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1. Introduction 

Sensitivity analysis is used to determine how “sensitive” a performance measure of a model 
is with respect to a change in the value of the parameters of the model. Parameter sensitivity 
analysis of a model is usually performed as a series of tests in which the model analyst sets 
different values for the parameters of the model to see how a change in the parameters 
causes a change in the dynamic behavior of the model. Broadly speaking, this analysis is to 
see what happens when the value of some crucial parameters of a model changes. If a small 
change in the value of a parameter leads to a big change in the performance of the model, 
the parameter needs a closer look. It is a useful tool for performance evaluation of a model 
as well as its model building. Hence, sensitivity analysis can help the modeler to understand 
the dynamics of a system.  
Sensitivity analysis is often used to estimate the sensitivity of a performance measure of a 
system with respect to its decision variables (parameters) by evaluating the gradient 
(derivatives) of the performance measure at each given value of the parameters. With the 
gradient, the system performance measure can be optimized by using a gradient method. 
Moreover, sensitivity analysis can be used to identify key parameters of a system by 
discovering the parameters whose small change in value leads to a big change in the 
behavior of the system. In model building, sensitivity analysis can be used to validate a 
model with unkown parameters by studying the uncertainties of the model associated with 
the parameters. 
In the past, sensitivity analysis was usually based on simulation. One of the major research 
fields in this area is perturbation analysis (PA). The approach firstly applied to an 
engineering problem was proposed by Ho, Eyler and Chien in 1979. With great efforts made 
by many researchers in more than one decade, fundamental results for PA have been 
obtained. Currently, formal sensitivity analysis approaches based on stochastic processes 
were proposed in the literature. Particularly, efficient algorithms were developed to 
compute the performance derivates of Markov processes with respect to infinitesimal 
changes of their parameters (infinitesimal generators) (Cao et al., 1998, 1997). Besides the 
fundamental works in developing its theory and algorithms, perturbation analysis has also 
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been successfully applied to a number of practical engineering problems (Brooks & Varaiya, 
1994; Caramanis & Liberopouls, 1992; Haurie et al., 1994; Xiao et al., 1994; Yan & Zhou 1994). 
In this chapter, we deal with sensitivity analysis with respect to timing parameters based on 
stochastic Petri nets. Besides the great scientific and practical interest of the sensitivity 
analysis, this work is motivated by two reasons: 

• Petri nets (Murata, 1989) are a powerful graphical and mathematical formalism which 
has been gaining popularity as a tool particularly suitable for modelling and analysis of 
discrete event systems. The literature on Petri nets is ample and their applications in 
practical manufacturing problems are numerous (Zhou and Kurapati, 1999; Zurawski 
and Zhou, 1994; Silva and Teruel, 1997). Several books were published in 1990s 
(Ajmone Marsan et al., 1995; Haas, 2002; Lindeman, 1998; Zhou and DiCesare 1993). 

• Although the literature on Petri nets is plentiful, very little work deals with sensitivity 
analysis or perturbation analysis of Petri net models. Few exceptions are: a perturbation 
analysis method based on stochastic Petri net models to estimate the derivatives of 
performance measures with respect to timing parameters can be found in (Xie 1998; 
Archetti et al., 1993). For Markov regenerative stochastic Petri nets, a mathematical 
formulation for sensitivity of the steady state probabilities is developed in (Mainkar and 
al. 1993). Furthermore, performance sensitivity formulas are given by exploring 
structural characteristics of Petri nets (Feng, Desrochers, 1993; Proth et al., 1993). 

In this chapter, we try to apply a perturbation analysis method based on stochastic Petri nets 
for parameter sensitivity analysis to the performance analysis of an inventory system. The 
remainder of the chapter is organized in two parts as follows: 

• The first part of the chapter addresses the sensitivity analysis of stochastic discrete 
event systems described by Stochastic Petri nets (SPN) as a performance evaluation tool 
of the systems. By exploring some existing results on perturbation analysis of Markov 
processes (Cao et al., 1997-1998; Dai, 1995-1996) and by a natural extension of them to 
the underlying stochastic processes of SPNs, a stochastic Petri net-based sensitivity 
analysis method with respect to timing parameters is presented. The approach is widely 
applicable because stochastic Petri nets (Ajmone Marsan et al., 1995; Haas, 2002; 
Lindeman, 1998) have been proven to be one of the most fundamental models for 
stochastic discrete-event systems. 

• The second part of the chapter is dedicated to a case study on an inventory system. 
Previously, the modeling and performances evaluation of the system were performed 
by using Batch stochastic Petri nets recently introduced in the literature (Labadi et al., 
2007). In this part, the sensitivity analysis method developed in the first part of the 
chapter is used to estimate the sensitivity of performance measures with respect to the 
decision parameters of the inventory system. 

2. Stochastic Petri nets models 

Petri nets (PN), as a graphical and mathematical model, have been used for the study of 
qualitative properties of discrete event systems exhibiting concurrency and synchronization 
characteristics. A Petri net may be defined as a particular bipartite directed graph consisting of 
places, transitions, and arcs. Input arcs are ones connecting a place to a transition, whereas 
output arcs are ones connecting a transition to a place. A positive weight may be assigned to 
each arc. A place may contain tokens and the current state (the marking) of the modeled 
system is specified by the number of tokens in each place. Each transition usually models an 
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activity whose occurrence is represented by its firing. A transition can be fired only if it is 
enabled, which means that all preconditions for the corresponding activity are fulfilled (there 
are enough tokens available in the input places of the transition). When the transition is fired, 
tokens will be removed from its input places and added to its output places. The number of 
tokens removed/added is determined by the weight of the arc connecting the transition with 
the corresponding place. Graphically, places are represented by circles, transitions by bars or 
thin rectangles (filled or not filled), tokens by dots, respectively.  
The use of PN-based techniques for the quantitative analysis of a system may require the 
introduction of temporal specifications in its basic untimed model. Time is then introduced 
in Petri nets by associating each transition with a firing delay (time). This delay specifies the 
duration during which the transition has to be enabled before it can actually be fired. In a 
stochastic Petri net, the time delays associated with certain transitions are random variables 
and the underlying marking process (state evolution process) of the net is a stochastic 
process. There are several variants of this model type, among them we have stochastic Petri 
net (SPN) models where each transition is associated with an exponentially distributed time 
delay. Stochastic Petri net models were proposed with the goal of developing a tool which 
integrates formal description, proof of correctness, and performance evaluation of systems. 
For what concerns the performance evaluation, many previous proposals aimed at 
establishing an equivalence between SPN and Markov models. Stochastic Petri net-based 
Markov modelling is thus a potentially very powerful and generic approach for 
performance evaluation of a variety of systems such as computer systems, communication 
networks and manufacturing systems. 

2.1 The basic SPN model 

The SPNs are obtained by associating each transition with an exponentially distributed 
firing time whose firing rate (average firing time) may be marking dependent.  
A formal definition of SPN is thus given by: 

 SPN = (P, T, I, O, M0, Λ)  (1) 

where (P, T, I, O, M0) is the marked untimed PN underlying the SPN, which as usual 
comprises: 
P = (p1, p2,..., pn) is a finite set of places, where n > 0; T = (t1, t2,…, tm) is a finite set of 

exponentially distributed transitions, where m > 0, with P ∪ T ≠ ∅ and P ∩ T ≠ ∅; I: P × T → 
N is an input function that defines the set of directed arcs from P to T where N is the set of 

natural numbers; O: T × P → N is an output function that defines the set of directed arcs 
from T to P; M0 is the initial marking of the net whose ith component represents the number 

of tokens in the ith place and Λ = (λ1, λ2,…, λn) is an array of firing rates associated with 
transitions. Each rate is defined as the inverse of the average firing time of the 
corresponding transition. 

2.2 Stochastic behaviour analysis 

According to (Molloy, 1982), the SPNs are isomorphic to continuous time Markov chains 
(CTMC) due to the memoryless property of the exponential distributions of the firings times 
of their transitions. The SPN markings correspond to the states of the corresponding Markov 
chain so that the SPN model allows the calculation of the steady state probabilities of its 
states. As in Markov analysis, ergodic (irreducible) property of SPN is of special interest. For 
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an ergodic SPN, the steady state probability of the model in any state always exists and is 
independent of the initial state. If the firing rates of all transitions do not depend upon time, 
a stationary (homogeneous) Markov chain is obtained. In particular, k bounded SPNs are 
isomorphic to finite Markov chains. 
The reachability graph of an SPN is identical to that of the underlying untimed PN. The 
nodes of the graph represent all markings reachable from the initial marking. Each arc is 
labelled by its corresponding fired transition. The CTMC state space S = {S0, S1, ..., Sm} 
corresponds to the set of all markings in the reachability graph M* = {M0, M1, ..., Mm}. The 
transition rate from state Si (Mi) to state Sj (Mj) is obtained as the sum of the firing rates of 
the transitions that are enabled in Mi and whose firing produces the marking Mj. The 
steady-state solution of the model is then obtained by solving a system of linear equations: 

 

 = 0

0

1
m

i
i

Aπ

π

× =⎧
⎪
⎨ =⎪
⎩
∑

  (2) 

where: 

• ( )0 1, ,..., mπ π π π= denotes the steady-state probability of each marking Mi (and of state 

Si as well, since there is a one-to-one correspondence between markings and states). 

• A = ( 1) ( 1)[ ]ij m ma + × + is the transition rate matrix of the CTMC. For i = 0, 1, 2, …m, the ith 

row, i.e., the elements aij, j = 0, 1, 2, …, m, are obtained as follows: 

- If j ≠ i, aij is the sum of the firing rates of all the outgoing arcs from state Mi to Mj.  
- If i = j, aij represents the sum of the firing rates of all transitions enabled at Mi. 

2.3 Performance evaluation  

The analysis of an SPN model usually aims at the computation of more aggregate 
performance indices than the steady-state probabilities of individual markings. Several 
aggregate performance indices are easily obtained from the steady-state distribution of 
reachable markings. 
The required performance estimates of a system modelled by an SPN can be computed 
using a unifying approach in which proper index functions (also called reward functions) 
are defined over the markings of the SPN and an average reward for each reward function is 
derived using the steady-state probability distribution of the SPN. Assuming that f 
represents one of such reward functions, its average reward can be computed using the 
following weighted sum: 

 
  0

.
m

i i
i

P f fπ π
=

= = ⋅∑  (3) 

where fi is incurred per unit time at each reachable marking Mi of the underlying stochastic 
process of the SPN. 

3. Parameter sensitivity analysis 

3.1 Perturbation realization  

Consider first the nominal behavior of a system modeled as an SPN. Let Pθ a performance 

function defined over the marking process of the net under a nominal parameter vector θ 
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which is a set of parameters of the system (here, it represents the firing rates associated with 
the transitions of the net). That is: 

 
1

.
m

i i
i

P f fθ π π
=

= = ⋅∑  (4) 

where πi denotes the steady-state probability of each marking Mi and fi is a measure of the 
performance function f incurred at the marking Mi of the stochastic marking process of the net. 

Consider now a perturbation δ on one or more parameters of the underlying Markov 
process that is equivalent to a perturbation in the transition rates matrix A. With the 
perturbation, the transition matrix A changes to: 

  δA A Qδ = + ⋅  (5) 

where Aδ is the transition rate matrix of the perturbed behavior system, δ is a very small 
positive real number and Q = [qij] is a matrix representing the direction of the perturbation. 

• qij equals 0 indicates that the matrix entry Aij is not perturbed. 

• qij equals x different from 0 indicates that the matrix entry Aij is perturbed by an amount  

xδ. 

The only condition on the structure of Q is that the matrix Aδ is also a transition matrix i.e. 
the sum of each row equals 0. 
Under this formulation, Aδ is also a well-defined infinitesimal generator, and hence its 
steady state probabilities πδ = (πδ0, πδ1,…,π δm), of the perturbed marking process is also 
defined. That is: 

  
 = 0

0      and      1
m

i
i

Aδ δ δπ π× = =∑  (6) 

Then, the stationary performance measure of the perturbed Markov process (that is the 
Markov process with transition matrix Aδ) can be defined as: 

 ,
  0

.  
m

i i
i

P f fδ δ δπ π
=

= = ⋅∑  (7) 

3.2 Computation of sensitivity measures 
Many solutions have been proposed in the literature to evaluate sensitivity measures 
corresponding to partial derivates.  
1. Exact solutions rely on Frank’s approach (Frank, 1978): the classical set of differential 

equations is extended to a bigger set of equations including the sensitivity factor 
equations. However, this approach is computationally burdensome and almost 
unusable or highly inefficient on realistic-size systems because the state space 
dimension is too great. To cope with this problem, some approximate solutions have 
been proposed (Ou et al., 2003) but applicable to a limited class of systems.  

2. Many simulation methods have been also proposed to estimate derivative measure. See 
for example (Glynn 1990; Glassermann et al., 1992). Concerning Markov process 
modelling and stationary performance measure, perturbation realization is well 
adapted (Cao et al., 1997-1998; Dai, 1996). It allows: 
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• The evaluation of sensitivity of performance measures formulated under the 
marking process of a stochastic Petri net model: 
The sensitivity of a performance measure P of a system due to the introduced 
changes in the infinitesimal generator A, can be analyzed by computing the 

derivate of Pδ in the direction of Q (noted below by SPerf). It can be defined as:  

 
0

SPerf lim
P PdP

dQ
δ

δ δ→

−
= =  (8) 

• The evaluation of sensitivity of steady-state probabilities of the marking process: 
The sensitivity of steady sate probabilities can also be defined as: 

 
0

SProb lim
d

dQ
δ

δ

π ππ
δ→

−
= =  (9) 

3.3 Calculation of the performance derivates 

The particular structure of the Chapman-Kolmogorov equations and the linearity of the 

performance measure lead to the following expression of the measure derivatives (Cao et al., 

1997-1998): 

 #SPerf
dP

Q A f
dQ

π= = − ⋅ ⋅ ⋅  (10) 

where:  
#A  is defined as:  

 # 1( )A A e eπ π−= + −  (11) 

where: 

• e = (1, 1, …)T is a column vector of size (m × 1) with ,1 1ie =  for any i. 

• #g A f= − ⋅  is called the performance potential vector. 
Then, according to the equation (8), SPerf can be written as: 

 #SPerf
dP

Q A f Q g
dQ

π π= = − ⋅ ⋅ ⋅ = ⋅ ⋅  (12) 

Similarly, according to the equation (9), the steady state derivate, SProb, can be computed 

using the following formula:  

 #SProb
d

Q A
dQ

δ
π π= = − ⋅ ⋅  (13) 

4. Inventory system modelling and performance analysis 

This part of the chapter is dedicated to a case study on an inventory system represented in Fig. 

1. The presented approach in the previous section is then applied to estimate the sensitivity of 

performance measures with respect to some parameters of the inventory system. 
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4.1 Modelling of the inventory system 

Consider the continuous review (s, S) inventory system shown in Fig. 1. In this application, 
it is assumed that the system has the following characteristics: the inventory replenishment 
time is subject to an exponential distribution; customer demand is Poisson and in batch; and 
the system has no backorder.  
The modeling and performance evaluation of the system will be performed by using Batch 
stochastic Petri nets introduced in the literature as a powerful modelling tool for both 
analysis and simulation of logistic systems. The capability of the model to meet real needs is 
shown through applications dedicated to modelling and performance optimization of 
inventory control systems (see Labadi et al., 2007) and a real-life supply chain (see Chen et 
al., 2005; Amodeo et al., 2007). 
 
 

 Customer 1 

Customer n 

Stock

Inventory Control 
Policy (s, S) 

Supplier 

Replenishment order 

 

Replenishment  

Customer demand (i)

Delivry (i)

 

Fig. 1. A continuous (s, S) inventory system 

We model the dynamics of the above mentioned supply chain by using a Batch Stochastic 

Petri net represented in Fig. 2. In the model, discrete place p1 represents the on-hand 

inventory of the considered stock and place p3 represents outstanding orders. Discrete place 

p2 represents the on-hand inventory of the stock plus its outstanding orders (the orders that 

are placed by stock p1 but not filled yet), that is, M(p2) = M(p1) + M(p3). The operations of 

the system such as generation of replenishment orders (t3), inventory replenishment (t2), 

and order delivery (t1) are performed in a batch way because of the batch nature of 

customer orders (generated by the batch place p4 and the batch transition t1) and the batch 

nature of the outstanding orders recorded in batch place p3. The fulfillment of a customer 

order will decrease on-hand inventory of the stock as well as its inventory level. This is 

described by the arcs from places p1, p4 and p2 to transition t1. Batch customer demand is 

assumed to be a Poisson process, which is specified by the batch transition t1 whose firing 

time is subject to an exponential distribution. We assume that transition t1 generates 

randomly with the same probability batch customer orders of two different sizes (1 or 2) 

available in batch place p4 (i.e.; µ(p4) = {1, 2}). The inventory control policy used in the 

system is a continuous review (s, S) policy specified by the immediate transition t3. It is 

assumed that the reorder point and the order-up-to-level of the policy are taken as s = 4 and 

S = 6 respectively, and the initial µ-marking of the net is µ0 = (6, 6, ∅, {1, 2}). Furthermore, 

the firing delays of batch transitions t1 and t2 (the demand rate and the inventory 

replenishment rate) are assumed to be exponentially distributed with rates λ1[q] = λ1 and λ2[q] 

= λ2 respectively for any feasible batch firing index q. 
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p1

p2p3

t1t2

t3
S-M(p2)

s

S-M(p2)

Stock

Inventory position 
 of the stock 

p4

Replenishment

Outstanding orders Batch order

Delivry

1 

2 

Source 
of batch 
orders  

 

Fig. 2. Batch stochastic Petri net model of the supply chain with (s, S) inventory control 
policy 

4.2 Dynamic behaviour analysis  

The state space of the Petri net is represented by its µ-reachability graph shown in Fig. 3. In 
the graph, each directed edge is associated with a label representing the transition whose 
firing generates the successor µ-marking. Each batch transition is marked by its 
corresponding batch firing index q. 
 

t2[3] 

t1[1] 

t1[1] 

t2[3] 

t1[2] 

t2[3] t2[4] 

t2[4] 

t2[4] 

µ0= [6, 6, ∅,{1,2}] 

µ1= [5, 5, ∅,{1,2}] 

µ2= [4, 4, ∅,{1,2}] 

µ4= [2, 6, {4},{1,2}]

µ5= [2, 5, {3},{1,2}]µ6= [1, 5, {4},{1,2}]

µ7= [1, 4, {3},{1,2}]µ8= [0, 4, {4},{1,2}]

µ9= [0, 3, {3},{1,2}]

µ3= [3, 6, {3},{1,2}]

t1[1] 

t1[1] 

t1[1] 

t1[1] 

t1[1] 

t1[2] 

t1[2] 

t1[2] 

t1[2] 

t1[1] 

t1[2] 

t2[3] 

µ’= [2, 2, ∅,{1,2}] µ= [3, 3, ∅,{1,2}] 

t3 t3 

 

Fig. 3. The µ-reachability graph of the batch stochastic Petri net model shown in Fig. 2 
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The µ-markings obtained can be classified into vanishing and tangible µ-markings. A 

vanishing µ-marking is one in which at least one immediate transition is enabled, and a 

tangible µ-marking is one in which no immediate transition is enabled. In the µ-reachability 

graph, the vanishing µ-markings µi (i = 0 to 9) are represented by rectangles and two 

tangible µ-markings µ and µ’ are represented by dotted rectangles. After eliminating the 

vanishing µ-markings by merging them with their successor tangible µ-markings and 

converting the reduced µ-reachability graph to its corresponding stochastic process, we get a 

continuous timed Markov chain (CTMC) represented in Fig. 4.  

By solving the linear equations system (14) where A is the infinitesimal generator matrix 

(transition rate matrix) of the CTMC, the steady-state probabilities π = (π1, π2,…, π9) can be 

explicitly obtained as functions of parameters λ1 and λ2 given in Table 1. 

 9

0

0

1i
i

Aπ

π
=

× =⎧
⎪
⎨ =⎪
⎩
∑

  (14) 

 

λ2[3] 

λ1[1] 

λ1[1] 

λ2[3] 
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λ2[3] λ2[4] 

λ2[4] 

λ2[4] 

µ0 

µ1 

µ2 

µ4

µ5µ6

µ7µ8

µ9

µ3

λ1[1] 

λ1[1] 

λ1[1] 

λ1[1] 

λ1[1] 

λ1[2] 

λ1[2] 

λ1[2] 

λ1[2] 

λ1[1] 

λ1[2] 

λ2[3] 

 

 

Fig. 4. The underlying Markov chain of the batch stochastic Petri net model shown in Fig. 2 

4.3. Performance analysis of the system 

With the steady state probabilities π = (π1, π2, …, π9), we can easily compute several 

important performance measures of the supply chain such as the average inventory level, 

the stockout rate, the average inventory turnover, etc. 
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π0 
2(λ2)2[45(λ2)2(λ1)2+25λ2(λ1)3+32(λ2)3λ1+8(λ2)4+4(λ1)4] ÷ 

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6] 

π1 
(λ2)2[69(λ2)2(λ1)2+46λ2(λ1)3+40(λ2)3λ1+8(λ2)4+8(λ1)4] ÷ 

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6] 

π2 
(4(λ1+λ2)2(λ2)2).[9λ1λ2+7(λ1)2+3(λ2)2] ÷ 

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6] 

π3 
2λ1λ2[29(λ2)2(λ1)2+18λ2(λ1)3+20(λ2)3λ1+5(λ2)4+4(λ1)4] ÷ 

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6] 

π4 
(2(λ1+λ2)(λ2)2λ1).[9λ1λ2+7(λ1)2+3(λ2)3] ÷ 

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6] 

π5 
λ2(λ1)2[15(λ2)2λ1+14λ2(λ1)2+5(λ2)3+4(λ1)3] ÷ 

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6] 

π6 
(λ2)2(λ1)2.[9(λ2λ1+7(λ1)2+3(λ2)2] ÷ 

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6] 

π7 
0.5.(12(λ1)3+38λ2(λ1)2+35(λ2)2λ1+10(λ2)3) (λ1)2λ2 ÷ 

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6] 

π8 
λ2(λ1)2(9λ2λ1+7(λ1)2+3(λ2)2)(2λ1+λ1) ÷ 

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6] 

π9 
0.5(λ1)3[52λ1(λ1)2+15(λ2)3+50(λ2)2λ1+16(λ1)3] ÷ 

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6] 

Table 1. µ-markings (states) probabilities 

• The average inventory level of the system Savg(λ1, λ2) which corresponds to the mean 
number of tokens in discrete place p1 can be calculated by applying the formula: 

  ( ) ( )
9

0

1, 2 ( 1) 1avg i
i

S µ p µ pλ λ π
=

= = ×∑  (15) 
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1 1 2 1 2 2 1 1 2 2 1 2

0.5 368 +1732 +780 +3038 +2385 +76

8 +58 +184 +342 +351 +180 +36

1, 2avgS

λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ

⎡ ⎤×⎢ ⎥⎣ ⎦

=

 

• The stockout rate is the probability of the emptiness of the stock. In the µ-marking graph 
of the Petri net model in Fig. 3, the marking of the discrete place p1 is equal to zero 
(M(p1) = 0) in two µ-markings which are µ8 and µ9. Thus the stock-out rate of the 

inventory system ProbS=0(λ1, λ2) is given by the formula: 

 ( )S=0 8 9Prob 1, 2 = 0 = Prob ( 1) 0µ pλ λ π π= = +⎡ ⎤⎣ ⎦  (16) 

( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 3 2 2 3 4 4
1 1 2 1 2 1 2 2 1

6 5 4 2 3 3 2 4 5 6
1 1 2 1 2 2 1 1 2 2 1 2

S=0

0.5 80 +100 +45 +6 +16

8 +58 +184 +342 +351 +180 +36

Prob 1, 2

λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ
⎡ ⎤×⎢ ⎥⎣ ⎦

=
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• The average replenishment frequency of the stock, FAavg(λ1,λ2) corresponds to the average 
firing frequency of batch transition t2. Thus, it is the sum of the average firing 
frequencies F(t2[3]) and F(t2[4]) of the transitions t2[3] and t2[4] respectively. These 
transitions are generated by batch transition t2 with two different batch firing indexes. 

FAavg(λ1, λ2) is thus given as follows: 

 

( ) [ ] [ ]( )
[ ]( ) [ ]( )

3 4

3 4

3 4
( 2 ) ( 2 )

1, 2 ( 2 ) 2

2 2

i i

avg

i i
i µ S t i µ S t

FA F t F tλ λ

λ π λ π
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∈ ∈

= + =

× + ×∑ ∑
 (17) 

where S(t2[3]) = {µ3, µ5, µ7, µ9} is the set of the µ-markings in which batch transition t2 is 
fired with index 3 (firing of t2[3]) and S(t2[4]) = {µ4, µ6, µ8} is the set of the µ-markings in 
which batch transition t2 is fired with index 4 (firing of t2[4]).  

Since λ2[3] = λ2[4] = λ2, we obtain that:   

 
( ) [ ] [ ]

3 4

3 4
( 2 ) ( 2 )

3 4 5 6 7 8 9

1, 2 ( 2 ) ( 2 ) 2

                                ( ) 2

i

avg i
i µ S t S t

FA F t F tλ λ π λ

π π π π π π π λ
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∈ ∩
= + = ×

= + + + + + + ×

∑
 (18) 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

5 5 3 2 2 3 4 4
1 2 1 2 1 2 1 2 1 2 1

6 5 4 2 3 3 2 4 5 6
1 1 2 1 2 2 1 1 2 2 1 2

2 8 +4 +77 +70 +40 +29

8 +58 +184 +342 +351 +180 +36

1, 2avgFA

λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ

⎡ ⎤×⎢ ⎥⎣ ⎦

=
 

The average inventory level, the stock-out rate, and the average replenishment frequency of 

the stock as functions of parameters λ1 and λ2 are depicted in Fig. 5, Fig. 6, and Fig. 7, 
respectively. 
 

Replenishment 

 rate (λ2) 

Demand  

Rate (λ1) 

Average stock 
level  

 

Fig. 5. Average inventory level of the stock 
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Fig. 6.  Stock-out rate of the stock 

 

Average 
replenishment 

frequency 

Replenishment 

rate (λ2) 

Demand rate

(λ 1) 

 

Fig. 7. Average frequency replenishment of the stock 

4.4 Parameter sensitivity analysis of the system 

This section is dedicated to sensitivity analysis of the inventory system. We consider the 

following parameters for it: λ1[1] = λ1[2] = λ1 = 0.5 and λ2[3] = λ2[4] = λ2 = 0.5. Its transition 

rate matrix is thus as follows: 
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1 0.5 0.5 0 0 0 0 0 0 0

0 1 0.5 0.5 0 0 0 0 0 0

0 0 1 0.5 0.5 0 0 0 0 0

0.5 0 0 1.5 0 0.5 0 0.5 0 0

0.5 0 0 0 1.5 0 0.5 0 0.5 0

0 0.5 0 0 0 1.5 0 0.5 0 0.5

0 0.5 0 0 0 0 1 0 0.5 0

0 0 0.5 0 0 0 0 1 0 0.5

0 0 0.5 0 0 0 0 0 0.5 0

0 0 0 0.5 0 0 0 0 0 0.5

A =

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

 

In this case, the steady state probabilities, denoted by πi, i = 0, …,9, obtained by solving the 
corresponding equations system (14) is :  

( )0.1025 0.09075 0.1915 0.1411 0.0638 0.0471 0.0320 0.0942 0.0958 0.1411π =  

4.4.1 Sensitivity analysis with respect to one parameter 

• Sensitivity analysis of the average inventory level of the stock with respect to the 
customer demand rate 

In the Petri net model, the stock is modeled by the discrete place p1. In other words, the 
inventory level of the stock, in each state, corresponds to M(p1), the marking of the place p1. 
Thus, the corresponding performance function is: 

( )6 5 4 3 2 2 1 1 0 0f =  

where f(i), i = 0, 1, …, 9, corresponds to the marking of the place p1, M(p1), (the inventory 

level) at the state Mi (see the marking graph of the Petri net model in Fig. 3).   

Consider now the perturbation on a parameter λ1 (customer demand rate associated with 

the transition t1) and its influence on the directional matrix Q given as follows: 

2 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Q

δ δ δ
δ δ δ

δ δ δ
δ δ δ

δ δ δ
δ δ δ

δ δ
δ δ

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟=

−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

    

where δ is a very small positive real number corresponding to an infinitesimal change of the 

parameter λ1. The perturbation is illustrated in Fig. 8. 
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λ2 

λ1+δ 

λ1+δ 

λ2 

λ1+δ 

λ2 λ2 

λ2 

λ2 

µ0 

µ1 

µ2 

µ4

µ5µ6

µ7µ8

µ9

µ3

λ1+δ 

λ1+δ 

λ1+δ 

λ1+δ 

λ1+δ 

λ1+δ 

λ1+δ 

λ1+δ 

λ1+δ 

λ1+δ 

λ1+δ 

λ2 

 

 

Fig. 8. Perturbation on customer demand rate (λ1) 

By applying the equation (12), the derivate of the considered performance (average 
inventory level of the stock) with respect to the parameter λ1 is given by the following linear 
function represented in Fig. 9. 

3.2381.SPerf δ= −  

 

 

Fig. 9. Sensitivity of the average inventory level of the stock with respect to the customer 

demand rate (λ1) 
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Clearly, this derivate means that if the customer demand rate λ1 of the inventory system is 

increased by an amount δ, then average inventory level of the stock will decrease by an 

amount 3,2381⋅δ. 

• Sensitivity analysis of the stockout rate with respect to the supplier replenishment 
rate 

The stockout rate is defined in the previous section as the probability of the emptiness of the 

stock. In the µ-marking graph of the Petri net model in Fig. 3, the marking of the discrete 

place p1 is equal to zero (M(p1) = 0) in two markings which are µ8 and µ9. Thus, the 

corresponding performance function is: 

( )0 0 0 0 0 0 0 0 1 1f =  

where f(i) = 1 for only i = 8 and i = 9  corresponding to the two µ-markings µ8 and µ9 where 

the marking of the place p1 (the inventory level), M(p1) is equal to zero (see the µ-marking 

graph of the Petri net model in Fig. 3).   

Consider now the perturbation on a parameter λ2 (replenishment rate associated with the 

transition t2) and its influence on the directional matrix Q given as follows: 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Q

δ δ
δ δ

δ δ
δ δ

δ δ
δ δ

δ δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟=

−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

    

By applying the equation (12), the derivate of the considered performance (stockout rate) 

with respect to the parameter λ2 is given by the following linear function represented in Fig. 

10. 

5.5736.SPerf δ= −  

Clearly, this derivate means that if the supplier replenishment rate λ2 of the supply chain is 

increased by an amount δ, then the stockout out rate will decrease by an amount 5,5736⋅δ. 

4.4.2 Sensitivity analysis with respect to a group of parameters 

Here, the perturbations on a group of parameters are illustrated. The sensitivity level in 

these directions can be used to identify the relative importance of each parameter in the 

group. For instance in our system, the directional matrix Q corresponding to the 

perturbation of the parameters λ1 (the customer demand rate) and λ2 (the supplier 

replenishment rate) at the same time is:  
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Fig. 10. Sensitivity of the stockout rate with respect to the supplier replenishment rate (λ2) 

1 1 1

1 1 1

1 1 1

2 1 2 1 1

2 1 2 1 1

2 1 2 1 1

2 1 2 1

2 1 2 1

2 2

2 2

2 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Q

δ δ δ
δ δ δ

δ δ δ
δ δ δ δ δ
δ δ δ δ δ

δ δ δ δ δ
δ δ δ δ

δ δ δ δ
δ δ

δ δ

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

− −⎜ ⎟
⎜ ⎟− −⎜ ⎟=

− −⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

 

By using this directional matrix, and the function f expressed in the previous sub-section, the 

stockout rate derivate with respect to the two parameters λ1 and λ2 can be expressed as the 

following linear function: 

1 25.57 ( )SPerf δ δ= −  

Note that because of the linear structure of equation (12), if a perturbation matrix Q is a 

linear function of elementary perturbations matrixes Qi, it is possible to evaluate the 

multidirectional sensitivity measures related to Q on the basis of the elementary 

perturbation measures related to the Qi.  

In our example, it is clear that: 

 ( 1, 2) ( 1) ( 2)Q Q Qλ λ λ λ= +  

Then, we can write that:  
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Fig. 11. Sensitivity of the stockout rate with respect to two parameters λ1 (the customer 

demand rate) and λ2 (the supplier replenishment rate). 

( )
( )

( ) ( )
( ) ( )( )

1, 2

1 2

#

1, 2

#

1 2

SPerf

        

dP
Q A f

dQ

dP dP
A f Q Q

dQ dQ

λ λ

λ λ

λ λ

λ λ

π

π

= = − ⋅ ⋅ ⋅

= + = − ⋅ ⋅ ⋅ +
 

Previously, we obtained that 1 2 1 25.57 ( ) 5.57 5.57SPerf δ δ δ δ= − = − . In this function, we can 

identify two terms which are: 

• The term ( 25.57δ− ) correspond to the sensitivity measure with respect to the parameter 

λ2 computed in the previous sub-section. 

• The term ( 15.57δ− ) correspond to the sensitivity measure with respect to the parameter 

λ1. 

6. Conclusion 

The theoretical results presented in this chapter are a natural extension of the recent 

development on sensitivity analysis of stochastic processes. The main idea is to obtain the 

derivates of a performance measure of a discrete event dynamic system based on its 

stochastic Petri model. In this work, the SPN model is studied. A Parameter Sensitivity 

analysis approach for the model is developed and an application to a supply chain is 

studied. We note that the proposed methodology is also applicable to GSPN (Generalized 

Stochastic Petri Nets) models since the marking process of a bounded GSPN is also a 

Markov process. The development of sensitivity analysis methods for non Markovian 

Sensitivity of the stockout rate with respect to the customer  
demand and supplier replenishment rate 

 

δ1 (perturbation of λ1) δ2(perturbation of λ2) 

dP/dQ
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stochastic Petri nets and the application of perturbation realization to the sensitivity analysis 

of dynamic systems with unbounded stochastic processes are two important research issues. 

Simulation methods based on Petri nets models are also worthy to be studied further.  
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