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1. Introduction 

Neuroscientists believe that living beings solve the daily life activities, making decisions and 
hence adapt to newly situations by learning from past experiences. Learning from 
experience implies that each event is learnt through features (i.e. sensory control inputs) 
analysis that aimed to specify and then recall more important features for each event or 
situation. 
In robot learning, several works seem to suggest that the transition to the current 
reinforcement learning (RL) (1), as a general formalism, does correspond to observable 
mammal brain functionality, where ‘basal ganglia’ can be modeled by an actor-critic (AC) 
version of temporal difference (TD) learning (2; 3; 4). However, as with the most real-world 
intelligent learning systems, the arising of ‘perceptual aliasing’ (also referred to as a problem 
of ‘incomplete perception’, or ‘hidden state’) (5), when the system has to scale up to deal 
with complex nonlinear search spaces in a non-Markov settings or Partially Observation 
Markov Decision Process (POMDP) domains (6) (see Fig. 1) renders to-date RL methods 

impracticable, and that they must learn to estimate value function vπ instead of learning the 

policy π, limiting them mostly for solving only simple learning tasks, raising an interest in 

heuristic methods that directly and adaptively modifying the learning policy π : S→A 
(which maps perceptual state/observation to action) via interaction with the rest of the 
system (7; 8). 
Inclusion of a memory to a simulated robot control system is striking because a memory 
learning system has the advantage to deal with perceptual aliasing in POMDP, where 
memoryless policies are often fail to converge (9). 
In this paper, a self-optimizing memory controller is designed particularly for solving non- 
Markovian tasks, which correspond to a great deal of real-life stochastic predictions and 
control problems (10) (Fig. 2). Rather than holistic search for the whole memory contents the 
controller adopts associated feature analysis to successively memorize a newly experience 
(state-action pair) as an action of past experience. e.g., If each past experience was a chunk, 
the controller finds the best chunk for the current situation for policy exploration. Our aim is 
not to mimic the neuroanatomical structure of the brain system but to catch its properties, 
avoids manual ‘hard coding’ of behaviors. AC learning is used to adaptively tune the 
control parameters, while an on-line variant of decision-tree ensemble learner (11; 12) is 
used as memory-capable function approximator coupled with Intrinsically Motivated 
Reinforcement Learning (IMRL) reward function (13; 14; 15; 16) to approximate the policy of 
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Fig. 1. POMDP and Perceptual aliasing. RL agent is connected to its world via perception 
state S and action A. In (a) a partially observable world, in which the agent does not know 

which state it is in due to sensor limitations; for the value function vπ, the agent updates its 
policy parameters directly. In (b) and (c) two maze domains. States indicated with the same 
letter (X or Y) are perceptually aliased because the agent is sensed only wall configuration. 
 

the actor and the value function of the critic. Section 2 briefly highlights on POMDP settings. 

A description with comprehensive illustration of the proposed memory controller will be 

given in Section 3. Then Section 4 highlights a comparison of conventional memory 

controller and the self-optimizing memory controller. Section 5 shows the implementation 

of decision-tree ensemble as memory-capable function approximator for both critic and 

policy. Some experimental results are presented in Section 6 as promising examples. It 

includes the non-Markovian cart-pole balancing tasks. The results show that our controller 

is able to memorize complete non-Markovian sequential tasks and develop complex 

behaviors such as balancing two poles simultaneously. 

2. A non-Markovian and perceptual aliasing 

First we present the formal setting of POMDP and then highlight on related approaches 
tacking perceptual aliasing. 

2.1 POMDP formal setting 

The formal setting of POMDP is P = 〈M,O,Z〉 consist of: 

1. An MDP of a tuple M=〈S,A,T,R〉 where S is the space of possible states of the 

environment, A is a set of actions available to the agent (or control input), P : S × A × S 

→ [0,1] defines a conditional probability distribution over state transitions given an 

action, and R : S × A → R is a reward function (payoff) assigning a reward for an action, 

2. A set of possible observations O, where O could constitute either a set of discrete 

observations or a set of real-value, 
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3. Z, a probability density mapping state-observation combinations S × O to a probability 

distribution, or in the case of discrete observations combinations S × O to probabilities. 

In other words, Z(s, o) yields the probability to observing o in state s. So basically, a 

POMDP is like an MDP but with observations instead of direct state perception. 

If a world model is available to the controller, it can easily calculate and update a belief vector 

1 2( ), ( ), , ( )t t t t Nb b s b s b s=
iif

A  over ‘hidden states’ at every time step t by taking into a account 

the history trace h = o1, o2, … , ot–1, ot. 

2.2 Perceptual aliasing 

It is important to note that in several literatures, perceptual aliasing is wrongly defined as 
the problem of having an uncomplete instance, whereas this paper defines it as a problem 
related to having different states that may look similar but are related to different responses. 
Uncomplete instances may provoke perceptual aliasing, but they are not the same. Although 
the solely work in this paper is focused on POMDP, we briefly highlight on related 
approaches, in order to decipher the ambiguities between POMDP and perceptual aliasing: 

• Hidden Markov Models (HMMs): are indeed applied to the more general problem of 
perceptual aliasing. In HMM it is accepted that we do not have control over the state 
transitions, whereas POMDP assume that we do. Hence, POMDP are more related to 
incomplete perception than to perceptual aliasing. HMMs have been thoroughly 
applied to robotic behavior synthesis, see, for example (18). 

• Memory-based system: in Memory-based systems the controller is unable to take optimal 
transitions unless it observed the past inputs, then the controller simultaneously solve 
the incomplete perception while maximizing discounted long-term reward. 
For an early practice attempts with other alternative POMDP approaches, e.g., the 
‘model-based approach or belief-based approach’, and the ‘heuristic method with a 
world model’ within TD reinforcement learning domain, see (23; 24). 

• There is a large body of work on behavior learning both supervisedly and 
unsupervisedly using fuzzy logic, Artificial Neural Networks (ANN) and/or Case 
Based Reasoning (CBR). Some of them do not establish rules and, specifically, CBR uses 
memory as its key learning tool. This, too, has been used in robotics in loosely defined 
navigation problems. See, for example (19) 

3. Self-optimizing controller architecture 

One departing approach from manual ‘hard coding’ of behaviors is to let the controller 
build its own internal ‘behavior model’–‘on-the-fly’ by learning from past experience. Fig. 2 
illustrates the general view of our memory controller based on heuristic memory approach. 
We briefly explain its components. It is worth noted that in our implementation only the the 
capacity of the memory and reward function have be specified by a designer, the controller 
is self-optimized in a sense that we do not analyzing a domain a priori, instead we add an 
initially suboptimal model, which is optimized through learning1. 

                                                 

1 At this point we would like to mention that M3 Computer Architecture Group at Cornell has proposed 

a similar work (17) to our current interest. They implement a RL-based memory controller with a 
different underlying RL implementation, we inspired by them in some parts. 
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Past experiences. Sensory control inputs from environment would be stored at the next 
available empty memory location (chunk), or randomly at several empty locations. 
Feature predictor. Is utilized to produce associated features for each selective experience. 
This predictor was designed to predict multiple experiences in different situations. When 
the selective experience is predicted, the associated features are converted to feature vector 
so the controller can handle it. 
Features Map. The past experiences are mapped into multidimensional feature space using 
neighborhood component analysis (NCA) (20; 21), based on the Bellman error, or on the 
temporal difference (TD) error. In general this is done by choosing a set of features which 
approximate the states S of the system. A function approximator (FA) must map these 
features into Vπ for each state in the system. This generalizes learning over similar states and 
more likely to increase learning speed, but potentially introduces generalization error as the 
feature will not represent the state space exactly. 

Memory access. The memory access scheduling is formulated as a RL agent whose goal is to 
learn automatically an optimal memory scheduling policy via interaction with the rest of the 
system. A similar architecture that exploits heterogeneous learning modules simultaneously 
has been proposed (22). As can be seen in the middle of Fig. 2 two scenarios are considered. 
In (a) all the system parameters are fully observable, the agent can estimate vπ for each state 
and use its actions (e.g., past experiences). The agent’s behavior, B, takes actions that tend to 
increase the long-run sum of values of the reinforcement signal, typically [0,1]. In (b) the 
system is partially observable as described in Fig. 1. Since our system is modeled as POMDP 
decision depends on last observation-action, and the observation transitions st+1 = δ(st, at) 
depend on randomly past perceptual state. This transition is expressed by 

1 1( | , , , , ),t t t t tPr s s a s s− − ′ ′′ A 1 1where ,  t ts a− − are the previous state and action, and ,t t′ ′′  are 
arbitrary past time. 
Learning behaviors from past experience. On each time step t, an adaptive critic (that is a 
component of the TD learning ), is used to estimate future values of the reinforcement signal 
of retaining different memory locations, which represents the agent’s behavior, B in 
choosing actions. The combinations of memory locations show to have the highest 
accumulated signals are more likely to be remembered. TD error–the change in expected 
future signal is computed based on the amount of occasional intrinsic reinforcement signal 
received, a long with the estimates of the adaptive critic. 

4. Non-Markovian memory controller 

4.1 Conventional memory controller 

Conventional manually designed memory controller suffers two major limitations in regard 
with scheduling process and generalization capacity. First, it can not anticipate the long-
term planning of its scheduling decisions. Second, it lacks learning ability, as it can not 
generalize and use the experience obtained through scheduling decisions made in the past 
to act successfully in new system states. This rigidity and lack of adaptivity can lead to 
severe performance degradation in many applications, raising interest in self-optimizing 
memory controller with generalization capacity. 

4.2 Self-optimizing memory controller 

The proposed self-optimizing memory controller is a fully-parallel maximum-likelihood 
search engine for recalling the most relevant features in the memory of past. The memory 
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Fig. 2. Architecture of self-optimizing memory controller. The controller utilizes associated 
feature analysis to memorize complete non-Markovian reinforcement task as an action of 
past experience. The controller can acquired behaviors such as controlling objects, displays 
long-term planning and generalization capacity. 

controller considers the long-term planning of each available action. Unlike conventional  

memory controllers, self-optimizing memory controller has the following capabilities: 1) 

Utilizes experience learnt in previous system states to make good scheduling decisions in 

new, previously unobserved states, 2) Adapts to the time-variant system in which the state 

transition function (or probability) is permitted to gradually change through time, and 3) 

Anticipates the long-term consequences of its scheduling decisions, and continuously 

optimizes its scheduling policy based on this anticipation. 

No key words or pre-determined specified memory locations would be given for the stored 

experiences. Rather a parallel search for the memory contents would take place to recall the 

previously stored experience that correlates with the current newly experience. The 

controller handle the following tasks: (1) relate states and actions with the occasional reward 

for long planning, (2) take the action that is estimated to provide the highest reward value at 

a given state, and (3) continuously update long-term reward values associated with state-

action pairs, based on IMRL. 
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5. Memory-capable function approximation 

5.1 Actor-critic learning 

Actor-critic (AC), a group of on-policy TD methods, separates the π and the vπ into 
independent memory structures. The π structure, or actor, is used to decide which action to 
pick in each state. The estimate of vπ, or adaptive critic, determines whether the actions of the 
actor are to be rewarded or punished. The algorithms use these spare measures of 
performance to adopt an optimal behavior over time. The adaptive critic maps its current 
state event onto an estimate of whether it will be rewarded. The mapping is learned from 
the past experience. If s + 1 is the situation that follows situation s in time, this expected 
future reward may be written as: 

 0 1( ) ( ) ( 1) ( )nV s r s V s V s nγ γ γ= + + + + +A  (1) 

The value of the current situation, V(s), is the sum of all the rewards we will receive over the 
next n time steps. The rewards on each time step are “discounted” by factor, γ, in the range 
[0,1]. Equation (1) can be rewritten in a recursive form: 

 0 1( ) ( ) ( 1) ( ) ( 1)V s r s V s r s V sγ γ γ= + + = + +  (2) 

It should be noted that the equality in Eq. 2 is valid only if n is infinite or the state at n time 
steps later, s + n, is always a so-called ‘absorbing state.’ Obviously a value function estimates 
that fall far from this equality in considered inaccurate, and the error is estimated based on 
TD error: 

 ( ) ( ( ) ( 1) ( ))s r s V s V sδ γ= + + −  (3) 

Adopting these methods can save much computation for selecting optimal actions, due to 
utilizing separate memory for value function and policy. 

5.2 AC in non-Markovian domain 
Due to non-Markovian characteristics, the controller infers the state of its environment from 
a sequence of observations it receives, learns an optimal action by detecting certain past 
events, that associated with its current perception. In particular, at time t, the error of the 
critic is given by, 

 21
( ) ([ ( ) ( )] ( 1))

2
cE t r t J t J tγ= + − −  (4) 

while the error of the actor is 

 21
( ) ( ( ) )

2
aE t J t R∗= −  (5) 

where R* is the optimal return, which is dependent on the problem definition. The expected 
return is expressed as the general utility function, J(t), which is to be maximized by the 
controller. Specifically, 

 2( ) ( 1) ( 2) ( 3)J t r t r t r tγ γ= + + + + + +A  (6) 

where r(t) is the immediate reward and γ is the time-discounting factor 0 ≤ γ ≤ 1. 
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5.3 Decision-tree ensemble memory for optimal learning 

On-line decision-tree ensemble learner has the characteristics of a simple structure, strong 
global approximation ability and a quick and easy training (11; 12). It has been used with TD 
learning for building a hybrid function approximator (26; 27). Here, in order to improve 
learning efficiency and to reduce the demand of storage space and to improve learning 
efficiency, the on-line ecision-tree ensemble approximator is structured in a way that both 

actor and critic can be embodied in one structure, subsequently, is used to approximate π of 

the actor and the vπ of the critic simultaneously. That is, the actor and the critic can share the 
input and the basis functions structure of the RF. Let DTAppro represents a hybrid 
approximator that combines actor and critic. Given a state s(t) and action a(t), DTAppro is 
defined such that DTAppro(s(t), a(t)) = (J(t), a(t+1)), where J(t) is the estimated value of the 
given state-action pair, and a(t + 1) is the subsequent action to be taken by the controller. At 
the critic output the error is captured by TD error. However, at the action outputs the error 
is determined by the gradient of the estimated value J(t + 1) w.r.t the action a(t + 1) selected 
by the on-line RF at time t. Specifically, 

 

( 1)

1

       ( ) ( 1)

( 1) ( 1)
, ,

( 1) ( 1)

a a t

d

e t J t

J t J t

a t a t

α

α

+= ∇ +

⎛ ⎞∂ + ∂ +
= ⎜ ⎟⎜ ⎟∂ + ∂ +⎝ ⎠

A
 (7) 

where α is a scaling constant and d is the choices availabilities at action a. Accumulating the 
error for each choice of the selected action, the overall actor error is given be: 

 2

1

1
( ) ( )

2

d

a ai
i

E t e t
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑  (8) 

where eai(t) is the choice of the action error gradient ea(t). In finding the gradient of the 
estimated value J(t + 1) w.r.t the previously selected action a(t + 1), the direction of change in 
action, which will improve the expected return at time step t + 1, is obtained. Thus by 
incrementally improving actions in this manner, an optimal policy can be achieved. E(t) = 
Ec(t) + Ea(t) defines the reduced error for the entire on-line appriximator. 

6. Experiment and results 

As discussed in previous sections, the proposed controller brings a number of preferable 
properties for learning different behaviors. In this section, we investigate its learning capability 
through a task of cart-pole balancing problem, designed with non-Markovian settings. 

6.1 Related work 
Modeling the pole balancing algorithm for POMDP has received much interest in the field 
on control and artificial intelligence. Although a variation of Value and Policy Search 
(VAPS) algorithm (28) has been applied to this problem for the POMDP case (29), they have 
assumed that the position of cart on track x and the angle of pole from vertical θ are 
completely observable. NeuroEvolution of Augmenting Topologies (30) and evolutionary 
computation (31), are another promising approaches where recurrent neural networks are 
used to solve a harder balancing of two poles of different lengths, in both Markovian and 
non-Markovian settings. 
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6.2 Non-Markovian Cart Pole balancing 

As illustrated in Fig. 3A, Cart-Pole balancing involves a vertical pole with a point-mass at its 
upper end installed on a cart, with the goal of balancing the pole when the cart moves by 
applying horizontal forces to the cart, which must not stray too far from its initial position. 
The state description for the controller consists of four continuous state variables, the angle 
θ (radial), and the speed of the pole /x tθ δ δ=$  plus the position x and speed of the cart 
x́ = δx/ δt,  (see Appendix A.1 for the equations of motion and Appendix A.2 for parameters 
used as reported by (31)). The two continuous actions set up for controller training and 
evaluation were RightForce (RF), (results in pushing the cart to the right), and LeftForce 
(LF), (results in pushing the cart left). At each time step t, the controller must only observe 
the θ (that is, the controller is not observing the velocities ( , ))x θ$$  and then takes appropriate 
action to balance the pole by learning from the past experience and the intrinsically rewards. 
The optimal value function is shown in Fig. 3B. A simulated sample run is shown in Fig. 4. 
The controller could keep the pole balanced after about 4000 steps. 
 

θ

mp

A B

mc

RF LF

A B  

Fig. 3. (A) Illustration of the non-Markov Cart-Pole balancing problem, where the angular 
velocity is not observing by the controller. (B) Optimal value function. 

 

Fig. 4. A sample learning for balancing the pole. It suggests that the method could keep the 
pole near the top for a long time. 
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6.3 Non-Markovian Two-Pole balancing 

Then we moved to a harder setting of this problem, balancing two poles simultaneously (see 

Fig. 5). Each pole has its own position and angular velocity, 1θ  and 1θ$  for the first pole and 

2θ  and 2θ$  for the second pole respectively. See Appendix A.2 for parameters used as 

reported by (31).The controller must balance the two poles without velocity information. In 

order to assist the feasibility of our approach to balance two poles simultaneously we 

compared with other methods. 
 

mp1 mp22θ

mc

1θ

mc
RF LF

 

Fig. 5. Illustration of the non-Markov 2-Pole balancing problem. Parameters known are 

1θ  and 2 .θ  The controller must balance the two poles without observing 1θ$  and 2θ$ . 
 

Table 1 reports the performance of our controller compared with traditional value function 
based methods (See Appendix B.1 for parameters used) (including SARSA-CABA (See 
Appendix B.2, SARSA-CMAC (See Appendix B.3, which are reported by (31), who used 
SARSA implementations by (32) and VAPS (See Appendix B.4) and policy search method 
(including Q-MLP (See Appendix B.5, as implementation of (31)). Table 1 shows that our 
controller takes the minimal evaluations to balance the poles. With regard to CPU time 
(reported in seconds) we slightly fall short to Q-MLP. However, it interesting to observe that 
none of the value function approaches could handle this task in within the set of steps (e.g., 
100,000 time steps, which is equal to over 30 minutes in simulated time) due to the memory 
constraint. The result also indicates that our memory controller stand as a promising 
method in solving this benchmark more successful than the traditional RL techniques. 
 

Method Evaluation time (second)

V-function SARSA-CMAC Time Out -
SARSA-CABA Time Out -

VAPS Time Out -

Policy Q-MLP 10,582 153

Memory Our 8,900 300  

Table 1. Comparison of our result for balancing two-pole simultaneously with other value 
function approaches and policy based methods. ‘Evaluation’ indicates the total time steps 
for the method to be able to keep the poles near the top for a long time. 

7. Conclusions 

This paper proposes an architecture which avoids manual ‘hard coding’ of behaviors, where 
an RL agent uses an adaptive memory process to create its own memory and thereby 
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perform better in partially observable domains. The algorithm uses neighborhood 
component analysis (NCA) to determine feature vectors for system states. Decision-trees 
ensemble is used to create features which are useful in predicting the state of the system (i.e. 
building some sort of forward model). Chunks are used with a feature predictor to get 
features. These features are then used as the input features to learn a policy. Results based 
on non-Markov Cart- Pole balancing indicate that our model can memorize complete non-
Markovian sequential tasks and is able to produce behaviors that make the controlled 
system to behave desirably in the future. One of our future plans is to automate the capacity 
of memory in order to accommodate more complex tasks. In our current design the number 
of chunks that can be used is fixed. Another future plan will be in designing intelligent 
mechanism for memory updating, and to experiment with real world applications. 
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APPENDIX 

A. Pole-balancing learning parameters 

Below are the equations and parameters used for cart-pole balancing experiments (31) 

A.1 Pole-balancing equations 

The equations of motion for N unjoined poles balanced on a single cart are 
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where iF#  is the effective force from the ith pole on the cart, 
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and im#  is the effective mass of the ith pole, 
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A.2 Pole-balancing learning parameters 
 

Parameters for the single pole

Sym Description Value

x Position of cart on track [− 2.4,2.4]m
θ Angle of pole from vertical [− 12,12]deg
F Force applied to cart − 10.10N
l Half length of pole 0.5m
mc Mass of cart 1.0kg
mp Mass of pole 0.1kg

Parameters for double pole Value

Sym Description Value

x Position of cart on track [− 2.4,2.4]m
θ Angle of pole from vertical [− 36,36]deg
F Force applied to cart − 10.10N

li Half length of ith pole l1 = 0.5m
l2 = 0.05m

mc Mass of cart 1.0kg

mpi Mass of ith pole mp1 = 0.1kg
mp2 = 0.01kg

µc friction coef on cart on track 0.0005

µp friction coef if ith pole’s hinge 0.0005  

Table 2. Parameters for the single pole & double pole problem. 

B. Parameters for comparisons in cart pole balancing 
Below are the parameters used to obtain the comparison result for SARSA-CABA, SARSA-
CMAC, Q-MLP (31), and VAPS (28) in Section 6.3. 

B.1 Parameters for value function methods 
 

Parameter Description

ε greediness of policy

α learning rate

γ discount rate

λ eligibility  

Table 3. Parameters for value function methods. 

B.2 Parameters used for SARSA-CABA 

Sarsa(λ) with Case-Based function approximator (SARSA-CABA (32)): Is a Sarsa method 

with λ that uses a case-based memory to approximate the Q-function. A newly added state-
action pair is calculated by combining the values of the k-nearest neighbors. 

B.3 Parameters used for SARSA-CMAC 

Sarsa(λ) with CMAC function approximator (SARSA-CMAC (32)): Almost similar to 
SARSA-CABA except that it uses a Cerebellar Model Articulation Controller (CMAC)(34) 
instead of a case-based memory to approximate the Q-function. Using this method the state-
action space is divided into a set of tilings, each tiling constitutes a set of discrete features. 
Q-value is calculated as the sum of the value in each tiling. 
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Parameter Task

1a 1b

Γd 0.03 0.03

Γxk 0.05 0.05

Γxk 0.1 0.1

ε 0.05 0.05

α 0.4 0.1

γ 0.99 0.99

λ 0.4 0.4
 

Table 4. Parameters used for SARSA-CABA. 

B.4 Value and policy search 
(VAPS (28)): Is an extension of a method proposed by (35) to policies graph, where 
stochastic gradient descent is used to search the space. The graph is made of ‘nodes’ 
indicating actions and ‘arcs’ representing observation. Transitions between nodes are 
initially based on the action associated with node that the agent previously visited, while the 
environment continue to produce arcs labeled with observations. 
 

Parameter Task

1a 1b

ε 0.05 0.05

α 0.4 0.1

γ 0.9 0.9

λ 0.5 0.3

No. of tilings 45 : 50 :
10 based on x, ẋ, θ1 10 based on xt, xt− 1,θt
5 based on x,θ 10 based on x,θt, θt− 1

5 based on x, θ̇ 5 based on xt, θt
5 based on ẋ, θ̇ 5 based on xt− 1,θt− 1

5 based on x 5 based on xt
5 based on ẋ 5 based on xt− 1

5 based on θ 5 based on θt
5 based on θ̇ 5 based on θt− 1  

Table 5. Parameters used for SARSA-CMAC. 

B.5 Parameters used for Q-MLP 
Q-learning with MLP (Q-MLP): This method uses a Multi-Layer Perceptron to map state-
action pairs to Q(s, a) that makes it different from standard Q-learning (36). Backpropagation 
algorithm is used to learn the network values through gradient descent, produces a single 
Q-value as the output layer. This approach has been thoroughly applied to pole-balancing 
(37), and backgammon (38). 
 

Parameter Task

1a 1b 2a

ε 0.1 0.1 0.05

α 0.4 0.4 0.2

γ 0.9 0.9 0.9

λ 0 0 0
 

Table 6. Parameters used for Q-LMP. 

www.intechopen.com



Robot Learning

Edited by Suraiya Jabin

ISBN 978-953-307-104-6

Hard cover, 150 pages

Publisher Sciyo

Published online 12, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Robot Learning is intended for one term advanced Machine Learning courses taken by students from different

computer science research disciplines. This text has all the features of a renowned best selling text. It gives a

focused introduction to the primary themes in a Robot learning course and demonstrates the relevance and

practicality of various Machine Learning algorithms to a wide variety of real-world applications from

evolutionary techniques to reinforcement learning, classification, control, uncertainty and many other important

fields. Salient features: - Comprehensive coverage of Evolutionary Techniques, Reinforcement Learning and

Uncertainty. - Precise mathematical language used without excessive formalism and abstraction. - Included

applications demonstrate the utility of the subject in terms of real-world problems. - A separate chapter on

Anticipatory-mechanisms-of-human-sensory-motor-coordination and biped locomotion. - Collection of most

recent research on Robot Learning.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Osman Hassab Elgawi (2010). Reinforcement-based Robotic Memory Controller, Robot Learning, Suraiya

Jabin (Ed.), ISBN: 978-953-307-104-6, InTech, Available from: http://www.intechopen.com/books/robot-

learning/reinforcement-based-robotic-memory-controller



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


