
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

6

Reinforcement-based
Robotic Memory Controller

Hassab Elgawi Osman
Tokyo
Japan

1. Introduction

Neuroscientists believe that living beings solve the daily life activities, making decisions and
hence adapt to newly situations by learning from past experiences. Learning from
experience implies that each event is learnt through features (i.e. sensory control inputs)
analysis that aimed to specify and then recall more important features for each event or
situation.
In robot learning, several works seem to suggest that the transition to the current
reinforcement learning (RL) (1), as a general formalism, does correspond to observable
mammal brain functionality, where ‘basal ganglia’ can be modeled by an actor-critic (AC)
version of temporal difference (TD) learning (2; 3; 4). However, as with the most real-world
intelligent learning systems, the arising of ‘perceptual aliasing’ (also referred to as a problem
of ‘incomplete perception’, or ‘hidden state’) (5), when the system has to scale up to deal
with complex nonlinear search spaces in a non-Markov settings or Partially Observation
Markov Decision Process (POMDP) domains (6) (see Fig. 1) renders to-date RL methods

impracticable, and that they must learn to estimate value function vπ instead of learning the

policy π, limiting them mostly for solving only simple learning tasks, raising an interest in

heuristic methods that directly and adaptively modifying the learning policy π : S→A
(which maps perceptual state/observation to action) via interaction with the rest of the
system (7; 8).
Inclusion of a memory to a simulated robot control system is striking because a memory
learning system has the advantage to deal with perceptual aliasing in POMDP, where
memoryless policies are often fail to converge (9).
In this paper, a self-optimizing memory controller is designed particularly for solving non-
Markovian tasks, which correspond to a great deal of real-life stochastic predictions and
control problems (10) (Fig. 2). Rather than holistic search for the whole memory contents the
controller adopts associated feature analysis to successively memorize a newly experience
(state-action pair) as an action of past experience. e.g., If each past experience was a chunk,
the controller finds the best chunk for the current situation for policy exploration. Our aim is
not to mimic the neuroanatomical structure of the brain system but to catch its properties,
avoids manual ‘hard coding’ of behaviors. AC learning is used to adaptively tune the
control parameters, while an on-line variant of decision-tree ensemble learner (11; 12) is
used as memory-capable function approximator coupled with Intrinsically Motivated
Reinforcement Learning (IMRL) reward function (13; 14; 15; 16) to approximate the policy of

www.intechopen.com

 Robot Learning

104

agent

PolicySensors

agent

state
reward

action

observation

i ti t

(a)

environmentenvironment

G

XX

G

X

Y Y

XX

(c)(b)

Fig. 1. POMDP and Perceptual aliasing. RL agent is connected to its world via perception
state S and action A. In (a) a partially observable world, in which the agent does not know

which state it is in due to sensor limitations; for the value function vπ, the agent updates its
policy parameters directly. In (b) and (c) two maze domains. States indicated with the same
letter (X or Y) are perceptually aliased because the agent is sensed only wall configuration.

the actor and the value function of the critic. Section 2 briefly highlights on POMDP settings.

A description with comprehensive illustration of the proposed memory controller will be

given in Section 3. Then Section 4 highlights a comparison of conventional memory

controller and the self-optimizing memory controller. Section 5 shows the implementation

of decision-tree ensemble as memory-capable function approximator for both critic and

policy. Some experimental results are presented in Section 6 as promising examples. It

includes the non-Markovian cart-pole balancing tasks. The results show that our controller

is able to memorize complete non-Markovian sequential tasks and develop complex

behaviors such as balancing two poles simultaneously.

2. A non-Markovian and perceptual aliasing

First we present the formal setting of POMDP and then highlight on related approaches
tacking perceptual aliasing.

2.1 POMDP formal setting

The formal setting of POMDP is P = 〈M,O,Z〉 consist of:

1. An MDP of a tuple M=〈S,A,T,R〉 where S is the space of possible states of the

environment, A is a set of actions available to the agent (or control input), P : S × A × S

→ [0,1] defines a conditional probability distribution over state transitions given an

action, and R : S × A → R is a reward function (payoff) assigning a reward for an action,

2. A set of possible observations O, where O could constitute either a set of discrete

observations or a set of real-value,

www.intechopen.com

Reinforcement-based Robotic Memory Controller

105

3. Z, a probability density mapping state-observation combinations S × O to a probability

distribution, or in the case of discrete observations combinations S × O to probabilities.

In other words, Z(s, o) yields the probability to observing o in state s. So basically, a

POMDP is like an MDP but with observations instead of direct state perception.

If a world model is available to the controller, it can easily calculate and update a belief vector

1 2(), (), , ()t t t t Nb b s b s b s=
iif

A over ‘hidden states’ at every time step t by taking into a account

the history trace h = o1, o2, … , ot–1, ot.

2.2 Perceptual aliasing

It is important to note that in several literatures, perceptual aliasing is wrongly defined as
the problem of having an uncomplete instance, whereas this paper defines it as a problem
related to having different states that may look similar but are related to different responses.
Uncomplete instances may provoke perceptual aliasing, but they are not the same. Although
the solely work in this paper is focused on POMDP, we briefly highlight on related
approaches, in order to decipher the ambiguities between POMDP and perceptual aliasing:

• Hidden Markov Models (HMMs): are indeed applied to the more general problem of
perceptual aliasing. In HMM it is accepted that we do not have control over the state
transitions, whereas POMDP assume that we do. Hence, POMDP are more related to
incomplete perception than to perceptual aliasing. HMMs have been thoroughly
applied to robotic behavior synthesis, see, for example (18).

• Memory-based system: in Memory-based systems the controller is unable to take optimal
transitions unless it observed the past inputs, then the controller simultaneously solve
the incomplete perception while maximizing discounted long-term reward.
For an early practice attempts with other alternative POMDP approaches, e.g., the
‘model-based approach or belief-based approach’, and the ‘heuristic method with a
world model’ within TD reinforcement learning domain, see (23; 24).

• There is a large body of work on behavior learning both supervisedly and
unsupervisedly using fuzzy logic, Artificial Neural Networks (ANN) and/or Case
Based Reasoning (CBR). Some of them do not establish rules and, specifically, CBR uses
memory as its key learning tool. This, too, has been used in robotics in loosely defined
navigation problems. See, for example (19)

3. Self-optimizing controller architecture

One departing approach from manual ‘hard coding’ of behaviors is to let the controller
build its own internal ‘behavior model’–‘on-the-fly’ by learning from past experience. Fig. 2
illustrates the general view of our memory controller based on heuristic memory approach.
We briefly explain its components. It is worth noted that in our implementation only the the
capacity of the memory and reward function have be specified by a designer, the controller
is self-optimized in a sense that we do not analyzing a domain a priori, instead we add an
initially suboptimal model, which is optimized through learning1.

1 At this point we would like to mention that M3 Computer Architecture Group at Cornell has proposed

a similar work (17) to our current interest. They implement a RL-based memory controller with a
different underlying RL implementation, we inspired by them in some parts.

www.intechopen.com

 Robot Learning

106

Past experiences. Sensory control inputs from environment would be stored at the next
available empty memory location (chunk), or randomly at several empty locations.
Feature predictor. Is utilized to produce associated features for each selective experience.
This predictor was designed to predict multiple experiences in different situations. When
the selective experience is predicted, the associated features are converted to feature vector
so the controller can handle it.
Features Map. The past experiences are mapped into multidimensional feature space using
neighborhood component analysis (NCA) (20; 21), based on the Bellman error, or on the
temporal difference (TD) error. In general this is done by choosing a set of features which
approximate the states S of the system. A function approximator (FA) must map these
features into Vπ for each state in the system. This generalizes learning over similar states and
more likely to increase learning speed, but potentially introduces generalization error as the
feature will not represent the state space exactly.

Memory access. The memory access scheduling is formulated as a RL agent whose goal is to
learn automatically an optimal memory scheduling policy via interaction with the rest of the
system. A similar architecture that exploits heterogeneous learning modules simultaneously
has been proposed (22). As can be seen in the middle of Fig. 2 two scenarios are considered.
In (a) all the system parameters are fully observable, the agent can estimate vπ for each state
and use its actions (e.g., past experiences). The agent’s behavior, B, takes actions that tend to
increase the long-run sum of values of the reinforcement signal, typically [0,1]. In (b) the
system is partially observable as described in Fig. 1. Since our system is modeled as POMDP
decision depends on last observation-action, and the observation transitions st+1 = δ(st, at)
depend on randomly past perceptual state. This transition is expressed by

1 1(| , , , ,),t t t t tPr s s a s s− − ′ ′′ A 1 1where , t ts a− − are the previous state and action, and ,t t′ ′′ are
arbitrary past time.
Learning behaviors from past experience. On each time step t, an adaptive critic (that is a
component of the TD learning), is used to estimate future values of the reinforcement signal
of retaining different memory locations, which represents the agent’s behavior, B in
choosing actions. The combinations of memory locations show to have the highest
accumulated signals are more likely to be remembered. TD error–the change in expected
future signal is computed based on the amount of occasional intrinsic reinforcement signal
received, a long with the estimates of the adaptive critic.

4. Non-Markovian memory controller

4.1 Conventional memory controller

Conventional manually designed memory controller suffers two major limitations in regard
with scheduling process and generalization capacity. First, it can not anticipate the long-
term planning of its scheduling decisions. Second, it lacks learning ability, as it can not
generalize and use the experience obtained through scheduling decisions made in the past
to act successfully in new system states. This rigidity and lack of adaptivity can lead to
severe performance degradation in many applications, raising interest in self-optimizing
memory controller with generalization capacity.

4.2 Self-optimizing memory controller

The proposed self-optimizing memory controller is a fully-parallel maximum-likelihood
search engine for recalling the most relevant features in the memory of past. The memory

www.intechopen.com

Reinforcement-based Robotic Memory Controller

107

Past experiences

chunkchunkChunkChunk

Feature Map Feature predictor

πSensors

observationπ

S RA SR A

vπ

environmentenvironment(a) (b)environmentenvironment

RL-agent

RL S h d l
State feature

S RA SR A

RL-Scheduler

Memory access

Behavior (B2)Behavior (B2) … Behavior (Bn)Behavior (Bn)Behavior (B1) Behavior (B1)

(t)(t+1)

()()

Learning behaviors from experience

Fig. 2. Architecture of self-optimizing memory controller. The controller utilizes associated
feature analysis to memorize complete non-Markovian reinforcement task as an action of
past experience. The controller can acquired behaviors such as controlling objects, displays
long-term planning and generalization capacity.

controller considers the long-term planning of each available action. Unlike conventional

memory controllers, self-optimizing memory controller has the following capabilities: 1)

Utilizes experience learnt in previous system states to make good scheduling decisions in

new, previously unobserved states, 2) Adapts to the time-variant system in which the state

transition function (or probability) is permitted to gradually change through time, and 3)

Anticipates the long-term consequences of its scheduling decisions, and continuously

optimizes its scheduling policy based on this anticipation.

No key words or pre-determined specified memory locations would be given for the stored

experiences. Rather a parallel search for the memory contents would take place to recall the

previously stored experience that correlates with the current newly experience. The

controller handle the following tasks: (1) relate states and actions with the occasional reward

for long planning, (2) take the action that is estimated to provide the highest reward value at

a given state, and (3) continuously update long-term reward values associated with state-

action pairs, based on IMRL.

www.intechopen.com

 Robot Learning

108

5. Memory-capable function approximation

5.1 Actor-critic learning

Actor-critic (AC), a group of on-policy TD methods, separates the π and the vπ into
independent memory structures. The π structure, or actor, is used to decide which action to
pick in each state. The estimate of vπ, or adaptive critic, determines whether the actions of the
actor are to be rewarded or punished. The algorithms use these spare measures of
performance to adopt an optimal behavior over time. The adaptive critic maps its current
state event onto an estimate of whether it will be rewarded. The mapping is learned from
the past experience. If s + 1 is the situation that follows situation s in time, this expected
future reward may be written as:

 0 1() () (1) ()nV s r s V s V s nγ γ γ= + + + + +A (1)

The value of the current situation, V(s), is the sum of all the rewards we will receive over the
next n time steps. The rewards on each time step are “discounted” by factor, γ, in the range
[0,1]. Equation (1) can be rewritten in a recursive form:

 0 1() () (1) () (1)V s r s V s r s V sγ γ γ= + + = + + (2)

It should be noted that the equality in Eq. 2 is valid only if n is infinite or the state at n time
steps later, s + n, is always a so-called ‘absorbing state.’ Obviously a value function estimates
that fall far from this equality in considered inaccurate, and the error is estimated based on
TD error:

 () (() (1) ())s r s V s V sδ γ= + + − (3)

Adopting these methods can save much computation for selecting optimal actions, due to
utilizing separate memory for value function and policy.

5.2 AC in non-Markovian domain
Due to non-Markovian characteristics, the controller infers the state of its environment from
a sequence of observations it receives, learns an optimal action by detecting certain past
events, that associated with its current perception. In particular, at time t, the error of the
critic is given by,

 21
() ([() ()] (1))

2
cE t r t J t J tγ= + − − (4)

while the error of the actor is

 21
() (())

2
aE t J t R∗= − (5)

where R* is the optimal return, which is dependent on the problem definition. The expected
return is expressed as the general utility function, J(t), which is to be maximized by the
controller. Specifically,

 2() (1) (2) (3)J t r t r t r tγ γ= + + + + + +A (6)

where r(t) is the immediate reward and γ is the time-discounting factor 0 ≤ γ ≤ 1.

www.intechopen.com

Reinforcement-based Robotic Memory Controller

109

5.3 Decision-tree ensemble memory for optimal learning

On-line decision-tree ensemble learner has the characteristics of a simple structure, strong
global approximation ability and a quick and easy training (11; 12). It has been used with TD
learning for building a hybrid function approximator (26; 27). Here, in order to improve
learning efficiency and to reduce the demand of storage space and to improve learning
efficiency, the on-line ecision-tree ensemble approximator is structured in a way that both

actor and critic can be embodied in one structure, subsequently, is used to approximate π of

the actor and the vπ of the critic simultaneously. That is, the actor and the critic can share the
input and the basis functions structure of the RF. Let DTAppro represents a hybrid
approximator that combines actor and critic. Given a state s(t) and action a(t), DTAppro is
defined such that DTAppro(s(t), a(t)) = (J(t), a(t+1)), where J(t) is the estimated value of the
given state-action pair, and a(t + 1) is the subsequent action to be taken by the controller. At
the critic output the error is captured by TD error. However, at the action outputs the error
is determined by the gradient of the estimated value J(t + 1) w.r.t the action a(t + 1) selected
by the on-line RF at time t. Specifically,

(1)

1

 () (1)

(1) (1)
, ,

(1) (1)

a a t

d

e t J t

J t J t

a t a t

α

α

+= ∇ +

⎛ ⎞∂ + ∂ +
= ⎜ ⎟⎜ ⎟∂ + ∂ +⎝ ⎠

A
 (7)

where α is a scaling constant and d is the choices availabilities at action a. Accumulating the
error for each choice of the selected action, the overall actor error is given be:

 2

1

1
() ()

2

d

a ai
i

E t e t
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑ (8)

where eai(t) is the choice of the action error gradient ea(t). In finding the gradient of the
estimated value J(t + 1) w.r.t the previously selected action a(t + 1), the direction of change in
action, which will improve the expected return at time step t + 1, is obtained. Thus by
incrementally improving actions in this manner, an optimal policy can be achieved. E(t) =
Ec(t) + Ea(t) defines the reduced error for the entire on-line appriximator.

6. Experiment and results

As discussed in previous sections, the proposed controller brings a number of preferable
properties for learning different behaviors. In this section, we investigate its learning capability
through a task of cart-pole balancing problem, designed with non-Markovian settings.

6.1 Related work
Modeling the pole balancing algorithm for POMDP has received much interest in the field
on control and artificial intelligence. Although a variation of Value and Policy Search
(VAPS) algorithm (28) has been applied to this problem for the POMDP case (29), they have
assumed that the position of cart on track x and the angle of pole from vertical θ are
completely observable. NeuroEvolution of Augmenting Topologies (30) and evolutionary
computation (31), are another promising approaches where recurrent neural networks are
used to solve a harder balancing of two poles of different lengths, in both Markovian and
non-Markovian settings.

www.intechopen.com

 Robot Learning

110

6.2 Non-Markovian Cart Pole balancing

As illustrated in Fig. 3A, Cart-Pole balancing involves a vertical pole with a point-mass at its
upper end installed on a cart, with the goal of balancing the pole when the cart moves by
applying horizontal forces to the cart, which must not stray too far from its initial position.
The state description for the controller consists of four continuous state variables, the angle
θ (radial), and the speed of the pole /x tθ δ δ=$ plus the position x and speed of the cart
x́ = δx/ δt, (see Appendix A.1 for the equations of motion and Appendix A.2 for parameters
used as reported by (31)). The two continuous actions set up for controller training and
evaluation were RightForce (RF), (results in pushing the cart to the right), and LeftForce
(LF), (results in pushing the cart left). At each time step t, the controller must only observe
the θ (that is, the controller is not observing the velocities (,))x θ$$ and then takes appropriate
action to balance the pole by learning from the past experience and the intrinsically rewards.
The optimal value function is shown in Fig. 3B. A simulated sample run is shown in Fig. 4.
The controller could keep the pole balanced after about 4000 steps.

θ

mp

A B

mc

RF LF

A B

Fig. 3. (A) Illustration of the non-Markov Cart-Pole balancing problem, where the angular
velocity is not observing by the controller. (B) Optimal value function.

Fig. 4. A sample learning for balancing the pole. It suggests that the method could keep the
pole near the top for a long time.

www.intechopen.com

Reinforcement-based Robotic Memory Controller

111

6.3 Non-Markovian Two-Pole balancing

Then we moved to a harder setting of this problem, balancing two poles simultaneously (see

Fig. 5). Each pole has its own position and angular velocity, 1θ and 1θ$ for the first pole and

2θ and 2θ$ for the second pole respectively. See Appendix A.2 for parameters used as

reported by (31).The controller must balance the two poles without velocity information. In

order to assist the feasibility of our approach to balance two poles simultaneously we

compared with other methods.

mp1 mp22θ

mc

1θ

mc
RF LF

Fig. 5. Illustration of the non-Markov 2-Pole balancing problem. Parameters known are

1θ and 2 .θ The controller must balance the two poles without observing 1θ$ and 2θ$.

Table 1 reports the performance of our controller compared with traditional value function
based methods (See Appendix B.1 for parameters used) (including SARSA-CABA (See
Appendix B.2, SARSA-CMAC (See Appendix B.3, which are reported by (31), who used
SARSA implementations by (32) and VAPS (See Appendix B.4) and policy search method
(including Q-MLP (See Appendix B.5, as implementation of (31)). Table 1 shows that our
controller takes the minimal evaluations to balance the poles. With regard to CPU time
(reported in seconds) we slightly fall short to Q-MLP. However, it interesting to observe that
none of the value function approaches could handle this task in within the set of steps (e.g.,
100,000 time steps, which is equal to over 30 minutes in simulated time) due to the memory
constraint. The result also indicates that our memory controller stand as a promising
method in solving this benchmark more successful than the traditional RL techniques.

Method Evaluation time (second)

V-function SARSA-CMAC Time Out -
SARSA-CABA Time Out -

VAPS Time Out -

Policy Q-MLP 10,582 153

Memory Our 8,900 300

Table 1. Comparison of our result for balancing two-pole simultaneously with other value
function approaches and policy based methods. ‘Evaluation’ indicates the total time steps
for the method to be able to keep the poles near the top for a long time.

7. Conclusions

This paper proposes an architecture which avoids manual ‘hard coding’ of behaviors, where
an RL agent uses an adaptive memory process to create its own memory and thereby

www.intechopen.com

 Robot Learning

112

perform better in partially observable domains. The algorithm uses neighborhood
component analysis (NCA) to determine feature vectors for system states. Decision-trees
ensemble is used to create features which are useful in predicting the state of the system (i.e.
building some sort of forward model). Chunks are used with a feature predictor to get
features. These features are then used as the input features to learn a policy. Results based
on non-Markov Cart- Pole balancing indicate that our model can memorize complete non-
Markovian sequential tasks and is able to produce behaviors that make the controlled
system to behave desirably in the future. One of our future plans is to automate the capacity
of memory in order to accommodate more complex tasks. In our current design the number
of chunks that can be used is fixed. Another future plan will be in designing intelligent
mechanism for memory updating, and to experiment with real world applications.

8. References

[1] Sutton, R., Barto, A. (1998) “Reinforcement Learning: An introduction,”. Cambring, MA:
MIT Press.

[2] Barto A. (1995) “Adaptive critics and the basal ganglia,”. In Models of Information
Processing in the Basal Ganglia, pp.215-232. Cambridge, MA: MIT Press.

[3] Suri, R.E., Schultz, W. (1999) “A neural network model with dopamine-like
reinforcement signal that learns a spatial delayed response task,”. Neuroscience
91(3):871-890.

[4] Suri, R., Schultz, W. (2001) “Temporal difference model reproduces anticipatory neural
activity,”. Neural Computation 13:841-862.

[5] Chrisman,L. (1992) “Reinforcement learning with perceptual aliasing: The perceptual
distinctions approach,”. Proc. Int’l. Conf on AAAI, pp.183-188.

[6] Cassandra, A., Kaelbling, L., Littman, M. (1994) “Acting optimally in partially observable
stochastic domains,”. Proc. Int’l. Conf on AAAI, pp.1023-1028.

[7] Sutton, R., McAllester, D., Singh, S., Mansour, Y. (2000) “Policy gradient methods for
reinforcement learning with function approximation,”. Advances in Neural
Information Processing Systems 12, pp. 1057-1063. MIT Press.

[8] Aberdeen, D., Baxter, J. (2002) “Scalable Internal-State Policy-Gradient Methods for
POMDPs,”. In Proc. of the 19th Int’l Conf. on Machine Learning 12, pp.3-10. Morgan
Kaufmann Publishers Inc.

[9] Tsitsiklis, J., Van Roy, B. (1996) “Featured-based methods for large scale dynamic
programming,”. Machine Learning 22:59-94.

[10] Hassab Elgawi, O. (2009) “RL-Based Memory Controller for Scalable Autonomous
Systems,” In Proc. of 16th Int’l. Conf on Neural Information Processing, ICONIP, Part
II, LNCS 5864, pp.83-92, 2009.

[11] Basak, J. (2004) “Online adaptive decision trees: Pattern classification and function
approximation,”. Neural Comput 18:2062-2101.

[12] Hassab Elgawi, O. (2008) “Online Random Forests based on CorrFS and CorrBE,” In
Proc. of Conf on Computer Vision and Pattern Recognition Workshop, CVPR, pp.1-7.

[13] Singh, S.; Barto, A., Chentanez, N. (2005) “Intrinsically motivated reinforcement
learning,” In Proc. of Advances in Neural Information Processing Systems, NIPS, 17,
MIT Press, 2005, pp.1281-1288.

[14] Singh, S., Lewis, R., Barto, A., Chentanez, N. (2009) “Where do rewards come from?” In
Proc. of the Annual Conf. of the Cognitive Science Society, pp.2601-2606.

www.intechopen.com

Reinforcement-based Robotic Memory Controller

113

[15] Oudeyer, P.-Y., Kaplan, F., Hafner, V. (2007) “Intrinsic Motivation Systems for
Autonomous Mental Development,” IEEE Transactions on Evolutionary Computation,
11 pp.265-286.

[16] Uchibe, E., Doya, K. (2008) “Finding intrinsic rewards by embodied evolution and
constrained reinforcement learning,” Neural Networks, 21, pp.1447-1455.

[17] Ipek, E., Mutlu, O., Martinez, J., Caruana, R. (2008) “Self-Optimizing Memory
Controllers: A Reinforcement Learning Approach,”. In Intl. Symp. on Computer
Architecture (ISCA), pp.39-50.

[18] Maria F., Malik G., Guillaume I., Derek L. (2006) “Robot introspection through learned
hidden Markov models,”. Artificial Intelligence, 170(2):59-113.

[19] Urdiales, C., Perez, E., V´azquez-Salceda, J., S`anchez-Marr`e. (2006) “A purely reactive
navigation scheme for dynamic environments using Case-Based Reasoning,”.
Auton. Robots, 21(1):65-78.

[20] Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R. (2005) “Neighbourhood
Components Analysis,”. In Advances in Neural Information Processing Systems 17,
MIT Press, pp.513-520.

[21] Keller, P. W., Mannor, S., Precup, D. (2006) “Automatic basis function construction for
approximate dynamic programming and reinforcement learning,”. In 23rd
International Conference on Machine Learning, pp.449-456.

[22] Uchibe, E., Doya, K. (2006) “Competitive-Cooperative-Concurrent Reinforcement
Learning with Importance Sampling,”. In Proc. of the Eighth Int’l Conf. on Simulation
of Adaptive Behavior: From Animals to Animats, 8, MIT Press,Cambridge, MA, 2004,
pp.287- 296.

[23] Jaakkola, T., Singh, S., Jordan, M. (1995) “Reinforcement learning algorithms for
partially observable Markov decision,”. In Advances in Neural Information Processing
Systems 7, pp.345-352, Morgan Kaufmann.

[24] Long-Ji L., Mitchell, T. (1992) “Memory approaches to reinforcement learning in non-
Markovian domains,”. Technical Report CMU-CS-92-138, School of Computer
Science, Carnegie Mellon University.

[25] Leslie P., Michael L., Anthony R. (1995) “Planning and acting in partially observable
stochastic domains,”. Artificial Intelligence, 101:99-134.

[26] Hassab Elgawi, O. (2008) “Architecture of behavior-based Function Approximator for
Adaptive Control,”. In Proc. 15th Int’l. Conf on Neural Information Processing ICONIP,
LNCS 5507, pp.104-111.

[27] Hassab Elgawi, O. (2009) “Random-TD Function Approximator,” Journal of Advanced
Computational Intelligence and Intelligent Informatics (JACIII), 13(2):155-161.

[28] Meuleau, N., Peshkin, L., Kim, K.-E., Kaelbling, L. (1999) “Learning finite-state
controllers for partially observable environments,”. In Proc of the 15th Int’l Conf on
Uncertainty in Artificial Intelligence, pp.427-436.

[29] Peshkin, L., Meuleau, N., Kaelbling, L. (1999) “Learning policies with external
memory,”. In Proc. of the 16th Int’l Conf on Machine Learning, pp.307-314, I. Bratko
and S. Dzeroski, (Eds.).

[30] Kenneth, O. (2004) “Efficient evolution of neural networks through complexification,”.
Ph.D. Thesis; Department of Computer Sciences, The University of Texas at Austin.
Technical Report AI-TR-04-314.

www.intechopen.com

 Robot Learning

114

[31] Gomez. F. (2003) “Robust non-linear control through neuroevolution,”. Ph.D. Thesis;

Department of Computer Sciences, The University of Texas at Austin. Technical

Report AI-TR-03-303.

[32] Santamaria, J., Sutton, R., and Ram, A. (1998) “Experiments with reinforcement learning

in problems with continuous state and action spaces,”. Adaptive Behavior, 6(2):163-

218.

[33] Sutton, R. (1996) “Generalization in reinforcement learning: Successful examples using

sparse coarse coding,”. In Touretzky et al, 6(2):163-218.

[34] Albus, J. (1975) “A new approach to manipulator control: The cerebellar model

articulation controller (CMAC),”. Journal of Dynamic Systems, Measurement, and

Control, 97(3):220-227.

[35] Baird, L., and Moore, A. (1999) “Gradient descent reinforcement learning,”. Advances in

Neural Information Processing Systems, 12.

[36] Watkins, C., Dayan, P. (1992) “Q-learning,”. Journal of Machine Learning, 8(3):279-292.

[37] Lin, L.-J., Mitchell, T. (1992) “Memory approaches to reinforcement learning in non-

Markovian domains,”. Technical Report CMU-CS-92-138, Carnegie Mellon

University, School of Computer Science.

[38] Tesauro, G. (1992) “Practical issues in temporal difference learning,”. Journal of Machine

Learning, 8:257-277.

APPENDIX

A. Pole-balancing learning parameters

Below are the equations and parameters used for cart-pole balancing experiments (31)

A.1 Pole-balancing equations

The equations of motion for N unjoined poles balanced on a single cart are

1

1

()

3
(cos sin),

4

N

c
i

N

i

pi
i i

i i

i

i

i

i

F sgn x

x

M

x g
l m l

F

m

μ

μ
θ θ

θ
θ

=

=

− +
=

+

= − + +

∑

∑

#$
$$

$$

#

$
$$

where iF# is the effective force from the ith pole on the cart,

2 3
sin cos (sin),

4

i
i

pi
i i i i i i

i
i

i

F m l m g
m l

μ θ
θ θθ θ= + +

$
$

and im# is the effective mass of the ith pole,

23
(1 cos).

4
i iim m θ= −#

www.intechopen.com

Reinforcement-based Robotic Memory Controller

115

A.2 Pole-balancing learning parameters

Parameters for the single pole

Sym Description Value

x Position of cart on track [− 2.4,2.4]m
θ Angle of pole from vertical [− 12,12]deg
F Force applied to cart − 10.10N
l Half length of pole 0.5m
mc Mass of cart 1.0kg
mp Mass of pole 0.1kg

Parameters for double pole Value

Sym Description Value

x Position of cart on track [− 2.4,2.4]m
θ Angle of pole from vertical [− 36,36]deg
F Force applied to cart − 10.10N

li Half length of ith pole l1 = 0.5m
l2 = 0.05m

mc Mass of cart 1.0kg

mpi Mass of ith pole mp1 = 0.1kg
mp2 = 0.01kg

µc friction coef on cart on track 0.0005

µp friction coef if ith pole’s hinge 0.0005

Table 2. Parameters for the single pole & double pole problem.

B. Parameters for comparisons in cart pole balancing
Below are the parameters used to obtain the comparison result for SARSA-CABA, SARSA-
CMAC, Q-MLP (31), and VAPS (28) in Section 6.3.

B.1 Parameters for value function methods

Parameter Description

ε greediness of policy

α learning rate

γ discount rate

λ eligibility

Table 3. Parameters for value function methods.

B.2 Parameters used for SARSA-CABA

Sarsa(λ) with Case-Based function approximator (SARSA-CABA (32)): Is a Sarsa method

with λ that uses a case-based memory to approximate the Q-function. A newly added state-
action pair is calculated by combining the values of the k-nearest neighbors.

B.3 Parameters used for SARSA-CMAC

Sarsa(λ) with CMAC function approximator (SARSA-CMAC (32)): Almost similar to
SARSA-CABA except that it uses a Cerebellar Model Articulation Controller (CMAC)(34)
instead of a case-based memory to approximate the Q-function. Using this method the state-
action space is divided into a set of tilings, each tiling constitutes a set of discrete features.
Q-value is calculated as the sum of the value in each tiling.

www.intechopen.com

 Robot Learning

116

Parameter Task

1a 1b

Γd 0.03 0.03

Γxk 0.05 0.05

Γxk 0.1 0.1

ε 0.05 0.05

α 0.4 0.1

γ 0.99 0.99

λ 0.4 0.4

Table 4. Parameters used for SARSA-CABA.

B.4 Value and policy search
(VAPS (28)): Is an extension of a method proposed by (35) to policies graph, where
stochastic gradient descent is used to search the space. The graph is made of ‘nodes’
indicating actions and ‘arcs’ representing observation. Transitions between nodes are
initially based on the action associated with node that the agent previously visited, while the
environment continue to produce arcs labeled with observations.

Parameter Task

1a 1b

ε 0.05 0.05

α 0.4 0.1

γ 0.9 0.9

λ 0.5 0.3

No. of tilings 45 : 50 :
10 based on x, ẋ, θ1 10 based on xt, xt− 1,θt
5 based on x,θ 10 based on x,θt, θt− 1

5 based on x, θ̇ 5 based on xt, θt
5 based on ẋ, θ̇ 5 based on xt− 1,θt− 1

5 based on x 5 based on xt
5 based on ẋ 5 based on xt− 1

5 based on θ 5 based on θt
5 based on θ̇ 5 based on θt− 1

Table 5. Parameters used for SARSA-CMAC.

B.5 Parameters used for Q-MLP
Q-learning with MLP (Q-MLP): This method uses a Multi-Layer Perceptron to map state-
action pairs to Q(s, a) that makes it different from standard Q-learning (36). Backpropagation
algorithm is used to learn the network values through gradient descent, produces a single
Q-value as the output layer. This approach has been thoroughly applied to pole-balancing
(37), and backgammon (38).

Parameter Task

1a 1b 2a

ε 0.1 0.1 0.05

α 0.4 0.4 0.2

γ 0.9 0.9 0.9

λ 0 0 0

Table 6. Parameters used for Q-LMP.

www.intechopen.com

Robot Learning

Edited by Suraiya Jabin

ISBN 978-953-307-104-6

Hard cover, 150 pages

Publisher Sciyo

Published online 12, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Robot Learning is intended for one term advanced Machine Learning courses taken by students from different

computer science research disciplines. This text has all the features of a renowned best selling text. It gives a

focused introduction to the primary themes in a Robot learning course and demonstrates the relevance and

practicality of various Machine Learning algorithms to a wide variety of real-world applications from

evolutionary techniques to reinforcement learning, classification, control, uncertainty and many other important

fields. Salient features: - Comprehensive coverage of Evolutionary Techniques, Reinforcement Learning and

Uncertainty. - Precise mathematical language used without excessive formalism and abstraction. - Included

applications demonstrate the utility of the subject in terms of real-world problems. - A separate chapter on

Anticipatory-mechanisms-of-human-sensory-motor-coordination and biped locomotion. - Collection of most

recent research on Robot Learning.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Osman Hassab Elgawi (2010). Reinforcement-based Robotic Memory Controller, Robot Learning, Suraiya

Jabin (Ed.), ISBN: 978-953-307-104-6, InTech, Available from: http://www.intechopen.com/books/robot-

learning/reinforcement-based-robotic-memory-controller

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

