
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

9

Parallel Application Scheduling Model Based on
Petri Net with Changeable Structure1

Xiangang Zhao, Caiying Wei, Manyun Lin,
Xiaohu Feng and Wei Lan

National Satellite Meteorological Center
China

1. Introduction

In Parallel computing environments, each user can submit his job that is represented as a
workflow composed of tasks that require multiple types of computational resources. How to
develop a mechanism that ensures the success of these workflows is a challenging issue
because the resources they use are dynamic and heterogeneous.
In order to schedule these workflows conveniently, a model is needed to describe them in a
simple, intuitive way. Script-based method is a simple way to describe workflows.
However, because those scripts often consist of so many elements with complex syntax that
the users cannot understand them quickly. The graphic description for a workflow is an
intuitive way, such as directed acyclic graph (DAG) and Petri Net. Compared to script-
based descriptions, DAG is easier to use and more intuitional. However, DAG offers only a
limited expressiveness [1], e.g. loops cannot be expressed directly. Moreover, as DAG only
has a single node type, data flowing through the net cannot be modeled easily.
Petri net [2] is a modeling tool used for modeling discrete, dynamic, parallel and asynchronous
system. Because of the function of simple graphical description and interpretation ability, Petri
net is widely used for system modeling and performance analysis in recent years. Many
researches have already introduced this method to model workflow [3-5].
In this paper, we model scheduling nets and job nets based on Petri Net techniques. To be
convenient to analyze the performance of parallel jobs and to make net models compact and
intuitional, we separate the scheduling net from the job net and model them respectively. A
hierarchical colored Petri Net is proposed for the scheduling net that is designed into four
levels according to the granularity of parallel applications. The hierarchical scheduling
model makes each level scheduling only pay attention to its responsibility and it can reduce
the structure complexity of the scheduling net at the same time. This paper also designs a
extended Petri net with changeable structure for the job net model, which can change its
structure dynamically according to the real-time state of running job. This model supports
the mergence and division of subtasks and has ability to deal with the abnormity of
subtasks. The models are validated with reachability tree techniques and their performances
are analyzed with transition trees.

1 This work is supported by the project of Research on Regional Observation Technology about Slow-
roll Stabilization Satellite (GYHY201006046).

www.intechopen.com

 Advances in Petri Net Theory and Applications

154

2. Related work

Jia Yu and Rajkumar Buyya et al[6-8] have done many researches on workflow in parallel
environments. They propose a taxonomy that characterizes and classifies various
approaches for building and executing workflows on Grids. They model workflow
applications as a DAG and present many algorithms to address scheduling optimization
problems in workflow applications based on QoS constraints. The emphases of their
researches are the development of workflow management systems and scheduling
algorithms.
BPEL4WS[9] builds on top of XML and web services specifications and provides a rich
method for modeling web services based on the description of business process. However,
its representation is script-based and it only composes workflows from web services.
Jin Hai et al[10] propose a workflow model based on colored Petri net for grid service
composition, in which the image date transmission was taken as requirements for the
service flow to improve the efficiency of settling service flow and reduce tasks’ execution
time. However, the model does not take the failure of task into consideration and does not
support dynamic structures.
A general scheduling framework[11] modeled by Petri net is proposed, which locates on the
layer of Grid scheduler and is used for independent tasks in computational Grid.
A three-level scheduling scheme[12] is proposed based on a high-level timed Petri net. The
scheme divides Grid scheduling into three levels: Grid scheduler, Local Scheduler and
Home Scheduler. It constructs different Petri net models for these levels. However, this
scheme only focuses on independent tasks. In order to deal with the scheduling problem of
task that consists of a set of communicating subtasks, an extended timed Petri net model[3]
is proposed. Based on composition and reduction of Petri nets, the model can reduce the
complexity of model and solve the state explosion problem in reachability analysis of Petri
nets. But this model does not concern about the abnormity of running tasks and has no
ability to change structure dynamically.

3. Definitions of extended Petri Nets

The jobs are dynamic and hierarchical in a parallel environment. According to these
characteristics, we design two types of enhanced Petri Net, which are extended from the
original Petri Net.
Definition 1 A Hierarchical Color Petri Net (HCPN) is designed into 9-tuple.

{ }0, ; , , , , , ,HCPN P T F D C I O K M=

1. P is a finite set of places.

2. T is a finite set of transitions and { }s cT T T= ∪ , where sT is a set of simple transitions,

cT is a set of complex transitions and ()()P T P T∪ ≠∅ Λ ∩ =∅ .

3. F is a finite set of arcs and () ()()F P S S P⊆ × ∪ × .

4. D is a finite set of colors.

5. C is a finite set of color functions. : ()C P T Dψ∪ → , where ()Dψ is the power set of

colors.

6. I and O are the input and output arc functions respectively.

www.intechopen.com

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

155

() () () () (), ,
MSMS L

p t P T I p t C p C t⎡ ⎤∀ ∈ × ⇒ ∈ →⎣ ⎦

() () () () (), ,
MS MS L

t p T P O t p C t C p⎡ ⎤∀ ∈ × ⇒ ∈ →⎣ ⎦

When a transition needs to consume all tokens in a place, the input arc function is

(), ()I p t C pγ= .

7. K is a set of capacity functions. :K P N ω→ ∪ , { }1,2,3,N = A and ω denotes infinite.

8. 0 : MSM P D→ is the initial token marking. () ()0:
MS

p P M p C p∀ ∈ ∈ , where ()
MS

C p is

the multiple set of the color tokens in p .
Definition 2

1. { }, |p t p t T• = < > ∈ , { }, |p p t t T• = < > ∈ ,

{ }p p p• • • •= ∪ .

2. { }| ,p t t p F⊗ = < >∈ , { }| ,p t p t F⊗ = < >∈ .

3. { }| ,t p p t F⊗ = < >∈ , { }| ,t p t p F⊗ = < >∈ .

4. { | , }t t p t t p F⊗⊗ ⊗′ ′= ∈ ∧ < >∈ ,

{ | , }t t p t p t F⊗⊗ ⊗′ ′= ∈ ∧ < >∈ .

5. In HCPN , the firing rules of transition is

: () (,) :

() (,) ().

p t M p O p t p t

M p I p t K p

⊗ ⊗∀ ∈ ≥ ∧∀ ∈
+ ≤

6. There exist only one kp and one lp in HCPN , which satisfy the

condition: k l k lp p p p⊗ ⊗= ∅ ∧ =∅ ∧ ≠ . kp and lp are called Beginning Place and End

Place of HCPN respectively.
Definition 3

Any complex transition in HCPN can be extended to a subnet. The subnet of complex

transition it is defined as:

{ }0, ; , , , , , , i
i i i i i i i i iS HCPN P T F D C I O K M− = .

1. { }, ,i i
i begin end iP p p P′= is a set of places. iP′ is the set of inner places in iS HCPN− . i

beginp

and i
endp are additional places used to denote the beginning and end places of

iS HCPN− .

i
beginp• = ∅ ， ()i

endp • = ∅ ;

1() { ()| }i m
begin k k k iC p C p p t⊗

== ∪ ∈ ;

1() { ()| }i m
end k k k iC p C p p t⊗== ∪ ∈ .

2. { }()i i
i begin end iF p p F• • ′= ∪ ∪ is a set of arcs. iF′ is the set of inner arcs in iS HCPN− .

3. iT , iD , iC , iI , iO , iK and 0
iM are the sets of transitions, colors, color functions, input

arc functions, output arc functions, capacity functions and initial token marking

respectively.
Definition 4
A Petri Net with changeable structure is designed to11-tuple.

www.intechopen.com

 Advances in Petri Net Theory and Applications

156

{ }1
0 0, ; , , , , , , , ,k k

k k k k k k k k k kCSCTPN P T F D C I O Q M M −= Γ

4. kP , kT , kF , kD , kC , kI , and kO are the sets of places, transitions, arcs, colors, color

functions, input arc functions and output arc functions respectively after the structure

of CSCTPN is changed k times.

5. 2) kΓ is a set of times after CSCTPN have changed k times. Its element is defined as

, , ,i b l dt τ τ τ< > , which denotes the earliest start time, the latest start time and duration

time of transition it are bτ , lτ , and dτ respectively. ()b i bt τΓ = , ()l i lt τΓ = , ()d i dt τΓ = .

6. kQ is a set of cost after CSCTPN have changed k times. Its element is defined as

, ,i r mt q q< > , which denotes that the maximal cost of transition it is mq and the real cost

is rq . ()r i rQ t q= , ()m i mQ t q= , and r mq q≤

7. 0
kM is the initial token marking after CSCTPN have changed k times and 1 0

0 0M M− = .

4. Parallel application scheduling model

In this section, we propose a four-level scheduling model firstly according to the
characteristics of parallel jobs. Then, Parallel job net is designed based on Petri Net with
changeable structure and the conversion rules of the job net are presented at the same time.

4.1 Four-level scheduling net

In a Parallel environment, users use resources by submitting their applications. A user
application is called a parallel job that can implement some functions specifically. A parallel
job is usually composed of many steps and each step has certain input and output sets. Each
step is called a subjob that can be divided into two types: computing subjob and data
transferring subjob. A computing subjob needs to transfer its inputs firstly and then perform
computing operation, so a computing subjob can be divided into transferring tasks and
computing tasks. Similarly, a data transferring subjob often has many data inputs and it can
be divided into many transferring tasks. A data transferring task has only one input and one
output. The input data of a computing task is already transferred to local computing node.
Because a data resource may have many replicas that locate on different nodes, to speed up
the transfer a data transferring task can be divided into many subtasks according to the
number of replicas and the QoS requirements of the user. Each subtask transfers a part of
data from different replicas. If a computing task can be processed in parallel we call it a
parallel computing task, otherwise we call it an unparallel computing task. A parallel
computing task can be divided into many subtasks that run on different computing node.
According to job, subjob, task and subtask, the parallel allocation scheduling model is
designed into four levels: job scheduling net, subjob scheduling net, task scheduling net and
subtask scheduling net. Only subtasks use computing or data resources directly, so all
resource allocations take place in subtask scheduling net.

4.1.1 Job scheduling net.
The job scheduling net mainly manages the states of jobs. Its function includes job selection
and monitoring. There are four states of a job: waiting, running, completed and failed. When
all subjobs of a job are completed, the job is completed. If any subjob failes, the state of the
job is failed. When a job has running subjobs and has no failed subjobs, the state of the job is
running. The job scheduling net is modeled based on HCPN, which is shown as Fig.4-1. The
detailed definition is shown as follows:

www.intechopen.com

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

157

{ }0, ; , , , , , ,HCPN P T F D C I O K M=

1. { |1 7}iP p i= ≤ ≤ ;

2. { |1 7}iT t i= ≤ ≤ , 1t : select a job for running; 2t : start a job; 3t : select a job for

monitoring; 4t : check the states of jobs, which is a complex transition; 5t : mark a job;

6t : return a completed job; 7t : return a failed job.

3. { |1 8}iD d i= ≤ ≤ , 1d : jobs submitted by users; 2d : jobs waiting to be started; 3d :

running jobs; 4d : jobs waiting for being checked; 5d : jobs validated to run normally;

6d : completed jobs; 7d :failed jobs; 8d : returned jobs; 9d : tokens used for restricting

the number of jobs that are running at the same time.

4. 1 1() { }C p d= , 2 2() { }C p d= , 3 3() { }C p d= , 4 4() { }C p d= , 5 5 6 7() { , , }C p d d d= ,

6 9() { }C p d= , 7 8() { }C p d= ; 1 1() { }C t d= , 2 2 9() { , }C t d d= ,

3 3() { }C t d= , 4 4() { }C t d= , 5 5() { }C t d= , 6 6() { }C t d= , 7 7() { }C t d= .

5. 1 2() ()K p K p m= = , 3()K p n= , 4 5() () 1K p K p= = , 6()K p n= , 7()K p ω= .

0 { ,0,0,0,0, ,0}M k n= , where 1 k m≤ ≤ .

1p

7p
5p4p3p2p

1t 2t 3t 4t

5t

6t

7t

3{ }d1{ }d 2{ }d
4{ }d2{ }d 3{ }d 4{ }d

3{ }d

5 6 7{ , , }d d d

5{ }d

6{ }d

7{ }d

8{ }d

8{ }d
9{ }d

9{ }d
6p

Fig. 4.1. Job Scheduling Net

4.1.2 Subjob scheduling net.

The subjob scheduling net is a subnet of the job scheduling net, which is extended from the
complex transition t4. The subjob scheduling net mainly manages the states of subjob and is
used to analyze jobs, create subjobs, order the running sequence of subjobs and monitor the
states of subjobs. The subjob scheduling net is shown as Fig.4-2, which is modeled based on
S_HCPN and the detailed definition is shown as follows:

{ }4
4 4 4 4 4 4 4 4 4 0, ; , , , , , ,S HCPN P T F D C I O K M− =

1. 4 4 4
4 { , , |1 10}begin end iP p p p i= ≤ ≤ .

2. 4
4 { |1 15}iT t i= ≤ ≤ , 4

1t : check whether a job is initialized; 4
2t : analyze a job net; 4

3t : get

the set of running subjobs; 4
4t : start subjobs; 4

5t : select a subjob for monitoring; 4
6t :

monitor subjobs, which is a complex transition; 4
7t : creat a token for clearing out all

subjobs; 4
8t : mark a normal subjob; 4

9t : mark a completed subjob; 4
10t : check whether all

subjobs of the job have already been checked in this scheduling round; 4
11t : creat a

token for selecting a subjob; 4
12t : mark a failed job; 4

13t : check whether all subjobs of the

job have already accomplished. 4
14t : mark a completed job; 4

15t : mark a normal job.

www.intechopen.com

 Advances in Petri Net Theory and Applications

158

3. 4 4 4
4 { () () }begin endD C p C p d= ∪ ∪ , where
4 4{ |1 15}id d i= ≤ ≤ , 4

1d : initialized jobs; 4
2d : uninitialized jobs; 4

3d : subjob nets;
4
4d :running subjobs; 4

5d : subjobs waiting to be checked; 4
6d : subjobs running normally;

4
7d : completed subjobs; 4

8d : failed subjobs; 4
9d : marked subjobs; 4

10d : jobs whose

subjobs have been checked completely in this scheduling round; 4
11d : jobs whose

subjobs have been checked incompletely in this scheduling round; 4
12d : tokens for

selecting a subjob; 4
13d : tokens for clearing out all subjobs; 4

14d : jobs whose subjobs have

accomplished completely; 4
15d : jobs whose subjobs have accomplished incompletely.

4. 4
4() { }beginC p d= , 4

5 6 7() { , , }endC p d d d= ,

4 4 4
1 1 2() { , }C p d d= , 4 4

2 3() { }C p d= , 4 4
3 4() { }C p d= , 4 4

4 5() { }C p d= , 4 4 4 4
5 6 7 8() { , , }C p d d d= , 4 4

6 9() { }C p d= ,

4 4 4
7 10 11() { , }C p d d= , 4 4

8 12() { }C p d= , 4 4
9 13() { }C p d= , 4 4 4

10 14 15() { , }C p d d= ; 4
1 4() { }C t d= , 4 4

2 2() { }C t d=

, 4 4
3 1() { }C t d= , 4 4

4 3() { }C t d= , 4 4 4
5 4 12() { , }C t d d= , 4 4

6 5() { }C t d= , 4 4
7 8() { }C t d= , 4 4

8 6() { }C t d= ,

4 4
9 7() { }C t d= , 4 4

10 9() { }C t d= , 4 4
11 11() { }C t d= , 4 4 4

12 4 13() { , }C t d d= 4 4
13 10() { }C t d= , 4 4

14 14() { }C t d= ,

4 4
15 15() { }C t d= .

5. 4
3()K p n= and others are 1.

6. 4
0 {1,0,0,0,0,0,0,0,0,0,0,0}M = .

4

beginp

4

endp

4

2p
4

1p

4

1t

4{ }d 4 4
1 2{ , }d d

4

3p

4

2t

4

3t

4

4t

4

5t
4

6t4

4p
4

5p
4

6p

4

7p
4

8p

4

9p

4

10p

4

8t

4

9t

4

10t

4

11t

4

7t

4

12t

4

13t

4

14t

4

15t

4
1{ }d

4
2{ }d 4

3{ }d 4
3{ }d 4

4{ }nd

4
4{ }nd

4
4{ }dλ

4
4{ }d

4
5{ }d 4

5{ }d
4 4 4
6 7 8{ , , }d d d

4
8{ }d

4
6{ }d

4
7{ }d

4
9{ }d

4
9{ }d

4
9{ }d

4 4
10 11{ , }d d

4
10{ }d4

11{ }d
4
12{ }d4

12{ }d

4
13{ }d

4
13{ }d

7{ }d

4 4
14 15{ , }d d

4
14{ }d

4
15{ }d

6{ }d

5{ }d

4
12{ }d

Fig. 4.2. Subjob Scheduling Net

4.1.3 Task scheduling net.

The task scheduling net is a subnet of the subjob scheduling net, which is extended from the

complex transition 4
6t . The task scheduling net mainly manages the states of tasks and is

used to analyze subjobs, create tasks, order the running sequence of task and monitor the
states of tasks. A task scheduling net is shown as Fig. 4-3, which is modeled based on
S_HCPN and the detailed definition is shown as follows:

{ }4,6
4,6 4,6 4,6 4,6 4,6 4,6 4,6 4,6 4,6 0, ; , , , , , ,S HCPN P T F D C I O K M− =

1. 4,6 4,6 4,6
4,6 { , , |1 10}begin end iP p p p i= ≤ ≤ .

www.intechopen.com

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

159

2. 4,6
4,6 { |1 15}iT t i= ≤ ≤ , 4

4 { |1 15}iT t i= ≤ ≤ , 4,6
1t : check whether a subjob is initialized;

4,6
2t : transform a subjob scheduling net into a job scheduling net; 4,6

3t : get the set of

running tasks; 4,6
4t : start tasks; 4,6

5t : select a task for monitoring; 4,6
6t : monitor tasks,

which is a complex transition; 4,6
7t : create a token for clearing out all tasks; 4,6

8t : mark a

normal task; 4,6
9t : mark a completed task; 4,6

10t : check whether all tasks of the subjob

have already been checked in this scheduling round; 4,6
11t : create a token for selecting a

task; 4,6
12t : mark a failed task; 4,6

13t : check whether all tasks of the subjob have already

accomplished. 4,6
14t : mark a completed subjob; 4,6

15t : mark a normal subjob.

3. 4,6 4,6 4,6
4,6 { () () }begin endD C p C p d= ∪ ∪ , where

4,6 4,6{ |1 15}id d i= ≤ ≤ , 4,6
1d : initialized subjobs; 4,6

2d :uninitialized subjobs; 4,6
3d : task

net; 4,6
4d : running tasks; 4,6

5d : tasks waiting to be checked; 4,6
6d : tasks running

normally; 4,6
7d : completed tasks; 4,6

8d : failed tasks; 4,6
9d : marked tasks; 4,6

10d : subjobs

whose tasks have been checked completely in this scheduling round; 4,6
11d : subjobs

whose tasks have been checked incompletely in this scheduling round; 4,6
12d : tokens for

selecting a task; 4,6
13d : tokens for clearing out all tasks; 4,6

14d : subjobs whose tasks have

accomplished completely; 4,6
15d : subjobs whose tasks have accomplished incompletely.

4. 4,6 4
5() { }beginC p d= , 4,6 4 4 4

6 7 8() { , , }endC p d d d= , 4,6 4,6 4,6
1 1 2() { , }C p d d= , 4,6 4,6

2 3() { }C p d= ,

4,6 4,6
3 4() { }C p d= , 4,6 4,6

4 5() { }C p d= , 4,6 4,6 4,6 4,6
5 6 7 8() { , , }C p d d d= , 4,6 4,6

6 9() { }C p d= ,

4,6 4,6 4,6
7 10 11() { , }C p d d= , 4,6 4,6

8 12() { }C p d= , 4,6 4,6
9 13() { }C p d= , 4,6 4,6 4,6

10 14 15() { , }C p d d= ;

4,6 4
1 5() { }C t d= , 4,6 4,6

2 2() { }C t d= , 4,6 4,6
3 1() { }C t d= , 4,6 4,6

4 3() { }C t d= , 4,6 4,6 4,6
5 4 12() { , }C t d d= ,

4,6 4,6
6 5() { }C t d= , 4,6 4,6

7 8() { }C t d= , 4,6 4,6
8 6() { }C t d= , 4,6 4,6

9 7() { }C t d= , 4,6 4,6
10 9() { }C t d= ,

4,6 4,6
11 11() { }C t d= , 4,6 4,6 4,6

12 4 13() { , }C t d d= , 4,6 4,6
13 10() { }C t d= , 4,6 4,6

14 14() { }C t d= , 4,6 4,6
15 15() { }C t d= .

5. 4,6
3()K p n= and others are 1.

6. 4,6
0 {1,0,0,0,0,0,0,0,0,0,0,0}M = .

4,6

beginp

4,6

endp

4,6

2p
4,6

1p

4,6

1t

4
5{ }d

4,6 4,6
1 2{ , }d d

4,6

3p

4,6

2t

4,6

3t

4,6

4t

4,6

5t
4,6

6t
4,6

4p 4,6

5p

4,6

6p
4,6

8p

4,6

9p

4,6

10p

4,6

8t

4,6

9t

4,6

10t
4,6

11t

4,6

7t

4,6

12t

4,6

13t

4,6

14t

4,6

15t

4,6
1{ }d

4,6
2{ }d 4,6

3{ }d 4,6
3{ }d 4,6

4{ }nd

4,6
4{ }nd

4,6
4{ }dλ

4,6
4{ }d

4,6
5{ }d 4,6

5{ }d 4,6 4,6 4,6
6 7 8{ , , }d d d

4,6
8{ }d

4,6
6{ }d

4,6
7{ }d

4
7{ }d

4
6{ }d

4,6 4,6
10 11{ , }d d

4,6
10{ }d

4,6
11{ }d

4,6
12{ }d

4,6
12{ }d

4,6
13{ }d

4,6
13{ }d 4,6 4,6

14 15{ , }d d

4,6
14{ }d

4,6
15{ }d

4,6
9{ }d

4
8{ }d

4,6
9{ }d

4,6
9{ }d

4,6

7p
4,6
12{ }d

Fig. 4.3. Task Scheduling Net

www.intechopen.com

 Advances in Petri Net Theory and Applications

160

4.1.4 Subtask scheduling net.

The subtask scheduling net is a subnet of the task scheduling net, which is extended from

the complex transition 4,6
6t . The subtask scheduling net mainly manages the states of

subtasks and is used to analyze tasks, create subtasks, allocate and reallocate resources,

order the running sequence of subtask and monitor the states of subtasks. The subtask

scheduling net is shows as Fig.4-4, which is modeled based on S_HCPN and the detailed

definition is shown as follows:

{ }4,6,6
4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 0, ; , , , , , ,S HCPN P T F D C I O K M− =

1. 4,6,6 4,6,6 4,6,6
4,6,6 { , , |1 14}begin end iP p p p i= ≤ ≤ .

2. 4,4,6
4,4,6 { |1 21}iT t i= ≤ ≤ , 4,4,6

1t : check whether a task is initialized; 4,4,6
2t : get the set of

running subtasks; 4,4,6
3t : search resources; 4,4,6

4t : select resources; 4,4,6
5t : create

subtasks; 4,4,6
6t : start subtasks; 4,4,6

7t : select a subtask for monitoring; 4,4,6
8t : check a

subtask; 4,4,6
9t : mark a completed subtask; 4,4,6

10t : mark a normal subtask; 4,4,6
11t : check

whether all subtasks of the task have already been checked in this scheduling round;
4,4,6
12t : create a token for selecting a subtask; 4,4,6

13t : reallocate a subtask; 4,4,6
14t : start

subtasks after reallocation; 4,4,6
15t : mark subtasks running normally after reallocation;

4,4,6
16t : create a token for clearing out all subtasks; 4,4,6

17t : mark a failed subtask; 4,4,6
18t :

check whether all subtasks of the task have already accomplished. 4,4,6
19t : mark a normal

task; 4,4,6
20t : mark a completed task; 4,4,6

21t : mark a failed task.

3. 4,4,6 4,4,6 4,4,6
4,4,6 { () () }begin endD C p C p d= ∪ ∪ , where

4,4,6 4,4,6{ |1 15}id d i= ≤ ≤ , 4,6,6
1d : uninitialized tasks; 4,6,6

2d : initialized tasks; 4,6,6
3d :

running subtasks; 4,6,6
4d : resource list; 4,6,6

5d : selected resources; 4,6,6
6d : subtasks that

have no inadequate resources; 4,6,6
7d : subtask net; 4,6,6

8d : tokens for selecting a subtask;
4,6,6
9d : subtasks waiting for monitoring; 4,6,6

10d : subtasks running normally; 4,6,6
11d :

completed subtasks; 4,6,6
12d : subtasks running abnormally; 4,6,6

13d : marked subtasks;
4,6,6
14d : tasks whose subtasks have not been checked completely in this scheduling

round; 4,6,6
15d : tasks whose subtasks have been checked completely in this scheduling

round; 4,6,6
16d : tasks whose subtasks have already been accomplished; 4,6,6

17d : tasks

whose subtasks have not been accomplished completely; 4,6,6
18d : subtasks reallocated

successfully; 4,6,6
19d : subtasks reallocated unsuccessfully; 4,6,6

20d : subtasks running

normally after reallocation; 4,6,6
21d : tokens for clearing out all subtasks.

4. 4,6,6 4,6

5() { }beginC p d= , 4,6,6 4,6 4,6 4,6

6 7 8() { , , }endC p d d d= , 4,6,6 4,6,6 4,6,6

1 1 2() { , }C p d d= ,

4,6,6 4,6,6

2 3() { }C p d= , 4,6,6 4,6,6

3 4() { }C p d= , 4,6,6 4,6,6 4,6,6

4 5 6() { , }C p d d= , 4,6,6 4,6,6

5 7() { }C p d= ,

4,6,6 4,6,6

6 9() { }C p d= , 4,6,6 4,6,6 4,6,6 4,6,6

7 10 11 12() { , , }C p d d d= , 4,6,6 4,6,6

8 13() { }C p d= ,

4,6,6 4,6,6 4,6,6

9 14 15() { , }C p d d= , 4,6,6 4,6,6

10 8() { }C p d= , 4,6,6 4,6,6 4,6,6

11 18 19() { , }C p d d= ,

4,6,6 4,6,6

12 21() { }C p d= , 4,6,6 4,6,6

13 20() { }C p d= , 4,6,6 4,6,6 4,6,6

14 16 17() { , }C p d d= ;

4,6,6 4,6

1 5() { }C t d= , 4,6,6 4,6,6

2 2() { }C t d= , 4,6,6 4,6,6

3 1() { }C t d= , 4,6,6 4,6,6

4 4() { }C t d= ,

4,6,6 4,6,6

5 5() { }C t d= , 4,6,6 4,6,6

6 7() { }C t d= , 4,6,6 4,6,6 4,6,6

7 3 8() { , }C t d d= , 4,6,6 4,6,6

8 9() { }C t d= ,

www.intechopen.com

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

161

4,6,6

beginp

4,6,6

endp

4,6,6

2p
4,6,6

1p

4,6,6

1t

4,6
5{ }d

4,6,6 4,6,6
1 2{ , }d d

4,6,6

3p

4,6,6

2t

4,6,6

3t

4,6,6

4t 4,6,6

5t

4,6,6

6t

4,6,6

5p

4,6,6

6p

4,6,6

8p

4,6,6

9p

4,6,6

10p

4,6,6

8t

4,6,6

9t

4,6,6

10t
4,6,6

11t

4,6,6

7t

4,6,6

12t

4,6,6

13t

4,6,6

14t

4,6,6
1{ }d

4,6,6
2{ }d 4,6,6

3{ }nd

4,6,6 4,6,6
5 6{ , }d d

4,6,6
4{ }d 4,6,6

7{ }d

4,6,6
6{ }d

4,6,6
3{ }d 4,6,6

9{ }d
4,6,6
9{ }d

4,6,6 4,6,6 4,6,6
10 11 12{ , , }d d d

4,6,6
12{ }d

4,6,6
10{ }d

4,6,6
11{ }d

4,6
6{ }d

4,6,6 4,6,6
14 15{ , }d d

4,6,6
15{ }d

4,6,6
14{ }d

4,6,6
8{ }d

4,6,6
8{ }d

4,6
8{ }d

4,6,6
5{ }d

4
,6

,6
4

,6
,6

1
6

1
7

{
,

}
d

d

4,6,6
20{ }d

4,6,6
13{ }d

4,6,6
13{ }d

4,6,6
13{ }d

4,6,6

7p

4,6,6

15t

4,6,6

16t

4,6,6

17t

4,6,6

18t

4,6,6

19t4,6,6

20t

4,6,6

4p

4,6,6

11p

4,6,6

12p
4,6,6

13p

4,6,6

14p

4,6,6

21t

4,6,6 4,6,6
18 19{ , }d d4,6,6

19{ }d

4,6
7{ }d

4,6,6
3{ }d

4,6,6
3{ }dλ

4,6,6
4{ }d 4,6,6

7{ }d

4,6,6
3{ }nd

4,6,6
18{ }d

4,6,6
20{ }d

4,6,6
3{ }d

4,6,6
16{ }d

4,6,6
17{ }d

4,6,6
8{ }d

4,6
8{ }d

4,6
6{ }d

Fig. 4.4. Subtask Scheduling Net

4,6,6 4,6,6
9 11() { }C t d= , 4,6,6 4,6,6

10 10() { }C t d= , 4,6,6 4,6,6
11 13() { }C t d= , 4,6,6 4,6,6

12 14() { }C t d= ,

4,6,6 4,6,6
13 12() { }C t d= , 4,6,6 4,6,6

14 18() { }C t d= , 4,6,6 4,6,6
15 20() { }C t d= , 4,6,6 4,6,6

16 19() { }C t d= ,

4,6,6 4,6,6 4,6,6
17 3 21() { , }C t d dλ= , 4,6,6 4,6,6

18 15() { }C t d= , 4,6,6 4,6,6
19 17() { }C t d= , 4,6,6 4,6,6

20 16() { }C t d= ,

4,6,6 4,6,6
21 6() { }C t d= .

5. 4,6,6
2()K p n= and others are 1.

6. 4,6,6
0 {1,0,0,0,0,0,0,0,0,0,0,0}M = .

4.2 Job Net

The job net describes the flow of parallel application submitted by users, which is a kind of
workflow net and defines the relation of each step strictly. The job net is modeled based on

CSCTPN and its detailed definition is shows as follows:

{ }1
0 0, ; , , , , , , , ,k k

k k k k k k k k k kCSCTPN P T F D C I O Q M M −= Γ

0CSCTPN is the initial structure of the job net. In this level, we only concern about the time

limit, cost, input and output of a job, which are defined as follows:

1. 0 { , }in outP p p= , they are places of input and output respectively;

2. 1
0 0{ }T t= , there is only a transition that denotes the whole process of the job;

3. 0 { , }in outD d d= ，they are the input and output of the job;

4. 1
0 0{ , , , }b l dt τ τ τΓ = < > , it denotes the time limit of 1

0t ;

5. 1
0 0{ , , }r mQ t q q= < > , it denotes the cost limit of 1

0t .
There are four types of data in the job net: remote data, local data, outer data and inner data.

For a job, outer data has already existed in the parallel environment and it is not produced

by the job. The data produced temporarily by the jobs is called inner data.

www.intechopen.com

 Advances in Petri Net Theory and Applications

162

In the job net, a user needs to indicate the maximum cost and the deadline of his job. In
addition, the user needs to estimate the cost and durable time of each subjob according to
his experiences, which are shown in the description file of the job. This is helpful to assign
the cost and time characteristics of subjobs. Otherwise, the assignment methods of these
values are the same with tasks and subtasks. For tasks and subtasks, we need to assign their
cost and time characteristics dynamically within their limits according to the allocation
results. The cost is proportional to the transferring traffic and the computing load [13,14] in
our assignation strategy. Compared with cost assignation, time assignation is more complex
than cost assignation. We refer to a method[15] to assign the times of tasks and subtasks
within fixed-time constraints.

4.2.1 Subjob net.

A job consists of many subjobs that have own inputs, outputs and operations. The subjob

net is 1CSCTPN that is built by analyzing the description file of a job.

{ }1 0
1 1 1 1 1 1 1 1 1 1 0 0, ; , , , , , , , ,CSCTPN P T F D C I O Q M M= Γ

1. 1P : a set of places for inputs and outputs of subjobs.

2. 1 t cT J J= ∪ , where tJ is a set of transferring subjobs and cJ is a set of computing

subjobs.

3. 1 { |1 4}iD d i= ≤ ≤ , where 1d : remote data from outside; 2d : local data from outside; 3d :

remote data from inside; 4d : local data from inside.

4. 1Γ : a time set of subjobs, 1 1
1 1 1 1 0 0(() () () ())i i i

l d l dt T t t t t∀ ∈ Γ + Γ ≤ Γ + Γ .

5. 1Q :a cost set of subjobs, 1
1 1 0() ()m i

i m mQ t Q t= =∑ , where m is the number of transitions in

1T .

4.2.2 Task net.

The task net is 2CSCTPN that is built by decomposing the subjob net. 2CSCTPN is defined

as follows.

{ }2 1
2 2 2 2 2 2 2 2 2 2 0 0, ; , , , , , , , ,CSCTPN P T F D C I O Q M M= Γ

1. 2P : a set of places for inputs and outputs of tasks.

2. 2 t npc dpc dnpcT T T T T= ∪ ∪ ∪ , where tT : a set of data transferring tasks; npcT : a set of

computing tasks that can not run in parallel; dpcT : a set of computing tasks whose data

inputs can be divided; ndpcT : a set of computing tasks whose data input can not be

divided.

3. 2 { |1 4}iD d i= ≤ ≤ , where 1d : remote data from outside; 2d : local data from outside;

3d : remote data from inside; 4d : local data from inside.

4. 2Γ : a time set of tasks, 1 1
2 2 2 2 0 0(() () () ())i i i

l d l dt T t t t t∀ ∈ Γ + Γ ≤ Γ + Γ .

5. 2Q : a cost set of tasks, 1
1 2 0() ()m i

i m mQ t Q t= =∑ , where m is the number of transitions in

2T .
According to the input and output, a subjob can be divided into several tasks. Based on the
types of subjobs, the division rules are defined as follows.

www.intechopen.com

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

163

1. data transferring subjob
A data transferring subjob often has many data inputs and they may need to be transferred
at the same time. In order to be convenient to deal with them, a data transferring subjob
needs to be divided into many tasks and each task has only one data input. The division
result is shown as Fig.4-5. The process satifies these conditions:

,
1 2 1() ()s k i r i

r m mQ t Q t+
= =∑ ,

,
2 1(1 () () ())i h i

b lh h s k t t∃ ≤ ≤ + ∧ Γ ≤ Γ

,
2 1(1 () () ())i h i

b bh h s k t t∀ ≤ ≤ + → Γ ≥ Γ

,1 ,1 , ,
2 2 2 2

1 1

max(() (), , () ())

() ())

i i i s k i s k
l d l d

i i
l d

t t t t

t t

+ +Γ + Γ Γ + Γ

≤ Γ + Γ

A

2

mp

,1

2

it
1
1{ }d

1{ }sd
1
3{ }d

3{ }kd 3{ }kd

2

np
,

2

i st

, 1

2

i st +

,

2

i s kt +

1

np 1

it
1 3{ , }s d k d× × 1

mp
2 4{ , }s d k d× ×

1 1 1 3() () { , }n iC p C t d d= =

1
2{ }d

2{ }sd

1
4{ }d

1 2 4() { , }mC p d d=

divide
(b) data transferring tasks(a) data transferring subjob

Fig. 4.5. Division result of data transferring subjob

2. computing subjob
Generally, a computing subjob has remote data inputs and these data need to be transferred
to local node firstly. The division result for a computing subjob is show as Fig.4-6 and it
satisfies these conditions:

,
1 2 2 1() () ()s k i r i i

r m m mQ t Q t Q t+
= + =∑

,
2 1(1 () () ())i h i

b lh h s k t t∃ ≤ ≤ + ∧ Γ ≤ Γ

,
2 1(1 () () ())i h i

b bh h s k t t∀ ≤ ≤ + → Γ ≥ Γ

,1 ,1 , ,
2 2 2 2 2 2() max(() (), , () ()) ()i i i i s k i s k i

b l d l d lt t t t t t+ +Γ ≤ Γ + Γ Γ + Γ ≤ ΓA

 2 2 1 1() () () ()i i i i
l d l dt t t tΓ + Γ ≤ Γ + Γ

4.2.3 Subtask net.

Subtask net is iCSCTPN (3i ≥)that is built by decomposing task net, which is defined as

follows.

www.intechopen.com

 Advances in Petri Net Theory and Applications

164

2

mp

,1

2

it1
1{ }d

1{ }sd
1
3{ }d

3{ }kd 3{ }kd

2

np
,

2

i st
, 1

2

i st +

,

2

i s kt +

1

np 1

it
1 3{ , }s d k d× × 1

mp
4{ }l d×

1 1 1 3() () { , }n iC p C t d d= =

1
2{ }d

2{ }sd

1
4{ }d

1 4() { }mC p d=

2

it
1 3{ , }s d k d× × 4{ }l d×

1

2

nmp

divide (b) transferring and

 computing tasks
(a) computing subjob

(a)

(b)

Fig. 4.6. Division result of computing subjob

{ }1
0 0, ; , , , , , , , ,i i

i i i i i i i i i iCSCTPN P T F D C I O Q M M −= Γ

1. iP : a set of places for inputs and outputs of subtasks.

2. i t cT J J= ∪ , where tJ : a set of transferring subtasks; cJ : a set of computing subtasks.

3. { |1 5}i iD d i= ≤ ≤ , where 1d : remote data from outside; 2d : local data from outside;

3d : remote data from inside; 4d : local data from inside; 5d : computing resources.

4. iΓ : a time set of subtasks, 1 1
2 2 2 0 0(() () () ())i i i

i l d l dt T t t t t∀ ∈ Γ + Γ ≤ Γ + Γ .

5. iQ : a cost set of subtasks, 1
1 2 0() ()m i

i m mQ t Q t= =∑ , where m is the number of transitions

in iT .

According to the number of data replicas or computing resources, a task can be divided into
many subtasks. Based on the types of tasks, the division rules are defined as follows.
1. tasks transferring outer data

Outer data may have many replicas in a parallel environment, so a task transferring outer

data can transfer parts of data from different replicas firstly in order to reduce the total

transferring time. Then, these parts of data are merged into one by a merging subtask.

Though a merging subtask is a computing subtask here, we do not allocate computing

resource for it specially and it runs on the node that the data lies on. The detailed division is

shown as Fig.4-7. 2
it is a task transferring outer data. ,

3 (1)i rt r k≤ ≤ denotes the transferring

subtasks running in parallel. 3
it is the merging subtask. 1()j

kR d denotes the task uses k

replicas of 1
jd , and 1 1() { ()|0 }j ji

k kR d R d i k= ≤ ≤ . ()j
k mE b denotes data j

mb is divided into k

pieces and () { ()|0 }j ji
k m k mE b E b i k= ≤ ≤ . The division satisfies these conditions:

,
1 3 3 2() () ()k i r i i

r r r mQ t Q t Q t= + ≤∑

,
3 2(1 () ())i h i

b lh h k t t∃ ≤ ≤ ∧ Γ ≤ Γ

,
3 2(1 () ())i h i

b bh h k t t∀ ≤ ≤ →Γ ≥ Γ

,1 ,1 , ,
3 3 3 3 3 3() max(() (), , () ()) ()i i i i k i k i

b l d l d lt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ ΓA 3 3 2 2() () () ()i i i i
l d l dt t t tΓ + Γ ≤ Γ + Γ

www.intechopen.com

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

165

2

np 2

it
1
1{ }d

2

mp
1
2{ }d 3

mp
,1

3

it1 1
1()kR d

3

np

,

3

i kt
1
1()k

kR d

0 1
2()kE d

1
2()k

kE d

1

3

nmp 3

it
1
2()kE d 1

2{ }d

1
2 2 1() () { }n iC p C t d= =

1
2 2() { }mC p d=

divide (b) transferring and

 merging subtasks

(a) task transferring

 outer data

Fig. 4.7. Division result of task transferring outer data

m

lp

,1i

lt

n

lp
, 1i k

lt
−

,i k

lt

, 1i k s

lt
+ −

i

lt
1nm

lp

1 1
1 1()k sR d+ −

1
2{ }d

1
1 2()k sE d+ −

1 1
1 1()k

k sR d−
+ −

1
1 1()k

k sR d+ −

1 1
1 1()k s

k sR d+ −
+ −

1 1
1 2()k sE d+ −

1 1
1 2()k

k sE d−
+ −

1
1 2()k

k sE d+ −

1 1
1 2()k s

k sE d+ −
+ −

Fig. 4.8. Structure change of subtask net when subtasks transferring outer data become
abnormal

When a subtask becomes abnormal because the data resources it uses are out of service or

their performances decrease, this subtask needs to be reallocated in order to ensure it can be

accomplished on time. The reallocation can lead to the structure change of the subtask net.

The detail is shown as Fig.4-8. The number of subtasks that the abnormal subtask is divided

into is s . The division accords with these conditions:

1 ,
1 2() () ()k s i r i i

r r l r l mQ t Q t Q t+ −
= + ≤∑

,
2(1 (1) () ())i h i

b l lh h k s t t∃ ≤ ≤ + − ∧ Γ ≤ Γ

,
2(1 (1) () ())i h i

b l bh h k s t t∀ ≤ ≤ + − → Γ ≥ Γ

,1 ,1 , ,
3 3() max(() (), , () ()) ()i i i i k i k i

l l l d l l l d l lt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ ΓA 3 3 2 2() () () ()i i i i
l d l dt t t tΓ + Γ ≤ Γ + Γ

2. tasks transferring inner data
Inner data is produced by computing subtasks and it has no replicas. Therefore, a task

transferring inner data has only one subtask. When its resource is out of service, the task

fails because there are no other resources to use. Its division result is shown as Fig.4-9.

2

np 2

it
1
3{ }d

2

mp
1
4{ }d

3

np 3

it
1
3{ }d 3

mp1
4{ }d

(a) task transferring

 inner data

(b) transferring

 subtasks

divide

Fig. 4.9. Division result of task transferring inner data

www.intechopen.com

 Advances in Petri Net Theory and Applications

166

3. parallel computing tasks

There are two kinds of parallel computing tasks: tasks whose data inputs can be divided and

tasks whose data inputs can not be divided. According to the number of computing

resources and QoS requirements, the former can be divided into many subtasks that only

compute parts of the input data. Because these subtasks run on different nodes, the input

data needs to be transferred into local node firstly. The detailed process is shown as Fig.4-10.

2
it is a parallel computing task. , ,

3 (1 ,1)i r ht r s h k≤ ≤ ≤ ≤ are the transferring subtasks

running in parallel. ,
3 (1)i rt r s≤ ≤ are the computing subtasks running in parallel. 3

it is a

merging subtask. The division accords with these conditions:

, , ,
1 3 3 3 21 1

() () () ()
s ks i r i r h i i

r r r r mr h
Q t Q t Q t Q t= = =

+ + ≤∑ ∑ ∑

, ,
3 2, (1 1 () ())i h u i

b lh u h s u k t t∃ ≤ ≤ ∧ ≤ ≤ ∧ Γ ≤ Γ

, ,
3 2, (1 1 () ())i h u i

b bh u h s u k t t∀ ≤ ≤ ∧ ≤ ≤ →Γ ≥ Γ

 ,1 ,1 , ,
3 3 3 3 3 3() max(() (), , () ()) ()i i i i s i s i

b l d l d lt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ ΓA

3 3 2 2() () () ()i i i i
l d l dt t t tΓ + Γ ≤ Γ + Γ

, ,1

3

i st

2

np 2

it
1{ }k d× 2

mp
4{ }l d×

3

mp

,1,1

3

it

3

np

,1,

3

i kt

,1

3

it

, ,

3

i s kt

3

it(1)

3

nm sp +
1
5{ }d

4{ }l d×41
()

l r
sr
E d

=∑
1

1()ksE d

1()s k
sE d

1 1
1()sE d

1
1()s

sE d
5{ }sd

1 1
2()sE d

1
2()ksE d

1
2()s

sE d

2()s k
sE d

1
21

()
k r

sr
E d

=∑

,

3

i st21
()

k s r
sr
E d

=∑

1
41

()
l r

sr
E d

=∑

41
()

l s r
sr
E d

=∑

2 2 1() () { }n iC p C t d= =
2 4() { }mC p d=

1

3

nmp

3

nmsp
(a) parallel computing task whose

 data inputs can be divided

(b) transferring and computing

 subtasks

divide

(a)

(b)

Fig. 4.10. Division result of parallel computing task whose data inputs can be divided

When one subtask of a parallel computing task becomes abnormal because the computing

resource it uses is out of service or its performance decreases, this subtask needs to be

reallocated in order to ensure it can be accomplished on time. The reallocation can lead to

the structure change of the subtask net. The detail is shown as Fig.4-11. s is the number of

subtasks that the abnormal subtask is divided into according to the number of computing

resources and QoS requirements. The division accords with these conditions:

11 , , ,
1 21 1

() () () ()
k s vv s i r h i r i i

r r z r z r z mh r
Q t Q t Q t Q t

+ −+ −
= = =

+ + ≤∑ ∑ ∑

, ,
2, (1 (1) 1 () ())i h u i

b z lh u h s v u k t t∃ ≤ ≤ + − ∧ ≤ ≤ ∧ Γ ≤ Γ

www.intechopen.com

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

167

,1,1i

zt

n

zp

,1,i k

zt

,1i

zt

i

zt
0nm

zp

1
5{ }d

4{ }l d×41
()

l r
sr
E d

=∑

1 1
1 1()s vE d+ −

1
5{ }sd −

1 1
1 2()s vE d+ −

1
1 2()ks vE d+ −

1 1
1 2()s

s vE d−
+ −

1
1 2()s k

s vE d−
+ −

1
1 21
()

k r
s vr
E d+ −=∑

, 1i s

zt
−1

1 21
()

k s r
s vr
E d−

+ −=∑

1
1 41
()

l r
s vr
E d+ −=∑

1
1 41
()

l s r
s vr
E d−

+ −=∑

,i s

zt

5{ }sd

1
5{ }s vd + −

1
1 2()s

s vE d+ −

1 2()s k
s vE d+ −

1 1
1 2()s v

s vE d+ −
+ −

1
1 2()s v k

s vE d+ −
+ −

1 21
()

k s r
s vr
E d+ −=∑

, 1i s v

zt
+ −1

1 21
()

k s v r
s vr
E d+ −

+ −=∑

1
1 1()ks vE d+ −

1 1
1 1()s

s vE d−
+ −
1

1 1()s k
s vE d−
+ −

1
1 1()s

s vE d+ −

1 1()s k
s vE d+ −

1 1
1 1()s v

s vE d+ −
+ −

1
1 1()s v k

s vE d+ −
+ −

1nm

zp

m

zp

(1)nm s

zp
−

nms

zp

(1)nm s v

zp
+ −

, 1,1i s

zt
−

, 1,i s k

zt
−

, ,1i s

zt

, ,i s k

zt

, 1,1i s v

zt
+ −

, 1,i s v k

zt
+ −

1 41
()

l s r
s vr
E d+ −=∑

1
1 41
()

l s v r
s vr
E d+ −

+ −=∑

Fig. 4.11. Structure change of the subtask net when parallel computing subtasks become
abnormal

, ,
2, (1 (1) 1 () ())i h u i

b z bh u h s v u k t t∃ ≤ ≤ + − ∧ ≤ ≤ ∧ Γ ≥ Γ

, , ,1

, ,1 , , , , ,

(1 (1) () max(()

(), , () ()) ())

i h i h
b z l z

i h i h k i h k i h
d z l z d z l z

h h s v t t

t t t t

∀ ≤ ≤ + − → Γ ≤ Γ +

Γ Γ + Γ ≤ ΓA

,1 ,1 , ,() max(() (), , () ()) ()i i i i s i s i
b z l z d z l z d z l zt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ ΓA

2 2() () () ()i i i i
l z d z l dt t t tΓ + Γ ≤ Γ + Γ

The division of a parallel computing task whose data inputs can not be divided is similar to

a task whose data inputs can be divided. The difference between them is that the input data

of transferring subtask is the data or parts of it.

4. computing tasks that cannot run in parallel
A computing task that can not run in parallel only has a subtask and Fig.4-12 shows the
division result.

2

np 2

it
3{ }k d× 2

mp
4{ }l d× 3

np 3

it

(a) computing task that can

 not run in parallel

3

mp
3 5{ , }k d d× 4{ }l d×

divide
(b) computing subtask

Fig. 4.12. Division result of computing task that can not run in parallel

www.intechopen.com

 Advances in Petri Net Theory and Applications

168

Within an unparallel computing task, when a subtask becomes abnormal because the

computing resource it uses is out of service or its performance decreases, this subtask needs

to be reallocated in order to ensure it can be accomplished on time. For unparallel

computing tasks, the reallocation can not lead to the structure change of the subtask net, but

it can result in the states change. The detail is shown as Fig.4-13. Because the computing

node is replaced, the data needs to be transferred to a new computing node. i
zt is the new

computing subtask and , (1)i r
zt r k≤ ≤ denotes transferring subtasks. The change accords

with these conditions:

,
1 2() () ()k i r i i

r r z r z mQ t Q t Q t= + ≤∑

,
3 2(1 () ())i h i

b lh h k t t∃ ≤ ≤ ∧ Γ ≤ Γ

,
3 2(1 () ())i h i

b bh h k t t∀ ≤ ≤ →Γ ≥ Γ

,1 ,1 , ,() max(() (), , () ()) ()i i i i k i k i
b z l z d z l z d z l zt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ ΓA

2 2() () () ()i i i i
l z d z l dt t t tΓ + Γ ≤ Γ + Γ

n

zp
,1i

zt m

zp1
1{ }d 1

2{ }d

1{ }kd
2{ }kd

5{ }d,i k

zt

2{ }k d× 4{ }l d×

i

zt
1nm

zp

Fig. 4.13. Structure change of subtask net when computing subtasks that can not run in
parallel become abnormal

5. Analysis and optimization

In this section, we adjust the structure of subtask net firstly in order to optimize the process

of subtasks. Then, we analyze the validity of the scheduling net and the job net. Finally, we

analyze the performance of the job net.

5.1 Structure optimization

In order to keep the consistency of the model and make the process of structure change clear
and intuitive, we divide parallel computing tasks in standard way. However, this way
results in redundant data transfer within a subjob and this part of subtask net need to be
optimized further.

Suppose the number of remote data inputs in a computing subjob 1
it is k . 1

it has remote

data inputs 1{ |1 }rd r k≤ ≤ and a computing task 2
it whose subtasks are ,

3 (1)i rt r s≤ ≤ . b
ah is

the number of replicas of number b data that number a subtask uses. Within a subjob, the

optimization result is shown as Fig.5-1. Compared with the former, the total number of

www.intechopen.com

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

169

reduced transitions is k , the saved money is ,
21

()
k i r

rr
Q t

=∑ and the reduced time is
,1 ,

2 2max((), , ())i i k
d dt tΓ ΓA .

,1,1,1

3

it

3

np

1
1,1,1,

3

i ht
,1,1

3

it

0

3

nmp

,1,

3

i kt

, ,1

3

i st

, ,

3

i s kt

(1)

3

nm sp +

3

mp

()

3

nm s kp +

(1)

3

nm s kp × +

()

3

nm s k kp × +

,1, ,1

3

i kt

, ,1,1

3

i st

1, ,1,

3
si s h

t
, , ,1

3

i s kt

, , ,

3

k
si s k h

t

3

it

,1

3

it

,

3

i st

1

3

nmp

3

nmsp

1,1, ,

3

k
i k ht

Fig. 5.1. Structure optimization of parallel computing subtasks

5.2 Validity analysis

Validity analysis is necessary for a model based on Petri Net to ensure the success of model
in practice. For the scheduling net, we analyze its structure to verify its correctness. For the
job net, besides structure analysis we also need to analyze its time reachability to validate
that the time limits of transitions are reasonable.

{3,0,0,0,0,2,0}

{2,1,0,0,0,2,0}

{2,0,1,0,0,1,0}

{2,0,0,1,0,1,0}

{2,0,0,0,1,1,0}

{1,1,1,0,0,1,0}

{1,1,0,1,0,1,0}

{2,0,0,0,0,2,1} {1,1,0,0,1,1,0}

{1,1,0,0,0,2,1}

{1,0,1,0,0,1,1}

{1,0,0,1,0,1,1} {0,1,1,0,0,1,1}

{1,0,0,0,1,1,1} {0,1,0,1,0,1,1}

{1,0,0,0,0,2,2}

{0,1,0,0,0,2,2}

{0,0,1,0,0,1,2}

{0,0,0,1,0,1,2}

{0,0,0,0,1,1,2}

{0,0,0,0,0,2,3} {0,0,1,0,0,1,2}

{1,0,1,0,0,1,1}{0,1,0,0,1,1,1}

{0,0,0,0,0,2,3} {0,0,0,0,0,2,3}

Fig. 5.2. A sample of reachability trees

www.intechopen.com

 Advances in Petri Net Theory and Applications

170

The top level of scheduling net is a job scheduling net, which consists of circular structures
and cannot stop without outside force. The end place and other places in the job scheduling
net can have tokens at the same time. The maximal number of jobs that the job scheduling

net can schedule simultaneously is 3()K p and these jobs are classified by the net according

to their states.
The three lower levels of the scheduling net are workflow nets, which are driven by the job
scheduling net and only schedule one subjob, one task or one subtask at the same time. The
job net is also a workflow net and its validity [16] is described as follows:
1. For each state M reachable from state i , there exists a firing sequence leading from state

M to state o.
2. State o is the only state reachable from state i with at least one token in place o.
3. There are no dead transitions in net.
The main work in structure analysis is reachability analysis. We can build reachability trees
[17, 18] for the scheduling net and the job net to validate their reachability and three
conditions above. There are too many reachability trees, so we only list a sample of them
here. Fig.5-2 shows a sample of reachability tree built according to a job scheduling net,
which has 3 jobs in the beginning and the maximal number of running jobs that scheduler

can deal with simultaneity is 2. Therefore, 0M ={3,0,0,0,0,2,0} and the end state is

{0,0,0,0,0,2,3} . For a job scheduling net with 0M ={m,0,0,0,0,n,0} , its reachability tree is

similar to Fig.4-15. The root of this tree is {m,0,0,0,0,n,0} and all leaves are {0,0,0,0,0,n,m} .

The number of tokens in the tree satisfies these conditions:

1 2 3 4 5 7| () | | () | | () | | () | | () | | () |ms ms ms ms ms msC p C p C p C p C p C p m+ + + + + =

6 3 4 5| () | | () | | () | | () |ms ms ms msC p C p C p C p n+ + + =

2 4 50 | () |,| () |,| () | 1ms ms msC p C p C p≤ ≤

3 6| () |,| () |ms msC p C p n≤

Time reachability is that the time requirements of transitions are satisfied within time

limitations. After analyzing the validity of structure, we can validate the time reachability

easily. In the job net, if (() () () ())l d l dt T t t t t t t⊗⊗′ ′ ′∀ ∈ ∀ ∈ →Γ + Γ ≤ Γ + Γ , the time reachability

of the net is satisfied. Otherwise, the time reachability is not satisfied.
Validity analysis is necessary for a model based on Petri Net to ensure the success of model
in practice. For the scheduling net, we analyze its structure to verify its correctness. For the
job net, besides structure analysis we also need to analyze its time reachability to validate
that the time limits of transitions are reasonable.
The top level of scheduling net is a job scheduling net, which consists of circular structures
and cannot stop without outside force. The end place and other places in the job scheduling
net can have tokens at the same time. The maximal number of jobs that the job scheduling
net can schedule simultaneously is K(p3) and these jobs are classified by the net according to
their states.
The three lower levels of the scheduling net are workflow nets, which are driven by the job
scheduling net and only schedule one subjob, one task or one subtask at the same time. The
job net is also a workflow net and its validity [16] is described as follows:

www.intechopen.com

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

171

{3,0,0,0,0,2,0}

{2,1,0,0,0,2,0}

{2,0,1,0,0,1,0}

{2,0,0,1,0,1,0}

{2,0,0,0,1,1,0}

{1,1,1,0,0,1,0}

{1,1,0,1,0,1,0}

{2,0,0,0,0,2,1} {1,1,0,0,1,1,0}

{1,1,0,0,0,2,1}

{1,0,1,0,0,1,1}

{1,0,0,1,0,1,1} {0,1,1,0,0,1,1}

{1,0,0,0,1,1,1} {0,1,0,1,0,1,1}

{1,0,0,0,0,2,2}

{0,1,0,0,0,2,2}

{0,0,1,0,0,1,2}

{0,0,0,1,0,1,2}

{0,0,0,0,1,1,2}

{0,0,0,0,0,2,3} {0,0,1,0,0,1,2}

{1,0,1,0,0,1,1}{0,1,0,0,1,1,1}

{0,0,0,0,0,2,3} {0,0,0,0,0,2,3}

Fig. 5.3. A sample of reachability trees

1. For each state M reachable from state i , there exists a firing sequence leading from state
M to state o.

2. State o is the only state reachable from state i with at least one token in place o.
3. There are no dead transitions in net.

The main work in structure analysis is reachability analysis. We can build reachability trees

[17, 18] for the scheduling net and the job net to validate their reachability and three

conditions above. There are too many reachability trees, so we only list a sample of them

here. Fig.4-15 shows a sample of reachability tree built according to a job scheduling net,

which has 3 jobs in the beginning and the maximal number of running jobs that scheduler

can deal with simultaneity is 2. Therefore, 0M ={3,0,0,0,0,2,0} and the end state is

{0,0,0,0,0,2,3} . For a job scheduling net with 0M ={m,0,0,0,0,n,0} , its reachability tree is

similar to Fig.5-3. The root of this tree is {m,0,0,0,0,n,0} and all leaves are {0,0,0,0,0,n,m} .

The number of tokens in the tree satisfies these conditions:

1 2 3 4 5 7| () | | () | | () | | () | | () | | () |ms ms ms ms ms msC p C p C p C p C p C p m+ + + + + =

6 3 4 5| () | | () | | () | | () |ms ms ms msC p C p C p C p n+ + + =

2 4 50 | () |,| () |,| () | 1ms ms msC p C p C p≤ ≤

3 6| () |,| () |ms msC p C p n≤

Time reachability is that the time requirements of transitions are satisfied within time

limitations. After analyzing the validity of structure, we can validate the time reachability

easily. In the job net, if (() () () ())l d l dt T t t t t t t⊗⊗′ ′ ′∀ ∈ ∀ ∈ →Γ + Γ ≤ Γ + Γ , the time reachability

of the net is satisfied. Otherwise, the time reachability is not satisfied.

www.intechopen.com

 Advances in Petri Net Theory and Applications

172

5.3 Validity analysis

Performance analysis mainly analyzes the time and cost characteristics of a job net. The total

cost of a job net is the cost sum of all transitions in the net: ()rQ t∑ . If

1 1
0 0() () ()r r mQ t Q t Q t= ≤∑ , the cost allocation succeeds, otherwise the cost allocation fails and

the job net can not run correctly.
In order to be convenient to analyze time characteristics of a job net, we propose a transition
tree algorithm that translates the transitions in a job net into a transition tree. The conversion
rules are shown as follows:

1. The root of a transition tree is roott whose time limits and cost are 0;

2. beginp is the beginning place in the job net and all transitions in beginp⊗ are the leaves of

roott .

3. For each leaf t , find t⊗⊗ and all transitions in t⊗⊗ are the leaves of t ;

4. repeat step 3 until each leaf t satisfies the condition: t⊗⊗ = ∅ .

5. The tree with root roott is the corresponding transition tree of the job net.

According to the transition tree, it is convenient to analyze the time characteristics of the job
net and optimize the allocation process for subtasks.

The maximum number of serial transitions is 1TD − , where TD is the depth of the transition

tree.

To reduce the waiting time of transitions, for each transition ({ |1 })it t t i k⊗⊗ = ≤ ≤ in a job

net, let 1 1() () max(() (), , () ())l b l d l k d kt t t t t tΓ = Γ = Γ + Γ Γ + ΓA .
Suppose there are s leaves { |1 }rt r s′ ≤ ≤ in a transition tree and each leaf has a path from it

to root : () { |1 }r
i i ip t t r l′ = ≤ ≤ ,where il is the number of transitions in ()ip t′ . Each path has a

total time of transitions:
1

() ()il r
i d ir

t t
=

′Γ = Γ∑ , the total durable time of the net is ()rt′Γ ,

1() max((), , ())r kt t t′ ′ ′Γ = Γ ΓA . The corresponding path of rt′ is the key path and rl is the

number of transitions on the key path.
The key path decides the total durable time of a job net and it is important for subtask
allocation optimization. For each subtask, we should choose those resources with high
performance. All computing subtask on the key path can run on the same node and this can
reduce the data transferring time.

6. Conclusions and future work

This paper proposes two different models for the scheduling net and the job net based on
the idea that the scheduling net is separated from the job net. This method makes models
compact and intuitional. In addition, the separation benefits the analysis of the job net and
the scheduling net respectively. According to the granularity of parallel applications, the
scheduling net is designed to four levels, which is convenient to deploy distributed
schedulers in parallel environment and is beneficial to the management of different parallel
application granularities. Based on Petri Net with changeable structure, the job net model
can change its structure dynamically according to the allocation results or states of jobs.
Therefore, the model supports dynamic mergence and division of subtasks and can deal
with the abnormity of subtasks. We validate the scheduling net and the job net using

www.intechopen.com

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

173

reachability tree technologies. In addition, a transition tree algorithm is designed for
analyzing the performances of the job net and optimizing the allocations of subtasks
according to the key path in the job net.
In the future, we will optimize these models further and put emphasis upon researching
algorithms used for optimizing resource allocations.

7. References

[1] M. Alt, S. Gorlatch, A. Hoheisel, H. W. Pohl, "Using High-Level Petri Nets for
Hierarchical Grid Workflows," presented at Second IEEE International Conference
on e-Science and Grid Computing, Amsterdam, The Netherlands 2006, pp. 13-13.

[2] M. Silva,L. Recalde, "Petri nets and integrality relaxations: A view of continuous Petri net
models," IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and
Reviews, vol. 32, pp. 314-327, 2002 (4).

[3] H. Yaojun,L. Xuemei, "Modeling and Performance Analysis of Grid Task Scheduling
Based on Composition and Reduction of Petri Nets," 2006, pp. 331-334.

[4] S. Distefano, A. Puliafito, M. Scarpa, "GridSPN: a grid-based non Markovian Petri nets
tool," presented at IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprise, 2005, pp. 331-336.

[5] X. Jiefeng, W. Zhaohui, C. Huajun, "Distributed Petri Net for Knowledge Base Grid
reasoning," presented at IEEE International Conference on Systems, Man and
Cybernetics, Hangzhou, China, 2003, pp. 593-597 vol.1.

[6] J. Yu, R. Buyya, C. K. Tham, "QoS-based Scheduling of Workflow Applications on
Service Grids," presented at Proceedings of the 1st IEEE International Conference
on e-Science and Grid Computing Melbourne, Australia, 2005.

[7] J. Yu,R. Buyya, "A Taxonomy of Scientific Workflow Systems for Grid Computing,"
Special Issue on Scientific Workflows, SIGMOD Record, vol. 34, pp. 44-49, 2005 (3).

[8] J. Yu,R. Buyya, "A Budget Constrained Scheduling of Workflow Applications on Utility
Grids using Genetic Algorithms," presented at Workshop on Workflows in Support
of Large-Scale Science, Proceedings of the 15th IEEE International Symposium on
High Performance Distributed Computing Paris, France, 2006.

[9] BPEL4WS, "http://www.ebpml.org/bpel4ws.htm,"
[10] J. Hai,W. Shuzhen, "Grid workflow model based on colored Petri net," J . Huazhong

Univ. of Sci. & Tech. (Nature Science Edition), vol. 34, pp. 39-41, 2006 (7).
[11] Z. Hu, R. Hu, W. Gui, J. Chen, "General scheduling framework in computational Grid

based on Petri net " Journal of Central South University of Technology, vol. 12, pp. 232-
237, 2005

[12] H. Yaojun, J. Changjun, L. Xuemei, "Resource scheduling model for grid computing
based on sharing synthesis of Petri net," 2005, pp. 367-372 Vol. 1.

[13] M. Dobber, R. van der Mei, G. Koole, "Effective Prediction of Job Processing Times in a
Large-Scale Grid Environment," presented at 15th IEEE International Symposium
on High Performance Distributed Computing, 2006, pp. 359-360.

[14] Z. Yuanyuan, S. Wei, Y. Inoguchi, "Predicting Running Time of Grid Tasks based on
CPU Load Predictions," presented at 7th IEEE/ACM International Conference on
Grid Computing, Barcelona, Spain, 2006, pp. 286-292.

www.intechopen.com

 Advances in Petri Net Theory and Applications

174

[15] C. Jinjun,Y. Yun, "Assigning Local Fixed-time Constraints in Grid Workflow Systems,"
presented at Fifth International Conference on Grid and Cooperative Computing
Workshops. WSGE '06. , Changsha, China, 2006, pp. 227-234.

[16] Z. Liang, "Research on Workflow Patterns based on Petri nets," presented at 2006 IEEE
Conference on Robotics, Automation and Mechatronics, Bangkok, 2006, pp. 1-6.

[17] J. Mu Der,P. Mao Yu, "Augmented reachability trees for 1-place-unbounded generalized
Petri nets," IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 29, pp.
173-183, 1999 (2).

[18] Y. Ru, W. Wu, C. N. Hadjicostis, "Comments on "A Modified Reachability Tree
Approach to Analysis of Unbounded Petri Nets"," IEEE Transactions on Systems,
Man and Cybernetics, Part B, vol. 36, pp. 1210-1210, 2006 (5).

www.intechopen.com

Advances in Petri Net Theory and Applications

Edited by Tauseef Aized

ISBN 978-953-307-108-4

Hard cover, 220 pages

Publisher Sciyo

Published online 27, September, 2010

Published in print edition September, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The world is full of events which cause, end or affect other events. The study of these events, from a system

point of view, is very important. Such systems are called discrete event dynamic systems and are of a subject

of immense interest in a variety of disciplines, which range from telecommunication systems and transport

systems to manufacturing systems and beyond. There has always been an intense need to formulate methods

for modelling and analysis of discrete event dynamic systems. Petri net is a method which is based on a well-

founded mathematical theory and has a wide application. This book is a collection of recent advances in

theoretical and practical applications of the Petri net method and can be useful for both academia and industry

related practitioners.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

XianGang Zhao, CaiYing Wei, ManYun Lin, XiaoHu Feng and Lan Wei (2010). Parallel Application Scheduling

Model Based on Petri Net with Changeable Structure, Advances in Petri Net Theory and Applications, Tauseef

Aized (Ed.), ISBN: 978-953-307-108-4, InTech, Available from: http://www.intechopen.com/books/advances-in-

petri-net-theory-and-applications/parallel-application-scheduling-model-based-on-petri-net-with-changeable-

structure

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

