t

4

5t
4

6t4

4p
4

5p
4

6p

4

7p
4

8p

4

9p

4

10p

4

8t

4

9t

4

10t

4

11t

4

7t

4

12t

4

13t

4

14t

4

15t

4
1{ }d

4
2{ }d 4

3{ }d 4
3{ }d 4

4{ }nd

4
4{ }nd

4
4{ }dλ

4
4{ }d

4
5{ }d 4

5{ }d
4 4 4
6 7 8{ , , }d d d

4
8{ }d

4
6{ }d

4
7{ }d

4
9{ }d

4
9{ }d

4
9{ }d

4 4
10 11{ , }d d

4
10{ }d4

11{ }d
4
12{ }d4

12{ }d

4
13{ }d

4
13{ }d

7{ }d

4 4
14 15{ , }d d

4
14{ }d

4
15{ }d

6{ }d

5{ }d

4
12{ }d

 

Fig. 4.2. Subjob Scheduling Net 

4.1.3 Task scheduling net.  

The task scheduling net is a subnet of the subjob scheduling net, which is extended from the 

complex transition 4
6t . The task scheduling net mainly manages the states of tasks and is 

used to analyze subjobs, create tasks, order the running sequence of task and monitor the 
states of tasks. A task scheduling net is shown as Fig. 4-3, which is modeled based on 
S_HCPN and the detailed definition is shown as follows: 

{ }4,6
4,6 4,6 4,6 4,6 4,6 4,6 4,6 4,6 4,6 0, ; , , , , , ,S HCPN P T F D C I O K M− =      

1. 4,6 4,6 4,6
4,6 { , , |1 10}begin end iP p p p i= ≤ ≤ . 
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2. 4,6
4,6 { |1 15}iT t i= ≤ ≤ , 4

4 { |1 15}iT t i= ≤ ≤ , 4,6
1t : check whether a subjob is initialized; 

4,6
2t : transform a subjob scheduling net into a job scheduling net; 4,6

3t : get the set of 

running tasks; 4,6
4t : start tasks; 4,6

5t : select a task for monitoring; 4,6
6t : monitor tasks, 

which is a complex transition; 4,6
7t : create a token for clearing out all tasks; 4,6

8t : mark a 

normal task; 4,6
9t : mark a completed task; 4,6

10t : check whether all tasks of the subjob 

have already been checked in this scheduling round; 4,6
11t : create a token for selecting a 

task; 4,6
12t : mark a failed task; 4,6

13t : check whether all tasks of the subjob have already 

accomplished. 4,6
14t : mark a completed subjob; 4,6

15t : mark a normal subjob. 

3. 4,6 4,6 4,6
4,6 { ( ) ( ) }begin endD C p C p d= ∪ ∪ , where 

4,6 4,6{ |1 15}id d i= ≤ ≤ , 4,6
1d : initialized subjobs; 4,6

2d :uninitialized subjobs; 4,6
3d : task 

net; 4,6
4d : running tasks; 4,6

5d : tasks waiting to be checked; 4,6
6d : tasks running 

normally;  4,6
7d : completed tasks; 4,6

8d : failed tasks; 4,6
9d : marked tasks;  4,6

10d : subjobs 

whose tasks have been checked completely in this scheduling round;  4,6
11d : subjobs 

whose tasks have been checked incompletely in this scheduling round; 4,6
12d : tokens for 

selecting a task; 4,6
13d : tokens for clearing out all tasks; 4,6

14d : subjobs whose tasks have 

accomplished completely; 4,6
15d : subjobs whose tasks have accomplished incompletely. 

4. 4,6 4
5( ) { }beginC p d= , 4,6 4 4 4

6 7 8( ) { , , }endC p d d d= , 4,6 4,6 4,6
1 1 2( ) { , }C p d d= , 4,6 4,6

2 3( ) { }C p d= , 

4,6 4,6
3 4( ) { }C p d= , 4,6 4,6

4 5( ) { }C p d= , 4,6 4,6 4,6 4,6
5 6 7 8( ) { , , }C p d d d= , 4,6 4,6

6 9( ) { }C p d= , 

4,6 4,6 4,6
7 10 11( ) { , }C p d d= , 4,6 4,6

8 12( ) { }C p d= , 4,6 4,6
9 13( ) { }C p d= , 4,6 4,6 4,6

10 14 15( ) { , }C p d d= ; 

4,6 4
1 5( ) { }C t d= , 4,6 4,6

2 2( ) { }C t d= , 4,6 4,6
3 1( ) { }C t d= , 4,6 4,6

4 3( ) { }C t d= , 4,6 4,6 4,6
5 4 12( ) { , }C t d d= , 

4,6 4,6
6 5( ) { }C t d= , 4,6 4,6

7 8( ) { }C t d= , 4,6 4,6
8 6( ) { }C t d= , 4,6 4,6

9 7( ) { }C t d= , 4,6 4,6
10 9( ) { }C t d= , 

4,6 4,6
11 11( ) { }C t d= , 4,6 4,6 4,6

12 4 13( ) { , }C t d d= , 4,6 4,6
13 10( ) { }C t d= , 4,6 4,6

14 14( ) { }C t d= , 4,6 4,6
15 15( ) { }C t d= . 

5. 4,6
3( )K p n=  and others are 1. 

6. 4,6
0 {1,0,0,0,0,0,0,0,0,0,0,0}M = . 
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Fig. 4.3. Task Scheduling Net 
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4.1.4 Subtask scheduling net.  

The subtask scheduling net is a subnet of the task scheduling net, which is extended from 

the complex transition 4,6
6t . The subtask scheduling net mainly manages the states of 

subtasks and is used to analyze tasks, create subtasks, allocate and reallocate resources, 

order the running sequence of subtask and monitor the states of subtasks. The subtask 

scheduling net is shows as Fig.4-4, which is modeled based on S_HCPN and the detailed 

definition is shown as follows: 

{ }4,6,6
4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 0, ; , , , , , ,S HCPN P T F D C I O K M− =  

1. 4,6,6 4,6,6 4,6,6
4,6,6 { , , |1 14}begin end iP p p p i= ≤ ≤ . 

2. 4,4,6
4,4,6 { |1 21}iT t i= ≤ ≤ , 4,4,6

1t : check whether a task is initialized; 4,4,6
2t : get the set of 

running subtasks; 4,4,6
3t : search resources; 4,4,6

4t : select resources; 4,4,6
5t : create 

subtasks; 4,4,6
6t : start subtasks; 4,4,6

7t : select a subtask for monitoring; 4,4,6
8t : check a 

subtask; 4,4,6
9t : mark a completed subtask; 4,4,6

10t : mark a normal subtask; 4,4,6
11t : check 

whether all subtasks of the task have already been checked in this scheduling round; 
4,4,6
12t : create a token for selecting a subtask; 4,4,6

13t : reallocate a subtask; 4,4,6
14t : start 

subtasks after reallocation; 4,4,6
15t : mark subtasks running normally after reallocation; 

4,4,6
16t : create a token for clearing out all subtasks; 4,4,6

17t : mark a failed subtask; 4,4,6
18t :  

check whether all subtasks of the task have already accomplished. 4,4,6
19t : mark a normal 

task; 4,4,6
20t : mark a completed task; 4,4,6

21t : mark a failed task. 

3. 4,4,6 4,4,6 4,4,6
4,4,6 { ( ) ( ) }begin endD C p C p d= ∪ ∪ , where  

4,4,6 4,4,6{ |1 15}id d i= ≤ ≤ , 4,6,6
1d : uninitialized tasks; 4,6,6

2d : initialized tasks; 4,6,6
3d : 

running subtasks; 4,6,6
4d : resource list;  4,6,6

5d : selected resources; 4,6,6
6d : subtasks that 

have no inadequate resources;  4,6,6
7d : subtask net; 4,6,6

8d : tokens for selecting a subtask; 
4,6,6
9d : subtasks waiting for monitoring; 4,6,6

10d : subtasks running normally; 4,6,6
11d : 

completed subtasks; 4,6,6
12d : subtasks running abnormally; 4,6,6

13d : marked subtasks; 
4,6,6
14d : tasks whose subtasks have not been checked completely in this scheduling 

round; 4,6,6
15d : tasks whose subtasks have  been checked completely in this scheduling 

round; 4,6,6
16d : tasks whose subtasks have already been accomplished; 4,6,6

17d : tasks 

whose subtasks have not been accomplished completely; 4,6,6
18d : subtasks reallocated 

successfully;  4,6,6
19d : subtasks reallocated unsuccessfully; 4,6,6

20d : subtasks running 

normally after reallocation; 4,6,6
21d : tokens for clearing out all subtasks.  

4. 4,6,6 4,6

5( ) { }beginC p d= , 4,6,6 4,6 4,6 4,6

6 7 8( ) { , , }endC p d d d= , 4,6,6 4,6,6 4,6,6

1 1 2( ) { , }C p d d= , 

4,6,6 4,6,6

2 3( ) { }C p d= , 4,6,6 4,6,6

3 4( ) { }C p d= , 4,6,6 4,6,6 4,6,6

4 5 6( ) { , }C p d d= , 4,6,6 4,6,6

5 7( ) { }C p d= , 

4,6,6 4,6,6

6 9( ) { }C p d= , 4,6,6 4,6,6 4,6,6 4,6,6

7 10 11 12( ) { , , }C p d d d= , 4,6,6 4,6,6

8 13( ) { }C p d= , 

4,6,6 4,6,6 4,6,6

9 14 15( ) { , }C p d d= , 4,6,6 4,6,6

10 8( ) { }C p d= , 4,6,6 4,6,6 4,6,6

11 18 19( ) { , }C p d d= , 

4,6,6 4,6,6

12 21( ) { }C p d= , 4,6,6 4,6,6

13 20( ) { }C p d= , 4,6,6 4,6,6 4,6,6

14 16 17( ) { , }C p d d= ; 

4,6,6 4,6

1 5( ) { }C t d= , 4,6,6 4,6,6

2 2( ) { }C t d= , 4,6,6 4,6,6

3 1( ) { }C t d= , 4,6,6 4,6,6

4 4( ) { }C t d= , 

4,6,6 4,6,6

5 5( ) { }C t d= , 4,6,6 4,6,6

6 7( ) { }C t d= , 4,6,6 4,6,6 4,6,6

7 3 8( ) { , }C t d d= , 4,6,6 4,6,6

8 9( ) { }C t d= ,  
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Fig. 4.4. Subtask Scheduling Net 

4,6,6 4,6,6
9 11( ) { }C t d= , 4,6,6 4,6,6

10 10( ) { }C t d= , 4,6,6 4,6,6
11 13( ) { }C t d= , 4,6,6 4,6,6

12 14( ) { }C t d= , 

4,6,6 4,6,6
13 12( ) { }C t d= , 4,6,6 4,6,6

14 18( ) { }C t d= , 4,6,6 4,6,6
15 20( ) { }C t d= , 4,6,6 4,6,6

16 19( ) { }C t d= , 

4,6,6 4,6,6 4,6,6
17 3 21( ) { , }C t d dλ= , 4,6,6 4,6,6

18 15( ) { }C t d= , 4,6,6 4,6,6
19 17( ) { }C t d= , 4,6,6 4,6,6

20 16( ) { }C t d= , 

4,6,6 4,6,6
21 6( ) { }C t d= . 

5. 4,6,6
2( )K p n=  and others are 1. 

6. 4,6,6
0 {1,0,0,0,0,0,0,0,0,0,0,0}M = . 

4.2 Job Net 

The job net describes the flow of parallel application submitted by users, which is a kind of 
workflow net and defines the relation of each step strictly.  The job net is modeled based on 

CSCTPN  and its detailed definition is shows as follows: 

{ }1
0 0, ; , , , , , , , ,k k

k k k k k k k k k kCSCTPN P T F D C I O Q M M −= Γ      

0CSCTPN  is the initial structure of the job net. In this level, we only concern about the time 

limit, cost, input and output of a job, which are defined as follows: 

1. 0 { , }in outP p p= , they are places of input and output respectively; 

2. 1
0 0{ }T t= , there is only a transition that denotes the whole process of the job; 

3. 0 { , }in outD d d= ，they are the input and output of the job; 

4. 1
0 0{ , , , }b l dt τ τ τΓ = < > , it denotes the time limit of 1

0t ; 

5. 1
0 0{ , , }r mQ t q q= < > , it denotes the cost limit of 1

0t . 
There are four types of data in the job net: remote data, local data, outer data and inner data. 

For a job, outer data has already existed in the parallel environment and it is not produced 

by the job. The data produced temporarily by the jobs is called inner data. 
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In the job net, a user needs to indicate the maximum cost and the deadline of his job. In 
addition, the user needs to estimate the cost and durable time of each subjob according to 
his experiences, which are shown in the description file of the job. This is helpful to assign 
the cost and time characteristics of subjobs. Otherwise, the assignment methods of these 
values are the same with tasks and subtasks. For tasks and subtasks, we need to assign their 
cost and time characteristics dynamically within their limits according to the allocation 
results. The cost is proportional to the transferring traffic and the computing load [13,14] in 
our assignation strategy. Compared with cost assignation, time assignation is more complex 
than cost assignation. We refer to a method[15] to assign the times of tasks and subtasks 
within fixed-time constraints. 

4.2.1 Subjob net.  

A job consists of many subjobs that have own inputs, outputs and operations. The subjob 

net is 1CSCTPN  that is built by analyzing the description file of a job. 

{ }1 0
1 1 1 1 1 1 1 1 1 1 0 0, ; , , , , , , , ,CSCTPN P T F D C I O Q M M= Γ  

1. 1P : a set of places for inputs and outputs of subjobs. 

2. 1 t cT J J= ∪ , where tJ  is a set of transferring subjobs and cJ  is a set of computing 

subjobs. 

3. 1 { |1 4}iD d i= ≤ ≤ , where 1d : remote data from outside; 2d : local data from outside; 3d : 

remote data from inside; 4d : local data from inside. 

4. 1Γ : a time set of subjobs, 1 1
1 1 1 1 0 0( ( ) ( ) ( ) ( ))i i i

l d l dt T t t t t∀ ∈ Γ + Γ ≤ Γ + Γ . 

5. 1Q :a cost set of subjobs, 1
1 1 0( ) ( )m i

i m mQ t Q t= =∑ , where m  is the number of transitions in 

1T . 

4.2.2 Task net.  

The task net is 2CSCTPN  that is built by decomposing the subjob net. 2CSCTPN  is defined 

as follows. 

{ }2 1
2 2 2 2 2 2 2 2 2 2 0 0, ; , , , , , , , ,CSCTPN P T F D C I O Q M M= Γ  

1. 2P : a set of places for inputs and outputs of tasks. 

2. 2 t npc dpc dnpcT T T T T= ∪ ∪ ∪ , where tT : a set of data transferring tasks; npcT : a set of 

computing tasks that can not run in parallel;  dpcT : a set of computing tasks whose data 

inputs can be divided; ndpcT : a set of computing tasks whose data input can not be 

divided.  

3. 2 { |1 4}iD d i= ≤ ≤ , where 1d : remote data from outside; 2d : local data from outside; 

3d : remote data from inside; 4d : local data from inside. 

4. 2Γ : a time set of tasks, 1 1
2 2 2 2 0 0( ( ) ( ) ( ) ( ))i i i

l d l dt T t t t t∀ ∈ Γ + Γ ≤ Γ + Γ . 

5. 2Q : a cost set of tasks, 1
1 2 0( ) ( )m i

i m mQ t Q t= =∑ , where m  is the number of transitions in 

2T . 
According to the input and output, a subjob can be divided into several tasks. Based on the 
types of subjobs, the division rules are defined as follows. 
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1. data transferring subjob 
A data transferring subjob often has many data inputs and they may need to be transferred 
at the same time. In order to be convenient to deal with them, a data transferring subjob 
needs to be divided into many tasks and each task has only one data input. The division 
result is shown as Fig.4-5. The process satifies these conditions: 

,
1 2 1( ) ( )s k i r i

r m mQ t Q t+
= =∑ , 

,
2 1(1 ( ) ( ) ( ))i h i

b lh h s k t t∃ ≤ ≤ + ∧ Γ ≤ Γ  

,
2 1(1 ( ) ( ) ( ))i h i

b bh h s k t t∀ ≤ ≤ + → Γ ≥ Γ  

,1 ,1 , ,
2 2 2 2

1 1

max( ( ) ( ), , ( ) ( ))

( ) ( ))

i i i s k i s k
l d l d

i i
l d

t t t t

t t

+ +Γ + Γ Γ + Γ

≤ Γ + Γ

A
 

2

mp

,1

2

it
1
1{ }d

1{ }sd
1
3{ }d

3{ }kd 3{ }kd

2

np
,

2

i st

, 1

2

i st +

,

2

i s kt +

1

np 1

it
1 3{ , }s d k d× × 1

mp
2 4{ , }s d k d× ×

1 1 1 3( ) ( ) { , }n iC p C t d d= =

1
2{ }d

2{ }sd

1
4{ }d

1 2 4( ) { , }mC p d d=

divide
(b) data transferring tasks(a) data transferring subjob

 

Fig. 4.5. Division result of data transferring subjob 

2. computing subjob 
Generally, a computing subjob has remote data inputs and these data need to be transferred 
to local node firstly. The division result for a computing subjob is show as Fig.4-6 and it 
satisfies these conditions: 

,
1 2 2 1( ) ( ) ( )s k i r i i

r m m mQ t Q t Q t+
= + =∑  

,
2 1(1 ( ) ( ) ( ))i h i

b lh h s k t t∃ ≤ ≤ + ∧ Γ ≤ Γ  

,
2 1(1 ( ) ( ) ( ))i h i

b bh h s k t t∀ ≤ ≤ + → Γ ≥ Γ  

,1 ,1 , ,
2 2 2 2 2 2( ) max( ( ) ( ), , ( ) ( )) ( )i i i i s k i s k i

b l d l d lt t t t t t+ +Γ ≤ Γ + Γ Γ + Γ ≤ ΓA  

    2 2 1 1( ) ( ) ( ) ( )i i i i
l d l dt t t tΓ + Γ ≤ Γ + Γ  

4.2.3 Subtask net.  

Subtask net is iCSCTPN ( 3i ≥ )that is built by decomposing task net, which is defined as 

follows. 
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Fig. 4.6. Division result of computing subjob 

{ }1
0 0, ; , , , , , , , ,i i

i i i i i i i i i iCSCTPN P T F D C I O Q M M −= Γ  

1. iP : a set of places for inputs and outputs of subtasks. 

2. i t cT J J= ∪ , where tJ : a set of transferring subtasks; cJ : a set of computing subtasks. 

3. { |1 5}i iD d i= ≤ ≤ , where 1d : remote data from outside; 2d : local data from outside; 

3d : remote data from inside; 4d : local data from inside; 5d : computing resources. 

4. iΓ : a time set of subtasks, 1 1
2 2 2 0 0( ( ) ( ) ( ) ( ))i i i

i l d l dt T t t t t∀ ∈ Γ + Γ ≤ Γ + Γ . 

5. iQ : a cost set of subtasks, 1
1 2 0( ) ( )m i

i m mQ t Q t= =∑ , where m  is the number of transitions 

in iT . 

According to the number of data replicas or computing resources, a task can be divided into 
many subtasks. Based on the types of tasks, the division rules are defined as follows. 
1. tasks transferring outer data 

Outer data may have many replicas in a parallel environment, so a task transferring outer 

data can transfer parts of data from different replicas firstly in order to reduce the total 

transferring time. Then, these parts of data are merged into one by a merging subtask. 

Though a merging subtask is a computing subtask here, we do not allocate computing 

resource for it specially and it runs on the node that the data lies on. The detailed division is 

shown as Fig.4-7. 2
it  is a task transferring outer data. ,

3 (1 )i rt r k≤ ≤  denotes the transferring 

subtasks running in parallel. 3
it  is the merging subtask. 1( )j

kR d  denotes the task uses k  

replicas of 1
jd , and 1 1( ) { ( )|0 }j ji

k kR d R d i k= ≤ ≤ . ( )j
k mE b  denotes data j

mb is divided into k  

pieces and ( ) { ( )|0 }j ji
k m k mE b E b i k= ≤ ≤ . The division satisfies these conditions:  

,
1 3 3 2( ) ( ) ( )k i r i i

r r r mQ t Q t Q t= + ≤∑  

,
3 2(1 ( ) ( ))i h i

b lh h k t t∃ ≤ ≤ ∧ Γ ≤ Γ  

,
3 2(1 ( ) ( ))i h i

b bh h k t t∀ ≤ ≤ →Γ ≥ Γ  

,1 ,1 , ,
3 3 3 3 3 3( ) max( ( ) ( ), , ( ) ( )) ( )i i i i k i k i

b l d l d lt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ ΓA    3 3 2 2( ) ( ) ( ) ( )i i i i
l d l dt t t tΓ + Γ ≤ Γ + Γ  
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Fig. 4.7. Division result of task transferring outer data 
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Fig. 4.8. Structure change of subtask net when subtasks transferring outer data become 
abnormal 

When a subtask becomes abnormal because the data resources it uses are out of service or 

their performances decrease, this subtask needs to be reallocated in order to ensure it can be 

accomplished on time. The reallocation can lead to the structure change of the subtask net. 

The detail is shown as Fig.4-8. The number of subtasks that the abnormal subtask is divided 

into is s . The division accords with these conditions: 

1 ,
1 2( ) ( ) ( )k s i r i i

r r l r l mQ t Q t Q t+ −
= + ≤∑  

,
2(1 ( 1) ( ) ( ))i h i

b l lh h k s t t∃ ≤ ≤ + − ∧ Γ ≤ Γ  

,
2(1 ( 1) ( ) ( ))i h i

b l bh h k s t t∀ ≤ ≤ + − → Γ ≥ Γ  

,1 ,1 , ,
3 3( ) max( ( ) ( ), , ( ) ( )) ( )i i i i k i k i

l l l d l l l d l lt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ ΓA     3 3 2 2( ) ( ) ( ) ( )i i i i
l d l dt t t tΓ + Γ ≤ Γ + Γ  

2. tasks transferring inner data 
Inner data is produced by computing subtasks and it has no replicas. Therefore, a task 

transferring inner data has only one subtask. When its resource is out of service, the task 

fails because there are no other resources to use. Its division result is shown as Fig.4-9. 
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Fig. 4.9. Division result of task transferring inner data 
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3. parallel computing tasks  

There are two kinds of parallel computing tasks: tasks whose data inputs can be divided and 

tasks whose data inputs can not be divided. According to the number of computing 

resources and QoS requirements, the former can be divided into many subtasks that only 

compute parts of the input data. Because these subtasks run on different nodes, the input 

data needs to be transferred into local node firstly. The detailed process is shown as Fig.4-10. 

2
it  is a parallel computing task. , ,

3 (1 ,1 )i r ht r s h k≤ ≤ ≤ ≤  are the transferring subtasks 

running in parallel. ,
3 (1 )i rt r s≤ ≤  are the computing subtasks running in parallel. 3

it  is a 

merging subtask. The division accords with these conditions: 

, , ,
1 3 3 3 21 1
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Q t Q t Q t Q t= = =

+ + ≤∑ ∑ ∑     
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Fig. 4.10. Division result of parallel computing task whose data inputs can be divided 

When one subtask of a parallel computing task becomes abnormal because the computing 

resource it uses is out of service or its performance decreases, this subtask needs to be 

reallocated in order to ensure it can be accomplished on time. The reallocation can lead to 

the structure change of the subtask net. The detail is shown as Fig.4-11. s  is the number of 

subtasks that the abnormal subtask is divided into according to the number of computing 

resources and QoS requirements. The division accords with these conditions: 
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Fig. 4.11. Structure change of the subtask net when parallel computing subtasks become 
abnormal  
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The division of a parallel computing task whose data inputs can not be divided is similar to 

a task whose data inputs can be divided. The difference between them is that the input data 

of transferring subtask is the data or parts of it.  

4. computing tasks that cannot run in parallel 
A computing task that can not run in parallel only has a subtask and Fig.4-12 shows the 
division result. 
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Fig. 4.12. Division result of computing task that can not run in parallel 
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Within an unparallel computing task, when a subtask becomes abnormal because the 

computing resource it uses is out of service or its performance decreases, this subtask needs 

to be reallocated in order to ensure it can be accomplished on time. For unparallel 

computing tasks, the reallocation can not lead to the structure change of the subtask net, but 

it can result in the states change. The detail is shown as Fig.4-13. Because the computing 

node is replaced, the data needs to be transferred to a new computing node. i
zt  is the new 

computing subtask and , (1 )i r
zt r k≤ ≤  denotes transferring subtasks. The change accords 

with these conditions: 

,
1 2( ) ( ) ( )k i r i i

r r z r z mQ t Q t Q t= + ≤∑  
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Fig. 4.13. Structure change of subtask net when  computing subtasks that can not run  in 
parallel become abnormal 

5. Analysis and optimization 

In this section, we adjust the structure of subtask net firstly in order to optimize the process 

of subtasks. Then, we analyze the validity of the scheduling net and the job net. Finally, we 

analyze the performance of the job net. 

5.1 Structure optimization 

In order to keep the consistency of the model and make the process of structure change clear 
and intuitive, we divide parallel computing tasks in standard way. However, this way 
results in redundant data transfer within a subjob and this part of subtask net need to be 
optimized further.  

Suppose the number of remote data inputs in a computing subjob 1
it  is k . 1

it  has remote 

data inputs 1{ |1 }rd r k≤ ≤  and a computing task 2
it  whose subtasks are ,

3 (1 )i rt r s≤ ≤ . b
ah  is 

the number of replicas of number b data that number a  subtask uses. Within a subjob, the 

optimization result is shown as Fig.5-1. Compared with the former, the total number of 
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reduced transitions is k , the saved money is ,
21

( )
k i r

rr
Q t

=∑  and the reduced time is 
,1 ,

2 2max( ( ), , ( ))i i k
d dt tΓ ΓA . 
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Fig. 5.1. Structure optimization of parallel computing subtasks 

5.2 Validity analysis 

Validity analysis is necessary for a model based on Petri Net to ensure the success of model 
in practice. For the scheduling net, we analyze its structure to verify its correctness. For the 
job net, besides structure analysis we also need to analyze its time reachability to validate 
that the time limits of transitions are reasonable. 
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Fig. 5.2. A sample of reachability trees 
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The top level of scheduling net is a job scheduling net, which consists of circular structures 
and cannot stop without outside force. The end place and other places in the job scheduling 
net can have tokens at the same time. The maximal number of jobs that the job scheduling 

net can schedule simultaneously is 3( )K p  and these jobs are classified by the net according 

to their states.  
The three lower levels of the scheduling net are workflow nets, which are driven by the job 
scheduling net and only schedule one subjob, one task or one subtask at the same time. The 
job net is also a workflow net and its validity [16] is described as follows: 
1. For each state M reachable from state i , there exists a firing sequence leading from state 

M to state o. 
2. State o is the only state reachable from state i with at least one token in place o. 
3. There are no dead transitions in net. 
The main work in structure analysis is reachability analysis. We can build reachability trees 
[17, 18] for the scheduling net and the job net to validate their reachability and three 
conditions above. There are too many reachability trees, so we only list a sample of them 
here. Fig.5-2 shows a sample of reachability tree built according to a job scheduling net, 
which has 3 jobs in the beginning and the maximal number of running jobs that scheduler 

can deal with simultaneity is 2. Therefore, 0M ={3,0,0,0,0,2,0}  and the end state is 

{0,0,0,0,0,2,3} . For a job scheduling net with 0M ={m,0,0,0,0,n,0}  , its reachability tree is 

similar to Fig.4-15. The root of this tree is {m,0,0,0,0,n,0}  and all leaves are {0,0,0,0,0,n,m} .  

The number of tokens in the tree satisfies these conditions: 

1 2 3 4 5 7| ( ) | | ( ) | | ( ) | | ( ) | | ( ) | | ( ) |ms ms ms ms ms msC p C p C p C p C p C p m+ + + + + =  

6 3 4 5| ( ) | | ( ) | | ( ) | | ( ) |ms ms ms msC p C p C p C p n+ + + =  

2 4 50 | ( ) |,| ( ) |,| ( ) | 1ms ms msC p C p C p≤ ≤  

3 6| ( ) |,| ( ) |ms msC p C p n≤  

Time reachability is that the time requirements of transitions are satisfied within time 

limitations. After analyzing the validity of structure, we can validate the time reachability 

easily. In the job net, if ( ( ) ( ) ( ) ( ))l d l dt T t t t t t t⊗⊗′ ′ ′∀ ∈ ∀ ∈ →Γ + Γ ≤ Γ + Γ ,  the time reachability 

of the net is satisfied. Otherwise, the time reachability is not satisfied. 
Validity analysis is necessary for a model based on Petri Net to ensure the success of model 
in practice. For the scheduling net, we analyze its structure to verify its correctness. For the 
job net, besides structure analysis we also need to analyze its time reachability to validate 
that the time limits of transitions are reasonable. 
The top level of scheduling net is a job scheduling net, which consists of circular structures 
and cannot stop without outside force. The end place and other places in the job scheduling 
net can have tokens at the same time. The maximal number of jobs that the job scheduling 
net can schedule simultaneously is K(p3) and these jobs are classified by the net according to 
their states.  
The three lower levels of the scheduling net are workflow nets, which are driven by the job 
scheduling net and only schedule one subjob, one task or one subtask at the same time. The 
job net is also a workflow net and its validity [16] is described as follows: 
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Fig. 5.3. A sample of reachability trees 

1. For each state M reachable from state i , there exists a firing sequence leading from state 
M to state o. 

2. State o is the only state reachable from state i with at least one token in place o. 
3. There are no dead transitions in net. 

The main work in structure analysis is reachability analysis. We can build reachability trees 

[17, 18] for the scheduling net and the job net to validate their reachability and three 

conditions above. There are too many reachability trees, so we only list a sample of them 

here. Fig.4-15 shows a sample of reachability tree built according to a job scheduling net, 

which has 3 jobs in the beginning and the maximal number of running jobs that scheduler 

can deal with simultaneity is 2. Therefore, 0M ={3,0,0,0,0,2,0}  and the end state is 

{0,0,0,0,0,2,3} . For a job scheduling net with 0M ={m,0,0,0,0,n,0}  , its reachability tree is 

similar to Fig.5-3. The root of this tree is {m,0,0,0,0,n,0}  and all leaves are {0,0,0,0,0,n,m} .  

The number of tokens in the tree satisfies these conditions: 

1 2 3 4 5 7| ( ) | | ( ) | | ( ) | | ( ) | | ( ) | | ( ) |ms ms ms ms ms msC p C p C p C p C p C p m+ + + + + =  

6 3 4 5| ( ) | | ( ) | | ( ) | | ( ) |ms ms ms msC p C p C p C p n+ + + =  

2 4 50 | ( ) |,| ( ) |,| ( ) | 1ms ms msC p C p C p≤ ≤  

3 6| ( ) |,| ( ) |ms msC p C p n≤  

Time reachability is that the time requirements of transitions are satisfied within time 

limitations. After analyzing the validity of structure, we can validate the time reachability 

easily. In the job net, if ( ( ) ( ) ( ) ( ))l d l dt T t t t t t t⊗⊗′ ′ ′∀ ∈ ∀ ∈ →Γ + Γ ≤ Γ + Γ ,  the time reachability 

of the net is satisfied. Otherwise, the time reachability is not satisfied. 

www.intechopen.com



 Advances in Petri Net Theory and Applications 

 

172 

5.3 Validity analysis 

Performance analysis mainly analyzes the time and cost characteristics of a job net. The total 

cost of a job net is the cost sum of all transitions in the net: ( )rQ t∑ . If 

1 1
0 0( ) ( ) ( )r r mQ t Q t Q t= ≤∑ , the cost allocation succeeds, otherwise the cost allocation fails and 

the job net can not run correctly. 
In order to be convenient to analyze time characteristics of a job net, we propose a transition 
tree algorithm that translates the transitions in a job net into a transition tree. The conversion 
rules are shown as follows: 

1. The root of a transition tree is roott  whose time limits and cost are 0; 

2. beginp  is the beginning place in the job net and all transitions in beginp⊗  are the leaves of 

roott . 

3. For each leaf t , find t⊗⊗  and all transitions in t⊗⊗  are the leaves of t ; 

4. repeat step 3 until each leaf t  satisfies the condition: t⊗⊗ = ∅ . 

5. The tree with root roott  is the corresponding transition tree of the job net. 

According to the transition tree, it is convenient to analyze the time characteristics of the job 
net and optimize the allocation process for subtasks. 

The maximum number of serial transitions is 1TD − , where TD is the depth of the transition 

tree. 

To reduce the waiting time of transitions, for each transition ( { |1 })it t t i k⊗⊗ = ≤ ≤  in a job 

net, let 1 1( ) ( ) max( ( ) ( ), , ( ) ( ))l b l d l k d kt t t t t tΓ = Γ = Γ + Γ Γ + ΓA . 
Suppose there are s  leaves { |1 }rt r s′ ≤ ≤  in a transition tree and each leaf has a path from it 

to root : ( ) { |1 }r
i i ip t t r l′ = ≤ ≤ ,where il  is the number of transitions in ( )ip t′ . Each path has a 

total time of transitions: 
1

( ) ( )il r
i d ir

t t
=

′Γ = Γ∑ , the total durable time of the net is ( )rt′Γ , 

1( ) max( ( ), , ( ))r kt t t′ ′ ′Γ = Γ ΓA . The corresponding path of rt′  is the key path and rl  is the 

number of transitions on the key path. 
The key path decides the total durable time of a job net and it is important for subtask 
allocation optimization. For each subtask, we should choose those resources with high 
performance. All computing subtask on the key path can run on the same node and this can 
reduce the data transferring time. 

6. Conclusions and future work 

This paper proposes two different models for the scheduling net and the job net based on 
the idea that the scheduling net is separated from the job net. This method makes models 
compact and intuitional. In addition, the separation benefits the analysis of the job net and 
the scheduling net respectively. According to the granularity of parallel applications, the 
scheduling net is designed to four levels, which is convenient to deploy distributed 
schedulers in parallel environment and is beneficial to the management of different parallel 
application granularities. Based on Petri Net with changeable structure, the job net model 
can change its structure dynamically according to the allocation results or states of jobs. 
Therefore, the model supports dynamic mergence and division of subtasks and can deal 
with the abnormity of subtasks. We validate the scheduling net and the job net using 
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reachability tree technologies. In addition, a transition tree algorithm is designed for 
analyzing the performances of the job net and optimizing the allocations of subtasks 
according to the key path in the job net. 
In the future, we will optimize these models further and put emphasis upon researching 
algorithms used for optimizing resource allocations.  
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The world is full of events which cause, end or affect other events. The study of these events, from a system

point of view, is very important. Such systems are called discrete event dynamic systems and are of a subject

of immense interest in a variety of disciplines, which range from telecommunication systems and transport

systems to manufacturing systems and beyond. There has always been an intense need to formulate methods

for modelling and analysis of discrete event dynamic systems. Petri net is a method which is based on a well-

founded mathematical theory and has a wide application. This book is a collection of recent advances in

theoretical and practical applications of the Petri net method and can be useful for both academia and industry

related practitioners.
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