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1. Introduction  

Sensory-motor coordination involves the study of how organisms make accurate goal-
directed movements based on perceived sensory information. There are two problems 
associated to this process: sensory feedback is noisy and delayed, which can make 
movements inaccurate and unstable, and the relationship between a motor command and 
the movement it produces is variable, as the body and the environment can both change. 
Nevertheless, we can observe everyday our ability to perform accurate movements, which is 
due to a nervous system that adapts to those existing limitations and continuously 
compensates for them. How does the nervous system do it? By means of anticipating the 
sensory consequences of motor commands. 
The idea that anticipatory mechanisms guide human behaviour, i.e., that predictions about 
future states directly influence current behavioural decision making, has been increasingly 
appreciated over the last decades. Various disciplines have explicitly recognized 
anticipations. In cognitive psychology, the ideo-motor principle states that an action is 
initiated by the anticipation of its effects, and before this advanced action mechanism can be 
used, a learning phase has to take place, advising the actor about several actions and their 
specific effects (Stock and Stock, 2004). In biorobotics, anticipation plays a major role in the 
coordination and performance of adaptive behaviour (Butz et al., 2002), being interested on 
designing artificial animals (animats) able to adapt to environmental changes efficiently by 
learning and drawing inferences. 
What are the bases of human anticipation mechanisms? Internal models of the body and the 
world. Internal models can be classified into (Miall & Wolpert, 1996): 
a. forward models, which are predictive models that capture the causal relationship 

between actions and outcome, translating the current system state and the current 
motor commands (efference copy) into predictions of the future system state, and 

b. inverse models, which generate from inputs about the system state and state transitions, 
an output representing the causal events that produced that state. 

Forward models are further divided into (Miall & Wolpert, 1996): 
i. forward dynamic models, estimating future system states after current motor 

commands, 
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ii. forward sensory models, predicting sensory signals resultant from a given current state, 
and 

iii. forward models of the physical properties of the environment, anticipating the 
behaviour of the external world. 

Hence, by cascading accurate forward dynamic and forward sensory models, 

transformation of motor commands into sensory consequences can be achieved, producing a 

lifetime of calibrated movements. The accuracy of forward models is maintained through 

adaptive processes driven by sensory prediction errors. 

Plenty of neuroscientific studies in humans suggest evidence of anticipatory mechanisms 

based on the concept of internal models, and several robotic implementations of predictive 

behaviors have been inspired on those biological mechanisms in order to achieve adaptive 

agents. This chapter provides an overview of such neuroscientific evidences, as well as the 

state of the art relative to corresponding implementations in robots. 

The chapter starts by reviewing several behavioral studies that have demonstrated 

anticipatory and adaptive mechanisms in human sensory-motor control based on internal 

models underlying tasks such as eye–hand coordination, object manipulation, eye 

movements, balance control, and locomotion. Then, after providing a description of 

neuroscientific bases that have pointed to the cerebellum as a site where internal models are 

learnt, allocated and maintained, the chapter summarizes different computational systems 

that may be developed to achieve predictive robot architectures, and presents specific 

implementations of adaptive behaviors in robots including anticipatory mechanisms in 

vision, object manipulation, and locomotion. 

The chapter also provides a discussion about the implications involved in endowing a robot 

with the capability of exhibiting an integral predictive behavior while performing tasks in 

real-world scenarios, in terms of several anticipatory mechanisms that should be 

implemented to control the robot. 

Finally, the chapter concludes by suggesting an open challenge in the biorobotics field: to 

design a computational model of the cerebellum as a unitary module able to learn and 

operate diverse internal models necessary to support advanced perception-action 

coordination of robots, showing a human-like robust reactive behavior improved by integral 

anticipatory and adaptive mechanisms, while dynamically interacting with the real world 

during typical real life tasks. 

2. Neuroscientific bases of anticipatory and adaptive mechanisms 

This section reviews diverse neuroscientific evidences of human anticipatory and adaptive 
mechanisms in sensory-motor control, including the consideration of the cerebellum as a 
prime candidate module involved in sensory prediction. 

2.1 Behavioral evidences 

Several behavioural studies have demonstrated anticipatory and adaptive mechanisms in 
human sensory-motor control based on internal models underlying tasks such as eye–hand 
coordination (Ariff et al., 2002; Nanayakkara & Shadmehr, 2003; Kluzik et al., 2008), object 
manipulation (Johansson, 1998; Witney et al., 2004; Danion & Sarlegna, 2007), eye 
movements (Barnes & Asselman, 1991), balance control (Huxham et al., 2001), and 
locomotion (Grasso et al., 1998), as described in the following subsections. 
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2.1.1 Eye–hand coordination 

Evidence of access to a forward dynamic model of the arm from the saccadic eye movement 
system is shown in (Ariff et al., 2002). In this study, subjects performed reaching movements 
having their arms hidden and tracking the position of their unseen hand with their eyes. 
Ariff et al. (2002) found that in unperturbed reaching movements, saccade occurrence at any 
time t consistently provided an estimate of hand position at t+196 ms. However, the ability 
of the brain to guide saccades to the future position of the hand failed when a force pulse 
unexpectedly changed the arm dynamics immediately after perturbation. Thus, saccades 
were suppressed for 100 ms and then accurate predictive saccades re-emerged. The saccade 
inhibition period that followed the hand perturbation was suggested as the time length it 
takes to recompute the estimate of the future hand position. 
In a further study, the arm dynamics was altered by applying various external force fields 
(Nanayakkara & Shadmehr, 2003). Eyes were able to make accurate predictive saccades after 
the force pulse only when the externally imposed arm dynamics was predictable, indicating 
that the saccadic system is able to use new information on arm dynamics to improve its 
performance. 
In the context of reaching adaptation, Kluzik et al. (2008) studied subjects performing goal-
directed reaching movements while holding the handle of a robotic arm that produced 
forces perturbing trajectories. Authors compared subjects’ adaptation between three trial 
conditions: with robot forces turned off in unannounced manner, with robot forces turned 
off in announced manner, and free-space trials holding the handle but detached from the 
robot. When forces increased abruptly and in a single step, subjects made large errors in 
reaching. In contrast, in a gradual case with small force changes from one trial to the next 
one, subjects reported smaller performance errors. These results allowed authors to 
conclude that, although practice with a novel tool caused the formation of an internal model 
of the tool, it also appeared to produce a transient change in the internal model of the 
subject’s arm. 

2.1.2 Object manipulation 

In (Johansson, 1998), a control scheme of object grasping and manipulation is proposed. In 
this scheme, both visual and somatosensory inputs are used in conjunction with internal 
models for parametric adjustment of fingertip forces to object properties in anticipation of 
the upcoming force requirements. 
At the heart of this control is the comparison of somatosensory inflow with the predicted 
afferent input. Detection of a mismatch between predicted and actual sensory input triggers 
corrective responses along with an update of the relevant internal model and thus a change 
in parameter specification. 
Witney et al. (2004) confirmed that feedback from cutaneous afferents is critical for 
successful feedforward control of grip force. Feedback is not only essential for the 
acquisition of the internal model, but constant uninterrupted feedback is also necessary to 
maintain previously acquired forward models. 
In analyzing whether the human brain anticipates in real time the consequences of 
movement corrections, Danion and Sarlegna (2007) monitored grip force while subjects 
transported a hand-held object to a visual target that could move unexpectedly. They found 
that subjects triggered fast arm movement corrections to bring the object to the new target 
location, and initiated grip force adjustments before or in synchrony with arm movement 
corrections. Throughout the movement, grip force anticipated the mechanical consequences 
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resulting from arm motion, even when it was substantially corrected. Moreover, the 
predictive control of grip force did not interfere with the on-line control of arm trajectory. 
Those results allowed authors to confirm that motor prediction is an automatic, real-time 
process operating during movement execution and correction. 

2.1.3 Eye movements 

The purpose of smooth pursuit eye movements is to minimize retinal slip, i.e., target 
velocity projected onto the retina, stabilizing the image of the moving object on the fovea. It 
has been demonstrated that the brain uses predictions to execute this task and that a typical 
value is about 200 ms (Barnes & Asselman, 1991). 
In (Barnes & Asselman, 1991), experiments were conducted on human subjects required to 
actively pursue a small target or stare passively at a larger display as it moved in the 
horizontal plane. Results indicated that prediction is carried out through the storage of 
information about both the magnitude and timing of eye velocity. Repeated exposure to the 
moving target leads to update that information. Initially, the response occurred with a 
latency of approximately 100 ms after the onset of target exposure, but after three or four 
exposures, the smooth eye movement has increased in peak velocity by a factor of 1.5-2. 
Authors stressed the important role of visual feedback to check the validity of the velocity 
estimate in the predictive process. When a conflict between the estimate and the current 
visual input occurs, the estimation system is shut down, and the pursuit system falls back 
on the use of conventional visual feedback in order to build up a new estimate of velocity. In 
doing so, the reaction time to peak response is increased to 300 ms for the initial response, 
but becomes reduced to 200 ms after two or three presentations. Hence, in the normal mode 
of operation of the pursuit reflex, continuous visual feedback is enhanced by predictive 
estimates of eye velocity initiated under the control of the periodicity estimator and only 
corrected if retinal error conflict indicates an inappropriate predictive estimate. 

2.1.4 Balance control 
Anticipation in balance control in the presence of external perturbations is discussed in 
(Huxham et al., 2001). 
Balance control during walking is achieved via two strategies: proactive, which reduce or 
counteract stresses acting on the body, and reactive, which respond to failures of proactive 
components or to unexpected external perturbation. Proactive balance mechanisms are 
visual-based. Information about environmental conditions and changes is constantly 
received through the eyes and interpreted in the light of experience about its impact on 
stability. Thus, we step around or over perceived obstacles, reduce our walking speed if the 
surface appears to be slippery, and maintain a higher degree of alertness in potentially 
hazardous situations such as rough terrain or cluttered areas. 
A second form of proactive strategy termed predictive balance control, considers the forces 
acting on and within the body to maintain stability within the body and between the body 
and the support surface. It is dependent upon an accurate internal representation of the 
body and a learned awareness of how any movement or muscle action will alter those 
relationships. 
Predictive control of the forces acting on the body is largely achieved by anticipatory 
postural adjustments, which initially are not based on sensory input but rather on what 
experience has taught will be the amount and direction of destabilization produced by the 
movement. 
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In summary, the balance system proactively monitors the external environment and predicts 
the effects of forces generated by voluntary movement on the body, making the adjustments 
necessary to maintain posture and equilibrium in anticipation of need. It is only when these 
adjustments fail or an unexpected destabilization occurs that the emergency back-up system 
of reactive balance responses is called in for crisis management. 

2.1.5 Locomotion 

Anticipatory head movements toward the direction to be walked were studied by Grasso et 
al. (1998). They measured head and eye movements in subjects walking along the same 90° 
corner trajectory both at light and with eyes closed and in forward and backward 
locomotion. 
This study showed that coherent head and eye movements sustain a gaze orientation 
synergy during forward navigation tasks. Anticipation occurs relative to the direction one is 
about to take. In absence of visual stimuli, the orienting movements show similar behaviour. 
However, after inverting the locomotion direction, they are not maintained but disappear or 
are reversed according to the direction of steering. 
These results add evidence to the hypothesis of a feed-forward navigation control system 
governing synergic head and eye movements aimed at anticipating future motor events. 

2.2 The role of the cerebellum 

Imaging and electrophysiological studies have pointed to the cerebellum as a site where 
internal models are learnt, allocated, and maintained, allowing predictive behaviour. 
While studying grip force modulation, Kawato et al. (2003) suggested that forward models 
of object and arm dynamics are stored in the cerebellum predicting load force variations 
caused by arm/object dynamics. Functional imaging showed the activation of the right, 
anterior and superior cerebellum, and the biventer in the left cerebellum. 
While human subjects learned to use a new tool, Imamizu et al. (2000) measured cerebellar 

activity by functional imaging, showing that specific voxels in the cerebellar cortex have 

bold signals that remain modified after a subject has learned a motor task involving the 

creation and storage of an internal model of the previously-unknown tool. 

Cerminara et al. (2009) provided direct electrophysiological evidence for the operation of an 

internal model that simulates an external object’s motion, expressed in simple-spike activity 

of Purkinje cells within the lateral cerebellum. The firing of these cells follows the velocity of 

the moving target even when the target has disappeared briefly. 

Ghasia et al. (2008) found that putative cerebellar target neurons discharge in relation to a 

change in ocular torsion, suggesting that the cerebellum stores a model of ocular mechanics. 

Using data from the floccular complex of the cerebellar cortex during normal smooth 

pursuit eye movements, and during the vestibulo-ocular reflex, Lisberger (2009) found that 

the simple-spike firing rates of a single group of floccular Purkinje cells may reflect the 

output of different internal models, such as a model of the inertia of real-world objects, and 

a model of the physics of the orbit, where head and eye motion sum to produce gaze 

motion. 

Ebner and Pasalar (2008) studied monkeys performing manual pursuit tracking, and 
associated the simple-spike discharge of Purkinje cells in the intermediate and lateral 
cerebellum with a forward internal model of the arm predicting the consequences of arm 
movements, specifically the position, direction of movement, and speed of the limb. 
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Internal models are useful in sensory-motor coordination only if their predictions are 
generally accurate. When an accurate representation has been learnt, e.g., a forward model 
of how motor commands affect the motion of the arm or the eyes, motor commands can be 
apply to this internal model and predict the motion that will result. However, the 
relationship between a motor command and the movement it produces is variable, since the 
body and the environment can both change (e.g., bones grow and muscle mass increases 
during development; disease can affect the strength of muscles that act on the eyes; physical 
perturbations can alter the visual and proprioceptive consequences of motor commands). 
Hence, in order to maintain a desired level of performance, the brain needs to be “robust” to 
those changes by means of updating or adapting the internal models (Shadmehr et al., 2010). 
According to Lisberger (2009), the theory of cerebellar learning could be an important facet 
of the operation of internal models in the cerebellum. In this theory, errors in movement are 
signaled by consistently timed spikes on the climbing fiber input to the cerebellum. In turn, 
climbing fibers cause long-term depression of the synapses from parallel fibers onto 
Purkinje cells, specifically for the parallel fibers that were active at or just before the time the 
climbing fiber input arrived. The extension of the cerebellar learning theory to cerebellar 
internal models proposes that depression of the parallel fiber to Purkinje cell synapses 
corrects the internal model in the cerebellum, so that the next instance of a given movement 
is closer to perfection. 

3. Robotic implementations of predictive behaviours 

Anticipatory animats involve agent architectures based on predictive models. Underlying 
these predictive architectures, different computational systems may be implemented (Butz 
et al., 2002): 

• Model-based reinforcement learning, where a model of the environment is learnt in 
addition to reinforcement values, and several anticipatory mechanisms can be 
employed such as biasing the decision maker toward the exploration of 
unknown/unseen regions or applying internal reinforcement updates. 

• Schema mechanism, where the model is represented by rules and learnt bottom-up by 
generating more specialized rules where necessary, although no generalization 
mechanism applies and the decision maker is biased on the exploitation of the model to 
achieve desired items in the environment. 

• The expectancy model SRS/E, which is not generalized but represented by a set of 
rules, and includes an additional sign list storing all states encountered so far. 
Reinforcement is only propagated once a desired state is generated by a behavioral 
module, and the propagation is accomplished using dynamic programming techniques 
applied to the learnt predictive model and the sign list. 

• Anticipatory learning classifier systems that, similar to the schema mechanism and 
SRS/E, contain an explicit prediction component, and the predictive model consists of a 
set of rules (classifiers) which are endowed with an “effect” part to predict the next 
situation the agent will encounter if the action specified by the rules is executed. These 
systems are able to generalize over sensory input. 

• Artificial neural networks (ANN), where the agent controller sends outputs to the 
actuators based on sensory inputs. Learning to control the agent consists in learning to 
associate the good set of outputs to any set of inputs that the agent may experience. The 
most common way to perform such learning consists in using the back-propagation 
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algorithm, which computes, for each set of inputs, the errors on the outputs of the 
controller. With respect to the computed error, the weights of the connections in the 
network are modified so that the error will be smaller the next time the same inputs are 
encountered. Back-propagation is a supervised learning method, where a supervisor 
indicates at each time step what the agent should have done. Nevertheless, it is difficult 
to build a supervisor in most control problems where the correct behavior is not known 
in advance. The solution to this problem relies on anticipation (Tani, 1996; Tani, 1999). If 
the role of an ANN is to predict what the next input will be rather than to provide an 
output, then the error signal is available: the difference between what the ANN 
predicted and what has actually happened. 

Specific implementations of predictive behaviors in robots include anticipatory mechanisms 
in vision (Hoffmann, 2007; Datteri et al., 2003), object manipulation (Nishimoto et al., 2008; 
Laschi et al., 2008), and locomotion (Azevedo et al., 2004; Gross et al., 1998), as described in 
the following subsections. 

3.1 Vision 

In (Hoffmann, 2007), results are presented from experiments with a visually-guided four-
wheeled mobile robot carrying out perceptual judgment based on visuo-motor anticipation 
to exhibit the ability to understand a spatial arrangement of obstacles in its behavioural 
meaning. The robot learns a forward model by moving randomly within arrangements of 
obstacles and observing the changing visual input. For perceptual judgment, the robot 
stands still, observes a single image, and internally simulates the changing images given a 
sequence of movement commands (wheel speeds) as specified by a certain movement plan. 
With this simulation, the robot judges the distance to an obstacle in front, and recognizes in 
an arrangement of obstacles either a dead end or a passage. 
Images from the robot omni-directional camera are processed to emphasize the obstacles 
and reduce the number of pixels. The forward model predicts an image given the current 
processed image and the wheel velocities. Images are predicted using a set of multi-layer 
perceptrons, where each pixel is computed by one three-layer perceptron. 
Datteri et al. (2003) proposed a perception-action scheme for visually-guided manipulation 
that includes mechanisms for visual predictions and for detecting unexpected events by 
comparisons between anticipated feedback and incoming feedback. Anticipated visual 
perceptions are based on motor commands and the associated proprioception of the robotic 
manipulator. If the system prediction is correct, full processing of the sensory input is not 
needed at this stage. Only when expected perceptions do not match incoming sensory data, 
full perceptual processing is activated. 
Experimental results from a feeding task where the robotic arm places a spoon in its 
Cartesian space, showed the robot capability to monitor the spoon trajectory by vision, 
without full visual processing at each step in “regular” situations, and to detect unexpected 
events that required the activation of full perceptual processing. 

3.2 Object manipulation 
In the context of anticipation mechanisms while manipulating objects, Nishimoto et al. 
(2008) proposed a dynamic neural network model of interactions between the inferior 
parietal lobe (IPL), representing human behavioural skills related to object manipulation 
and tool usage, and cells in the ventral premotor area (PMv), allowing learning, generation 
and recognition of goal-directed behaviours. 
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Authors suggest that IPL might function as a forward sensory model by anticipating coming 
sensory inputs in achieving a specific goal, which is set by PMv and sent as input to IPL. The 
forward sensory model is built by using a continuous-time recurrent neural network that is 
trained with multiple sensory (visuo-proprioceptive) sequences acquired during the off-line 
teaching phase of a small-scale humanoid robot, where robot arm movements are guided in 
grasping the object to generate the desired trajectories. 
During the experiments, the robot was tested to autonomously perform three types of 
operational grasping actions on objects with both hands: lift up, move to the right, or move 
to the left. Experimental conditions included placing the object at arbitrary left or right 
locations inside or outside the training region, and changing the object location from center 
to left/right abruptly at arbitrary time step after the robot movement had been initiated. 
Results showed the robot capability to perform and generalize each behaviour successfully 
considering object location variations, and adapt to sudden environmental changes in real 
time until 20 time steps before reaching the object, a process that takes the robot 30 time 
steps in the normal condition. 
Laschi et al. (2008) implemented a model of human sensory-motor coordination in grasping 
and manipulation on a humanoid robotic system with an arm, a sensorized hand and a head 
with a binocular vision system. They demonstrated the robot able to reach and grasp an 
object detected by vision, and to predict the tactile feedback by means of internal models 
built by experience using neuro-fuzzy networks. 
Sensory prediction is employed during the grasping phase, which is controlled by a scheme 
based on the approach previously proposed by Datteri et al. (2003). The scheme consists of 
three main modules: vision, providing information about geometric features of the object of 
interest based on binocular images of the scene acquired by the robot cameras; preshaping, 
generating a proper hand/arm configuration to grasp the object based on inputs from the 
vision module about the object geometric features; and tactile prediction, producing the 
tactile image expected when the object is contacted based on the object geometric features 
from the vision module and the hand/arm configuration from the preshaping module. 
During training (creation of the internal models), the robot system grasps different kinds of 
objects in different positions in the workspace to collect correct data used to learn the 
correlations between visual information, hand and arm configurations, and tactile images. 
During the testing phase, several trials were executed where an object was located in a 
position in the workspace and the robot had to grasp, lift up and keep it with a stable grasp. 
Results showed a good system performance in terms of success rate, as well as a good 
system capability to predict the tactile feedback, as given by the low difference between the 
predicted tactile image and the actual one. In experimental conditions different from those 
of the training phase, the system was capable to generalize with respect to variations of 
object position and orientation, size and shape. 

3.3 Locomotion 

Azevedo et al. (2004) proposed a locomotion control scheme for two-legged robots based on 
the human walking principle of anticipating the consequences of motor actions by using 
internal models. The approach is based on the optimization technique Trajectory-Free Non-
linear Model Predictive Control (TF-NMPC) that consists on optimizing the anticipated 
future behaviour of the system from inputs relative to contact forces employing an internal 
model over a finite sliding time horizon. A biped robot was successfully tested during static 
walking, dynamic walking, and postural control in presence of unexpected external thrusts. 
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Gross et al. (1998) provided a neural control architecture implemented on a mobile 
miniature robot performing a local navigation task, where the robot anticipates the sensory 
consequences of all possible motor actions in order to navigate successfully in critical 
environmental regions such as in front of obstacles or intersections. 
The robot sensory system determines the basic 3D structure of the visual scenery using 

optical flow. The neural architecture learns to predict and evaluate the sensory 

consequences of hypothetically executed actions by simulating alternative sensory-motor 

sequences, selecting the best one, and executing it in reality. The subsequent flow field 

depends on the previous one and the executed action, thus the optical flow prediction 

subsystem can learn to anticipate the sensory consequences of selected actions. 

Learning after executing a real action results from comparing the real and the predicted 

sensory situation considering reinforcement signals received from the environment. By 

means of internal simulation, the system can look ahead and select the action sequence that 

yields to the highest total reward in the future. Results from contrasting the proposed 

anticipatory system with a reactive one showed the robot’s ability to avoid obstacles earlier. 

4. Summary and conclusions 

The sensory-motor coordination system in humans is able to adjust for the presence of noise 

and delay in sensory feedback, and for changes in the body and the environment that alter 

the relationship between motor commands and their sensory consequences. This adjustment 

is achieved by employing anticipatory mechanisms based on the concept of internal models. 

Specifically, forward models receive a copy of the outgoing motor commands and generate 

a prediction of the expected sensory consequences. This output may be used to: 

i. adjust fingertip forces to object properties in anticipation of the upcoming force 
requirements, 

ii. increase the velocity of the smooth eye movement while pursuing a moving target, 
iii. make necessary adjustments to maintain body posture and equilibrium in anticipation 

of need, 
iv. trigger corrective responses when detecting a mismatch between predicted and actual 

sensory input, involving the corresponding update of the relevant internal model. 
Several behavioural studies have shown that the sensory-motor system acquires and 

maintains forward models of different systems (i.e., arm dynamics, grip force, eye velocity, 

external objects and tools dynamics, and postural stability within the body and between the 

body and the support surface), and it has been widely hypothesized that the cerebellum is 

the location of those internal models, and that the theory of cerebellar learning might come 

into play to allow the models to be adjusted. Even though the major evidence of the role of 

the cerebellum comes from imaging studies, recent electrophysiological research has 

analyzed recordings from cerebellar neurons in trying to identify patterns of neural 

discharge that might represent the output of diverse internal models. 

As reviewed within this chapter, although not in an exhaustive manner, several 

independent efforts in the robotics field have been inspired on human anticipatory 

mechanisms based on internal models to provide efficient and adaptive robot control. Each 

one of those efforts addresses predictive behaviour within the context of one specific motor 

system; e.g, visuo-motor coordination to determine the implications of a spatial 

arrangement of obstacles, or to place a spoon during a feeding task, object manipulation 
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while performing grasping actions, postural control in presence of unexpected external 

thrusts, and navigation within environments having obstacles and intersections. 

Nevertheless, in trying to endow a robot with the capability of exhibiting an integral 
predictive behaviour while performing tasks in real-world scenarios, several anticipatory 
mechanisms should be implemented to control the robot. Simply to follow a visual target by 
coordinating eye, head, and leg movements, walking smoothly and efficiently in an 
unstructured environment, the robot performance should be based on diverse internal 
models allowing anticipation in vision (saccadic and smooth pursuit systems), head 
orientation according to the direction to be walked, balance control adapting posture to 
different terrains and configurations of environment, and interpretation of the significance 
and permanence of obstacles within the current scene. 
Assuming the cerebellum as a site involved in a wide variety of anticipatory processes by 
learning, allocating, and adapting different internal models in sensory-motor control, we 
conclude this brief review suggesting an open challenge in the biorobotics field: to design a 
computational model of the cerebellum as a unitary module able to operate diverse internal 
models necessary to support advanced perception-action coordination of robots, showing a 
human-like robust reactive behaviour improved by integral anticipatory and adaptive 
mechanisms while dynamically interacting with the real world during typical real life tasks. 
Anticipating the predictable part of the environment facilitates the identification of 
unpredictable changes, which allows the robot to improve its capability in moving in the 
world by exhibiting a fast reaction to those environmental changes. 
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