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1. Introduction 

In the last fifty years, many manufacturers have chosen the implementation of Flexible 
Manufacturing Systems (FMS) or Computer Integrated Manufacturing (CIM) in their shop 
floor or, at least, the automation of some of the operations carried out therein with the 
intention of increasing their productivity and becoming more competitive (Shawaky, 1998; 
Sokolowski, 2001; Cho, 1999; Govekar, 2000; Brophy, 2002).  
With reference to machining operations, the implementation of these systems requires the 
supervision of different aspects related to the machine (diagnostic and performance 
monitoring), the tool or tooling (state of wear, lubrication, alignment), the workpiece 
(geometry and dimensions, surface features and roughness, tolerances, metallurgical 
damage), the cutting parameters (cutting speed, feed rate, depth of cut), or the process itself 
(chip formation, temperature, energy consumption) (Byrne, 1995; D'Errico, 1997; Tönshoff, 
1988; Grabec, 1998; Inasaki, 1998; Kopac, 2001; Fu, 1996; Masory, 1991; Huang, 1998; Teti, 
1995; Teti, 1999). 
For the monitoring and control of the above mentioned aspects, it has been necessary to 
make notable efforts in the development of appropriate process monitoring systems (Burke 
& Rangwala, 1991; Chen et al., 1994; Chen et al., 1999; Chen, 2000). Such systems are typically 
based on different types of sensors such as cutting force and torque, motor current and 
effective power, vibrations, acoustic emission or audible sound (Desforges, 2004; Peng, 2004; 
Lin, 2002; Sokolowski, 2001; Ouafi et al., 2000; Karlsson et al., 2000; Chen & Chen, 1999; 
Jemielniak et al., 1998; Byrne, 1995; Dornfeld, 1992; Masory, 1991). However, despite all the 
efforts, standard solutions for their industrial application have not been found yet. The large 
number and high complexity of the phenomena that take place during machining processes 
and the possibility to choose among numerous alternatives in each implementation step of 
the process monitoring system (e.g. cutting test definition, type and location of sensors, 
monitoring test definition, signal processing method or process modeler selection) are the 
main responsible for the existence of more than one solution. 
The review and analysis of the relevant literature on this topic revealed that it is necessary to 
develop and implement an experimental system allowing for the systematical 
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characterizarion of the different parameters that influence the process before realizing a 
process monitoring system applicable to industry (Hou, 2003; Jin & Shi, 2001; Hong, 1993; 
Malakooti et al., 1995; Venkastesh et al., 1997; Xiaoli et al., 1997; Xu & Ge, 2004). This will 
allow to establish an adequate knowledge and control of the critical factors involved in the 
process monitoring system by means of single factor variations. Moreover, it will be also 
possible to identify the variations produced by potential spurious sources when the process 
monitoring system is applied to real situations in the shop floor. 
This work reports on the approach for the development of a machining process monitoring 
system based on audible sound sensors. Audible sound energy appears as one of the most 
practical techniques since it can serve to replace the traditional ability of the operator, based 
on his experience and senses (mainly vision and hearing), to determine the process state and 
react adequately to any machine performance decay (Lu, 2000). This technique has been 
attempted for decision making on machining process conditions but it has not been 
extensively studied yet for applications in industrial process monitoring (Teti, 2004; Teti & 
Baciu, 2004). The main critical issues related to the employment of this technology in 
industry are the need to protect the sensor from the hazardous machining environment 
(cutting fluids and metal chips) and the environment noise (from adjacent machines, motors, 
conveyors or other processes) that may contaminate the relevant signals during machining 
(Lu, 2000; Teti & Baciu, 2004; Teti et al., 2004; Wilcos, 1997; Clark, 2003). 
The principal benefits of audible sound sensors for machining process monitoring are 
associated with the nature of the sensors employed in the acquisition of the signals. These 
are, in general, easy to mount on the machine tool, in particular near the machining point, 
with little or no interference with the machine, the tool, the workpiece or the chip formation. 
Besides, these sensors, basically microphones, are easy to use in combination with standard 
phonometers or spectrum analysers. These characteristics of audible sound sensors make 
the realization of the monitoring procedure quite straightforward. In addition, their 
maintenance is simple since they only require a careful handling to avoid being hit or 
damaged. Accordingly, they usually provide for a favourable cost/benefit ratio. 
The key novelties of the approach proposed in this work are, on the one hand, the 
application of a systematic methodology to set up the cutting trials allowing for a better 
comparison with other similar experimental works and, as a result, the advance in the 
standardization for the development of such systems. On the other hand, the independent 
signal analysis of the noise generated by the machine used for the cutting trials and by the 
working environment allows to filter this noise out of the signals obtained during the actual 
material processing. Lastly, the possibility has been verified to apply the results of this 
approach for the development of process monitoring procedures based on sensors of a 
different type, in particular acoustic emission sensors, where the stress waves produced 
within the work material do not travel through air but only in the work material itself. The 
combined application of audible sound energy sensors and acoustic emission sensors could 
allow for the acquisition of more exhaustive information from both low frequency (audible 
sound) and high frequency (acoustic emission) acoustic signal analysis. This would 
decidedly contribute to the realization of the concept of sensor fusion technology for process 
monitoring (Emel, 1991; Niu et al., 1998). 
The described methodology was applied to characterize the audible sound signals emitted 
by different cutting conditions during milling processes. The classification of audible sound 
signal features for process monitoring in milling was carried out by graphical analysis and 

 

parallel distributed data processing based on artificial neural networks. In the following 
sections, the methodology, the experimentation, the sensor signal detection and analysis 
methods, and the obtained results are reported and critically assessed. 

 
2. Methodology 

The methodology proposed for the design and implementation of a process monitoring 
system based on audible sound energy sensors includes the steps described below. 
Cutting tests definition. All the elements involved in the cutting tests, along with their basic 
characteristics and properties, should be defined in this step, as reported in the systematic 
methodology proposed in (Rubio & Teti, 2005) for the establishment of tool condition 
monitoring systems. In particular, the cutting operation, the machine tool, the workpiece 
(material and size), the tools (type, material, coating, dimensions and fresh/worn state), the 
cutting parameters (cutting speed, feed rate, depth of cut) and the possible use of cutting 
fluid, should be defined. Although this seems obvious and there are in the literature works 
that report thorough descriptions of the cutting tests (Teti & Buonadonna, 1999), most of the 
authors do not provide, or not with the desired detail, all the necessary information to allow 
for a correct analysis of the results and an adequate comparison with the results obtained by 
other authors.  
Process monitoring tests definition. The monitoring tests dealt with in this work are based on 
the use of audible sound energy sensors. The broadband sound pressure level of the audible 
signals is detected by means of sensing devices dedicated to the measure and display this 
type of signals. All detected audible sound signals are transferred on PC and off-line 
analysed. In order to verify the repeatability of the monitoring tests, the audible sound 
signal specimens should be recorded several times (> 3) for each cutting condition. The 
noise of the machine tool running unloaded should be recorded as well in order to be able, 
later, to characterise the audible sound signals from the cutting process deprived of the 
disturbing noise generated by both machine and working environment. 
Selection of signal processing and decision making methods. To select the most adequate signal 
processing and decision making methods, a review of the main advanced signal processing 
(Rubio et al., 2006a) and decision making procedures (Rubio et al., 2006b) used in machining 
process monitoring based on acoustic sensors was carried out. As a result, the Fast Fourier 
Transform (FFT) was selected for signal processing and feature extraction whereas 
supervised Neural Network (NN) paradigms were adopted for signal feature pattern 
recognition and process conditions decision making. 
Experimental layout. The most essential aspects of the experimental layout concern the 
audible sound sensor location and protection: firstly, the selection of the distance between 
sensor and cutting point in order to detect the signals correctly, and, secondly, the way to 
protect the sensor from the chips, the cutting fluid and other pollutants during machining. 
Besides these actions, particular attention must be paid to isolate the experiments from 
environmental noise that could seriously contaminate the signal detection. 
Performance of the cutting and process monitoring tests. Once all the previous steps have been 
completed, the machining tests with process monitoring must be carried out. As stated 
earlier, the tests should be rehearsed several times in order to verify their repeatability. 
Furthermore, the noise of the machine tool running unloaded should be recorded for its 
later subtraction from audible sound signals detected during the material removal process. 
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(cutting fluids and metal chips) and the environment noise (from adjacent machines, motors, 
conveyors or other processes) that may contaminate the relevant signals during machining 
(Lu, 2000; Teti & Baciu, 2004; Teti et al., 2004; Wilcos, 1997; Clark, 2003). 
The principal benefits of audible sound sensors for machining process monitoring are 
associated with the nature of the sensors employed in the acquisition of the signals. These 
are, in general, easy to mount on the machine tool, in particular near the machining point, 
with little or no interference with the machine, the tool, the workpiece or the chip formation. 
Besides, these sensors, basically microphones, are easy to use in combination with standard 
phonometers or spectrum analysers. These characteristics of audible sound sensors make 
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damaged. Accordingly, they usually provide for a favourable cost/benefit ratio. 
The key novelties of the approach proposed in this work are, on the one hand, the 
application of a systematic methodology to set up the cutting trials allowing for a better 
comparison with other similar experimental works and, as a result, the advance in the 
standardization for the development of such systems. On the other hand, the independent 
signal analysis of the noise generated by the machine used for the cutting trials and by the 
working environment allows to filter this noise out of the signals obtained during the actual 
material processing. Lastly, the possibility has been verified to apply the results of this 
approach for the development of process monitoring procedures based on sensors of a 
different type, in particular acoustic emission sensors, where the stress waves produced 
within the work material do not travel through air but only in the work material itself. The 
combined application of audible sound energy sensors and acoustic emission sensors could 
allow for the acquisition of more exhaustive information from both low frequency (audible 
sound) and high frequency (acoustic emission) acoustic signal analysis. This would 
decidedly contribute to the realization of the concept of sensor fusion technology for process 
monitoring (Emel, 1991; Niu et al., 1998). 
The described methodology was applied to characterize the audible sound signals emitted 
by different cutting conditions during milling processes. The classification of audible sound 
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authors do not provide, or not with the desired detail, all the necessary information to allow 
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signals is detected by means of sensing devices dedicated to the measure and display this 
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signal specimens should be recorded several times (> 3) for each cutting condition. The 
noise of the machine tool running unloaded should be recorded as well in order to be able, 
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disturbing noise generated by both machine and working environment. 
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Transform (FFT) was selected for signal processing and feature extraction whereas 
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recognition and process conditions decision making. 
Experimental layout. The most essential aspects of the experimental layout concern the 
audible sound sensor location and protection: firstly, the selection of the distance between 
sensor and cutting point in order to detect the signals correctly, and, secondly, the way to 
protect the sensor from the chips, the cutting fluid and other pollutants during machining. 
Besides these actions, particular attention must be paid to isolate the experiments from 
environmental noise that could seriously contaminate the signal detection. 
Performance of the cutting and process monitoring tests. Once all the previous steps have been 
completed, the machining tests with process monitoring must be carried out. As stated 
earlier, the tests should be rehearsed several times in order to verify their repeatability. 
Furthermore, the noise of the machine tool running unloaded should be recorded for its 
later subtraction from audible sound signals detected during the material removal process. 
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Signal processing and decision making. After the sensor monitoring tests, the processing and 
analysis of the recorded signals by means of the methods selected earlier must be carried out 
together with the decision making procedure applied to significant signal features: in this 
work, the FFT for signal processing and supervised NN paradigms for decision making. 
Design and implementation of the process monitoring system. On the basis of the issues of the 
previous steps, the implementation procedure for an on-line machining process monitoring 
system based on audible sound energy sensors can be proposed. 

 
3. Application  

According to the methodology described in the previous section, experimental applications 
were carried out as outlined below. 
Cutting tests definition. Following the methodology for the definition of the cutting tests 
(Rubio & Teti, 2005), the machining operation was defined as a milling process carried out 
on a conventional DORMAC FU-100 milling machine. The workpiece was a plate of size of 
100 x 200 x 40 mm made of T4-6056 Al alloy. The tool was a fresh 5-teeth milling cutter of 
12.16 x 8.18 x 5.16 mm, made of WC-Co inserts coated with TiN. The cutting conditions 
were: spindle speed, S = 800 and 1000 rpm; feed rate, f = 40, 80 and 160 mm/min and depth 
of cut, d = 0.5 and 1 mm. The tests were conducted under dry cutting conditions. Table 1 
summarizes the cutting test description. 
 

Table 1. Summary of the cutting test description. 
 
Process monitoring tests definition. The audible sound energy monitoring system was 
composed of a Larson Davis 2800 Spectrum Analyser, a standard Larson Davis preamplifier 
model PRM 900B, a ½” free field high sensitivity sensor and a ½” pre-polarized microphone 
(Fu, 1996). All audible sound signals detected by the Larson Davis 2800 Spectrum Analyser 
were transferred on PC for off-line analysis. 

Element Type/ Characteristics/Properties 

Cutting operation Milling 

Machine Tool Conventional: DORMAC FU-100 milling machine 

Workpiece  Material: 6056 aluminium alloy with T4 thermal treatment 
Dimensions: 100 x 200 x 40 mm 

Tool 

Type: 5-teeth milling cutter 
Material: tungsten particles and cobalt matrix carbide (WC-Co) 
Coat material: titanium nitride (TiN) 
Dimensions: 12,16 x 8,18 x 5,16 mm 
State: Fresh 

Cutting conditions 
Cutting speed, S = 800 - 1000 rpm  
Feed rate, f = 40 – 80 - 160 mm/min  
Depth of cut, d = 0.5 - 1 mm 

Coolant  No 

 

Selection of signal processing and decision making methods. The selected signal processing and 
feature extraction method was the FFT and the signal features pattern recognition for 
decision making was based on supervised NN data processing since this approach had been 
used in previous works with satisfactory results (Teti, 2004; Teti & Baciu, 2004). 
Experimental layout. Figure 1 shows the experimental layout. The distance between the 
microphone and the cutting point was set in such a way that, during each machining 
operation, was approximately equal to 85 mm. Particular attention was paid to protect the 
microphone from the chips by means of a plastic mesh and to isolate the experimental area 
from environment noise that could contaminate the detected signals. 
 

 
Fig. 1. Experimental layout. 
 
Performance of the cutting and process monitoring tests. The experimental tests carried out with 
the different cutting conditions are reported in Table 2. Each test was rehearsed 3 times in 
order to check for repeatability. Simultaneously, the sensor monitoring procedure was 
applied during each test.  
Signal processing and decision making. The spectrum analyser was set to 800 lines acquisition 
mode and a FFT zoom was set equal to 2. In this way, as the capture interval was from 0 to 
10000 Hz, by dividing this frequency interval into 800 lines, a step of 12.5 Hz was achieved. 
Besides the audible sound signal detected in sound Level Meter mode, a series of signal 
parameters (SUM (LIN) SUM (A), SLOW, SLOW MIN, SLOW MAX, FAST, FAST MIN, 
FAST MAX, IMPULSE, LEQ, SEL, PEAK, Tmax3 and Tmax5) were obtained and recorded as 
well. The option “by time” allowed to save the measurements automatically, with end time 
equal to 10 seconds and step equal to 1 second. The transfer velocity was set at 9600 Baud, 
which was the same as the velocity imposed to the PC for file transfer. For graphical data 
processing and display, Spectrum Pressure Level-Noise (Spectrum Pressure Lave, 1998) and 
Vibrations Works (OS Windows) (Noise and Vibrations Works, 1998) and CA Cricket Graph 
III (OS Mac) (CA-Cricket Graph III,1992) software packages were used. For NN data 
processing, the Neural Network Explorer software package was used (Masters, 1993). 
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Table 2. Cutting test parameters. 
 
Design and establishment of the process monitoring system. Once the audible sound signals have 
been fully characterized for each of the diverse cutting conditions, it becomes possible to 
compare these reference signals with the new ones detected during the normal process 
operation in such a way that the differences between reference signals and current signals 

Test Id. S (rpm) f (mm/min) d (mm) 
1 800 --- --- 
2 800 --- --- 
3 800 --- --- 
4 1000 --- --- 
5 1000 --- --- 
6 100 --- --- 
7 800 40 0.5 
8 800 40 0.5 
9 800 40 0.5 
10 800 80 0.5 
11 800 80 0.5 
12 800 80 0.5 
13 800 160 0.5 
14 800 160 0.5 
15 800 160 0.5 
16 800 40 1 
17 800 40 1 
18 800 40 1 
19 800 80 1 
20 800 80 1 
21 800 80 1 
22 800 160 1 
23 800 160 1 
24 800 160 1 
25 1000 40 0.5 
26 1000 40 0.5 
27 1000 40 0.5 
28 1000 80 0.5 
29 1000 80 0.5 
30 1000 80 0.5 
31 1000 160 0.5 
32 1000 160 0.5 
33 1000 160 0.5 
34 1000 40 1 
35 1000 40 1 
36 1000 40 1 
37 1000 80 1 
38 1000 80 1 
39 1000 80 1 
40 1000 160 1 
41 1000 160 1 
42 1000 160 1 

 

allow for the reliable sensor monitoring and control of the machining process. The target is 
to achieve an on-line monitoring system using as reference the signals conditioned through 
machine tool and working environment noise filtering and suppression. 

 
4. Results 

After audible sound signals detection, the repeatability of the tests was verified by 
calculating the differences between recorded signals and dividing the result by 800 (number 
of acquisition lines of the spectrum analyser). All the computed values were less than 5%. 
Then, a reference signal for the machine and environment noise was established as the 
average of the 3 signals obtained from each of the unloaded machine tool running tests. 
Figure 2 shows the reference signal in terms of amplitude, Sa (dB), versus frequency, f (Hz), 
for the 5th second of the cutting test with S = 800 rpm and f = 80 mm/min. Along with the 
reference signal for the machine and environment noise, the average signals for d = 0.5 mm 
and d = 1 mm under the same S and f conditions were plotted as well. 
The reference signal was subtracted from the audible sound signals detected during the 
actual machining tests to obtain a “difference signal” for classification analysis. All further 
analyses were carried out using these difference signals (Figure 3). 
 

Sa
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Fig. 2. Signal amplitude Sa (dB) vs. frequency f (Hz) of the audible sound signals for the 5th 
second of each test. Namely, milling with S = 800 rpm, f = 80 mm/min, d = 0.5 mm; milling 
with S = 800 rpm, f = 80 mm/min, d = 1 mm, and machine tool running unloaded at S = 800 
rpm. 
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Fig. 3. Amplitude of the difference between machining audible sound and machine tool 
noise (”difference signal”) for each of the ten seconds of cutting test: a) first; b) second; c) 
thrird; d) fourth; e) fifth; f) sixth; g) seventh; h) eighth; i) ninth; j) tenth second. 
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The maximum amplitude of the ”difference signal” was evaluated for each frequency 
interval and for each second of cutting test. The six frequency intervals selected for audible 
sound signal processing were: 0-0.25, 0.25-0.5, 0.5-1, 1-2.5, 2.5-5, 5-10 kHz. Figure 4 reports 
examples of the ”difference signal” maximum amplitude Sa diffMAX (dB) versus frequency 
intervals f (Hz) for cutting tests with S = 800 rpm, f = 80 mm/min and d = 0.5 mm or 1 mm 
cases, for each of the ten seconds of each cutting test. The figure shows that for frequency 
values higher than 1 kHz it is possible to discriminate audible sound signals obtained from 
machining with different depth of cut values. 
Graphical representation of data in high dimensions (> 3) feature spaces is not feasible. 
Thus, the results are presented in a 2 dimensions feature space by pair-wise plotting of 
frequency intervals maximum signal amplitude as shown in Figure 5 for two low frequency 
intervals, in Figure 6 for two medium frequency intervals, and in Figure 7 for two high 
frequency intervals. The figures show that for the two high frequency intervals the 
separation between cluster points characteristic of the two depth of cut values is very good.  
The same can be seen if the ”difference signal” maximum amplitude is plotted versus depth 
of cut as shown in Figure 8 for low, medium and high frequency intervals. 
At low frequencies (0-0.25 kHz; 0.25-0.5 kHz), the Sa diffMAX value is around 10 dB for both 
depth of cut values (0.5 and 1 mm). In this case, depth of cut discrimination is unfeasible. 
However, at high frequencies (1-2.5 kHz; 2.5-5 kHz) the Sa diffMAX value is around 10 dB for 
depth of cut 0.5 mm and around 30 dB for a depth of cut 1 mm and recognition becomes 
feasible. 
A supervised NN data processing was utilized for pattern recognition using the 6-
component feature vectors made of the ”difference signal” maximum amplitudes for the 6 
frequency intervals. A three-layers feed-forward back-propagation NN was built with the 
following configuration: input layer with 6 nodes; hidden layer with 3 nodes determined by 
the cascade learning procedure (Teti & Buonadonna, 1999); output layer with 1 node. 
The 6-3-1 NN was trained and tested according to the leave-k-out procedure with k = 2 (Teti 
& Buonadonna, 1999), using a number of learning steps comprised between 1000 and 14000. 
In Figure 9, the NN output is reported versus the number of input patterns for 12000 and 
14000 learning steps. From this figure, it can be seen that the NN Success Rate (SR) in the 
identification of depth of cut becomes 100% after 14000 learning steps. 
Figure 10 reports the NN SR versus learning steps for different treshold values. From the 
figure, it can be noted that the NN SR is 85% as early as 2000 learning steps. 
Figure 11 reports the NN SR versus threshold value for variable numbers of learning steps. 
From the figure, it can be observed that the NN SR starts decreasing gradually only for 
threshold values < 0.3, except in the case of the lowest number of learning steps (i.e. 1000) 
for which a rapid SR reduction is expectedly verified. 
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Fig. 4. “Difference signal” maximum amplitude Sa diffMAX (dB) vs. frequency intervals f 
(Hz) for the S = 800 rpm, f = 80 mm/min, and d = 0.5 or 1 mm cases, for each of the ten 
seconds of cutting test: a) first; b) second; c) third; d) fourth; e) fifth; f) sixth; g) seventh; h) 
eighth; i) ninth; j) tenth second. 
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Fig. 5. Pair-wise plots of “difference signal” maximum amplitudes for low frequency 
intervals. 
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Fig. 6. Pair-wise plots of “difference signal” maximum amplitudes for medium frequency 
intervals. 
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Fig. 6. Pair-wise plots of “difference signal” maximum amplitudes for medium frequency 
intervals. 
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Fig. 7. Pair-wise plots of “difference signal” maximum amplitudes for high frequency 
intervals. 
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Fig. 8. ”Difference signal” maximum amplitudes vs. depth of cut. 
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Fig. 9. Neural Network output vs. number of input patterns for: a) 12000 and b) 14000 
learning steps. 
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Fig. 7. Pair-wise plots of “difference signal” maximum amplitudes for high frequency 
intervals. 
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Fig. 8. ”Difference signal” maximum amplitudes vs. depth of cut. 
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Fig. 9. Neural Network output vs. number of input patterns for: a) 12000 and b) 14000 
learning steps. 
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Fig. 10. Neural Network Success Rate vs. number of learning steps for different threshold 
values. 
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Fig. 11. Neural Networks Success Rate vs. threshold value for different numbers of learning 
steps. 
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5. Conclusion 

During the last years, notable efforts have been made to develop reliable and industrially 
applicable machining monitoring systems based on different types of sensors, especially in 
production environments that require fully unmanned operation such as Flexible 
Manufacturing Systems (FMS) or Computer Integrated Manufacturing (CIM). 
The main focus of this work is the establishment of a methodology to implement a process 
monitoring system based on audible sound energy sensors for application to milling 
operations. 
In order to characterise the audible sound energy signals emitted by different cutting 
conditions during milling of T4-6056 Al alloy plates, machining parameters were varied and 
the corresponding acoustic signals were detected and processed in the frequency domain by 
a real-time spectrum analyser. 
The classification of audible sound signal features was performed in two-
dimensional space by graphical analysis and in multi-dimensional spaces by 
parallel distributed data processing using a supervised Neural Network paradigm. 
The experimental results showed that the identification of depth of cut variation can realised 
only with reference to high frequency ranges. Besides, the supervised Neural Network data 
processing proved that the recognition of depth of cut value can be reliably achieved 
independently of the frequency range. 
The proposed approach allows to state that: (1) the application of a systematic methodology 
to set up the cutting tests permits a more thorough comparison with other similar 
experimental works; (2) sensor signal analysis independent of the noise generated by the 
machine tool and the working environment is obtainable by subtracting the noise 
characteristic signal from the signals detected during the cutting tests; (3) the results 
obtained in this approach can be utilized for the development of process monitoring 
procedures based on sensors of different types, such as acoustic emission sensors where the 
high frequency (> 20 kHz) stress waves produced within the work material do not travel 
through air but only in the material itself. The combined application of audible sound 
energy sensors and acoustic emission sensors could make available more comprehensive 
information on process conditions through both low frequency (audible sound) and high 
frequency (acoustic emission) signal analysis, realizing the concept of sensor fusion 
technology. 

 
6. Acknowledgements 

Funding for this work was partly provided by the Spanish Ministry of Education and 
Science (Directorate General of Research), Project DPI2008-06771-C04-02. 
The activity for the preparation of this work has received funding support from the 
European Community's Seventh Framework Programme FP7/2007-2011 under grant 
agreement no. 213855. 

 
 
 

www.intechopen.com



Process Monitoring Systems for Machining Using Audible Sound Energy Sensors 231

 

SR
 (%

) 

 
 # of learning steps 

a) 
Fig. 10. Neural Network Success Rate vs. number of learning steps for different threshold 
values. 
 

SR
 (%

) 

 
 Threshold value 

Fig. 11. Neural Networks Success Rate vs. threshold value for different numbers of learning 
steps. 

 

0 

25 

50 

75 

100 

0,1 0,2 0,3 0,4 0,5 

14000 
12000 
10000 
8000 
6000 
4000 
2000 
1000 

0 

25 

50 

75 

100 

0 2000 4000 6000 8000 10000 12000 14000

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

 

5. Conclusion 

During the last years, notable efforts have been made to develop reliable and industrially 
applicable machining monitoring systems based on different types of sensors, especially in 
production environments that require fully unmanned operation such as Flexible 
Manufacturing Systems (FMS) or Computer Integrated Manufacturing (CIM). 
The main focus of this work is the establishment of a methodology to implement a process 
monitoring system based on audible sound energy sensors for application to milling 
operations. 
In order to characterise the audible sound energy signals emitted by different cutting 
conditions during milling of T4-6056 Al alloy plates, machining parameters were varied and 
the corresponding acoustic signals were detected and processed in the frequency domain by 
a real-time spectrum analyser. 
The classification of audible sound signal features was performed in two-
dimensional space by graphical analysis and in multi-dimensional spaces by 
parallel distributed data processing using a supervised Neural Network paradigm. 
The experimental results showed that the identification of depth of cut variation can realised 
only with reference to high frequency ranges. Besides, the supervised Neural Network data 
processing proved that the recognition of depth of cut value can be reliably achieved 
independently of the frequency range. 
The proposed approach allows to state that: (1) the application of a systematic methodology 
to set up the cutting tests permits a more thorough comparison with other similar 
experimental works; (2) sensor signal analysis independent of the noise generated by the 
machine tool and the working environment is obtainable by subtracting the noise 
characteristic signal from the signals detected during the cutting tests; (3) the results 
obtained in this approach can be utilized for the development of process monitoring 
procedures based on sensors of different types, such as acoustic emission sensors where the 
high frequency (> 20 kHz) stress waves produced within the work material do not travel 
through air but only in the material itself. The combined application of audible sound 
energy sensors and acoustic emission sensors could make available more comprehensive 
information on process conditions through both low frequency (audible sound) and high 
frequency (acoustic emission) signal analysis, realizing the concept of sensor fusion 
technology. 

 
6. Acknowledgements 

Funding for this work was partly provided by the Spanish Ministry of Education and 
Science (Directorate General of Research), Project DPI2008-06771-C04-02. 
The activity for the preparation of this work has received funding support from the 
European Community's Seventh Framework Programme FP7/2007-2011 under grant 
agreement no. 213855. 

 
 
 

www.intechopen.com



Future Manufacturing Systems232

 

7. References 

Brophy, C., Kelly, K., Byrne, G. (2002) AE-based condition monitoring of the drilling 
process. Journal of Materials Processing Technology, 124, 3, 305-310, ISSN: 0924-0136. 

Burke, L.I., Rangwala, S. (1991) Tool condition monitoring in metal cutting. A neural 
network approach. Journal of Intelligent Manufacturing, 2, 5, 269-280, ISSN: 0956-
5515. 

Byrne, G., Dornfeld, D., Inasaki, I., Ketteler, G., König, W., Teti, R. (1995) Tool Condition 
Monitoring (TCM) – The Status of Research and Industrial Application. Annals of 
the CIRP, 44, 2, 541-567, ISSN: 0007-8506. 

CA-Cricket Graph III For Macintosh: Version 1.0, User Guide, 1992. 
Chen, C., Lee, S., Santamarina, G. (1994) An object-oriented manufacturing control system. 

Journal of Intelligent Manufacturing, 5, 5, 315-321, ISSN: 0956-5515. 
Chen, F.F., Huang, J., Centeno, M.A. (1999) Intelligent scheduling and control of rail-guided 

vehicles and load/unload operations in a flexible manufacturing system. Journal of 
Intelligent Manufacturing, 10,5, 405-421, ISSN: 0956-5515. 

Chen, J.C. (2000) An effective fuzzy-nets training scheme for monitoring tool breakage. 
Journal of Intelligent Manufacturing, 11,1, 85-101, ISSN: 0956-5515. 

Chen, J.C., Chen, W.L. (1999) A tool breakage detection system using an accelerometer 
sensor. Journal of Intelligent Manufacturing, 10, 2, 187-197, ISSN: 0956-5515. 

Cho, D.W., Lee, S.J., Chu, C.N. (1999) The state of machining process monitoring research in 
Korea. International Journal of Machine Tools and Manufacturing, 39, 11, 1697-1715, 
ISSN: 0890-6955. 

Clark, W.I., Shih, A.J., Hardin, C.W., Lemaster, R.L., McSpadden, S.B. (2003) Fixed abrasive 
diamond wire machining—part I: process monitoring and wire tension force. 
International Journal of Machine Tools Manufacturing, 43, 5, 523-532, ISSN: 0890-6955. 

D'Errico, G.E. (1997) Adaptive systems for machining process monitoring and control. 
Journal of Materials Processing Technology, 64, 1-3, 75-84, ISSN: 0924-0136. 

Desforges, X., Habbadi, A., Geneste, L., Soler, F. (2004) Distributed machining control and 
monitoring using smart sensors/actuators. Journal of Intelligent Manufacturing, 15, 1, 
39-53, ISSN: 0956-5515. 

Dornfeld, D.A. (1992) Monitoring of machining process - Literature Review. Annals of the 
CIRP, 41, 1, 93-96, ISSN: 0007-8506. 

Emel, E. (1991) Tool wear detection by neural network based acoustic emission sensing. 
ASME, Dynamic Systems and Control Division Publication, 28, 79–85, ISSN: 0022-0434. 

Fu, J.C., Troy, C.A., Mori, K. (1996) Chatter classification by entropy functions and 
morphological processing in cylindrical traverse grinding. Precision Engineering,18, 
2-3, 110-117, ISSN: 0141-6359. 

Govekar, E., Gradišek, J., Grabec, I. (2000) Analysis of acoustic emission signals and 
monitoring of machining processes. Ultrasonics, 38, 1-8, 598-603, ISSN: 0041-624X. 

Grabec, I., Govekar, E., Susic, E., Antolovic, B. (1998) Monitoring manufacturing processes 
by utilizing empirical modelling. Ultrasonics, 36, 1-5, 263-271, ISSN: 0041-624X. 

Hong, S.Y. (1993) Knowledge-based diagnosis of drill conditions. Journal of Intelligent 
Manufacturing, 4, 3, 233-241, ISSN: 0956-5515. 

Hou, T.H., Liu, W.L., Lin, L. (2003) Intelligent remote monitoring and diagnosis of 
manufacturing processes using an integrated approach of neural networks and 
rough sets. Journal of Intelligent Manufacturing,  14, 2, 239-253, ISSN: 0956-5515. 

 

Huang, P.T., Chen, J.C. (1998) Fuzzy logic-base tool breakage detecting system in end 
milling operations. Computers and Industrial Engineering, 35, 1-2, 37-40, ISSN: 0360-
8352. 

Inasaki, I., (1998) Application of acoustic emission sensor for monitoring machining 
processes. Ultrasonics, 36, 1-5, 273-281, ISSN: 0041-624X. 

Jemielniak, K., Kwiatkowski, L., Wrzosek, P. (1998) Diagnosis of tool wear based on cutting 
forces and acoustic emission measures as inputs to a neural network. Journal of 
Intelligent Manufacturing, 9, 5, 447-455, ISSN: 0956-5515. 

Jin, J., Shi, J. (2001) Automatic feature extraction of waveform signals for in-process 
diagnostic performance improvement. Journal of Intelligent Manufacturing, 12, 3, 257-
268, ISSN: 0956-5515. 

Karlsson, B., Karlsson, N., Wide, P. (2000) A dynamic safety system based on sensor fusion. 
Journal of Intelligent Manufacturing, 11, 5, 475-483, ISSN: 0956-5515. 

Kopac, J., Sali, S. (2001) Tool wear monitoring during the turning process. Journal of Materials 
Processing Technology, 113, 312-316, ISSN: 0924-0136. 

Larson Davis Laboratory, 2800 Manual, Preliminary Documentation 1/27/93. 
Lin, B., Zhu, M.Z., Yu, S.Y., Zhu, H.T., Lin, M.X. (2002) Study of synthesis identification in 

the cutting process with a fuzzy neural network. Journal of Materials Processing 
Technology, 129, 1-3, 131-134, ISSN: 0924-0136. 

Lu, M.C., Kannatey-Asibu, E. Jr. (2000) Analysis of sound signal generation due to flank 
wear in turning. International ME2000 Congress & Exposition, Orlando, FL. 

Malakooti, B.B., Zhou, Y.Q., Tandler, E.C. (1995) In-process regressions and adaptive 
multicriteria neural networks for monitoring and supervising machining 
operations. Journal of Intelligent Manufacturing, 6, 1, 53-66, ISSN: 0956-5515. 

Masory, O. (1991) Monitoring machining processes using multi-sensor readings fused by 
artificial neural network. Journal of Materials Processing Technology, 28, 1-2, 231-240, 
ISSN: 0924-0136. 

Masters, T. (1993) Practical Neural Networks Recipies in C++, Academic Press, San Diego, CA. 
Niu, Y., Wong, Y., Hong, G. (1998) Intelligent sensor system approach for reliable tool flank 

wear recognition. International Journal of Advanced Manufacturing Technology, 14, 2, 
77-84, ISSN: 0268-3768. 

Noise and Vibrations Works, References Manual version 1.22. 
Okafor, C., Adetona, O. (1995) Predicting quality characteristics of end-milled parts based 

on multi-sensor integration using neural networks, individual effects of learning 
parameters and rules. Journal of Intelligent Manufacturing,  6, 6, 389-400, ISSN: 0956-
5515. 

Ouafi, A.E., Guillot, M., Bedrouni, A. (2000) Accuracy enhancement of multi-axis CNC 
machines through on-line neurocompensation. Journal of Intelligent Manufacturing, 
11, 6, 535-545, ISSN: 0956-5515. 

Peng, Y. (2004) Intelligent condition monitoring using fuzzy inductive learning. Journal of 
Intelligent Manufacturing, 15, 3, 373-380, ISSN: 0956-5515. 

Rubio, E.M., Teti, R. (2004) Cutting tests definition for effective tool condition monitoring. 
IFAC-MIM ’04, Int. Conf. on Manufacturing, Modelling, Management and Control, 
Athens, 21-22 Oct. 

www.intechopen.com



Process Monitoring Systems for Machining Using Audible Sound Energy Sensors 233

 

7. References 

Brophy, C., Kelly, K., Byrne, G. (2002) AE-based condition monitoring of the drilling 
process. Journal of Materials Processing Technology, 124, 3, 305-310, ISSN: 0924-0136. 

Burke, L.I., Rangwala, S. (1991) Tool condition monitoring in metal cutting. A neural 
network approach. Journal of Intelligent Manufacturing, 2, 5, 269-280, ISSN: 0956-
5515. 

Byrne, G., Dornfeld, D., Inasaki, I., Ketteler, G., König, W., Teti, R. (1995) Tool Condition 
Monitoring (TCM) – The Status of Research and Industrial Application. Annals of 
the CIRP, 44, 2, 541-567, ISSN: 0007-8506. 

CA-Cricket Graph III For Macintosh: Version 1.0, User Guide, 1992. 
Chen, C., Lee, S., Santamarina, G. (1994) An object-oriented manufacturing control system. 

Journal of Intelligent Manufacturing, 5, 5, 315-321, ISSN: 0956-5515. 
Chen, F.F., Huang, J., Centeno, M.A. (1999) Intelligent scheduling and control of rail-guided 

vehicles and load/unload operations in a flexible manufacturing system. Journal of 
Intelligent Manufacturing, 10,5, 405-421, ISSN: 0956-5515. 

Chen, J.C. (2000) An effective fuzzy-nets training scheme for monitoring tool breakage. 
Journal of Intelligent Manufacturing, 11,1, 85-101, ISSN: 0956-5515. 

Chen, J.C., Chen, W.L. (1999) A tool breakage detection system using an accelerometer 
sensor. Journal of Intelligent Manufacturing, 10, 2, 187-197, ISSN: 0956-5515. 

Cho, D.W., Lee, S.J., Chu, C.N. (1999) The state of machining process monitoring research in 
Korea. International Journal of Machine Tools and Manufacturing, 39, 11, 1697-1715, 
ISSN: 0890-6955. 

Clark, W.I., Shih, A.J., Hardin, C.W., Lemaster, R.L., McSpadden, S.B. (2003) Fixed abrasive 
diamond wire machining—part I: process monitoring and wire tension force. 
International Journal of Machine Tools Manufacturing, 43, 5, 523-532, ISSN: 0890-6955. 

D'Errico, G.E. (1997) Adaptive systems for machining process monitoring and control. 
Journal of Materials Processing Technology, 64, 1-3, 75-84, ISSN: 0924-0136. 

Desforges, X., Habbadi, A., Geneste, L., Soler, F. (2004) Distributed machining control and 
monitoring using smart sensors/actuators. Journal of Intelligent Manufacturing, 15, 1, 
39-53, ISSN: 0956-5515. 

Dornfeld, D.A. (1992) Monitoring of machining process - Literature Review. Annals of the 
CIRP, 41, 1, 93-96, ISSN: 0007-8506. 

Emel, E. (1991) Tool wear detection by neural network based acoustic emission sensing. 
ASME, Dynamic Systems and Control Division Publication, 28, 79–85, ISSN: 0022-0434. 

Fu, J.C., Troy, C.A., Mori, K. (1996) Chatter classification by entropy functions and 
morphological processing in cylindrical traverse grinding. Precision Engineering,18, 
2-3, 110-117, ISSN: 0141-6359. 

Govekar, E., Gradišek, J., Grabec, I. (2000) Analysis of acoustic emission signals and 
monitoring of machining processes. Ultrasonics, 38, 1-8, 598-603, ISSN: 0041-624X. 

Grabec, I., Govekar, E., Susic, E., Antolovic, B. (1998) Monitoring manufacturing processes 
by utilizing empirical modelling. Ultrasonics, 36, 1-5, 263-271, ISSN: 0041-624X. 

Hong, S.Y. (1993) Knowledge-based diagnosis of drill conditions. Journal of Intelligent 
Manufacturing, 4, 3, 233-241, ISSN: 0956-5515. 

Hou, T.H., Liu, W.L., Lin, L. (2003) Intelligent remote monitoring and diagnosis of 
manufacturing processes using an integrated approach of neural networks and 
rough sets. Journal of Intelligent Manufacturing,  14, 2, 239-253, ISSN: 0956-5515. 

 

Huang, P.T., Chen, J.C. (1998) Fuzzy logic-base tool breakage detecting system in end 
milling operations. Computers and Industrial Engineering, 35, 1-2, 37-40, ISSN: 0360-
8352. 

Inasaki, I., (1998) Application of acoustic emission sensor for monitoring machining 
processes. Ultrasonics, 36, 1-5, 273-281, ISSN: 0041-624X. 

Jemielniak, K., Kwiatkowski, L., Wrzosek, P. (1998) Diagnosis of tool wear based on cutting 
forces and acoustic emission measures as inputs to a neural network. Journal of 
Intelligent Manufacturing, 9, 5, 447-455, ISSN: 0956-5515. 

Jin, J., Shi, J. (2001) Automatic feature extraction of waveform signals for in-process 
diagnostic performance improvement. Journal of Intelligent Manufacturing, 12, 3, 257-
268, ISSN: 0956-5515. 

Karlsson, B., Karlsson, N., Wide, P. (2000) A dynamic safety system based on sensor fusion. 
Journal of Intelligent Manufacturing, 11, 5, 475-483, ISSN: 0956-5515. 

Kopac, J., Sali, S. (2001) Tool wear monitoring during the turning process. Journal of Materials 
Processing Technology, 113, 312-316, ISSN: 0924-0136. 

Larson Davis Laboratory, 2800 Manual, Preliminary Documentation 1/27/93. 
Lin, B., Zhu, M.Z., Yu, S.Y., Zhu, H.T., Lin, M.X. (2002) Study of synthesis identification in 

the cutting process with a fuzzy neural network. Journal of Materials Processing 
Technology, 129, 1-3, 131-134, ISSN: 0924-0136. 

Lu, M.C., Kannatey-Asibu, E. Jr. (2000) Analysis of sound signal generation due to flank 
wear in turning. International ME2000 Congress & Exposition, Orlando, FL. 

Malakooti, B.B., Zhou, Y.Q., Tandler, E.C. (1995) In-process regressions and adaptive 
multicriteria neural networks for monitoring and supervising machining 
operations. Journal of Intelligent Manufacturing, 6, 1, 53-66, ISSN: 0956-5515. 

Masory, O. (1991) Monitoring machining processes using multi-sensor readings fused by 
artificial neural network. Journal of Materials Processing Technology, 28, 1-2, 231-240, 
ISSN: 0924-0136. 

Masters, T. (1993) Practical Neural Networks Recipies in C++, Academic Press, San Diego, CA. 
Niu, Y., Wong, Y., Hong, G. (1998) Intelligent sensor system approach for reliable tool flank 

wear recognition. International Journal of Advanced Manufacturing Technology, 14, 2, 
77-84, ISSN: 0268-3768. 

Noise and Vibrations Works, References Manual version 1.22. 
Okafor, C., Adetona, O. (1995) Predicting quality characteristics of end-milled parts based 

on multi-sensor integration using neural networks, individual effects of learning 
parameters and rules. Journal of Intelligent Manufacturing,  6, 6, 389-400, ISSN: 0956-
5515. 

Ouafi, A.E., Guillot, M., Bedrouni, A. (2000) Accuracy enhancement of multi-axis CNC 
machines through on-line neurocompensation. Journal of Intelligent Manufacturing, 
11, 6, 535-545, ISSN: 0956-5515. 

Peng, Y. (2004) Intelligent condition monitoring using fuzzy inductive learning. Journal of 
Intelligent Manufacturing, 15, 3, 373-380, ISSN: 0956-5515. 

Rubio, E.M., Teti, R. (2004) Cutting tests definition for effective tool condition monitoring. 
IFAC-MIM ’04, Int. Conf. on Manufacturing, Modelling, Management and Control, 
Athens, 21-22 Oct. 

www.intechopen.com



Future Manufacturing Systems234

 

Rubio, E.M., Teti, R., Baciu, I.L. (2006) Advanced signal processing in acoustic emission 
monitoring systems for machining technology. 2nd Int. Virtual Conf. on Intelligent 
Production Machines and Systems - IPROMS 2006, 3-14 July: 189-192. 

Rubio, E.M., Teti, R., Baciu, I.L. (2006) Main decision making procedures used in the 
monitoring systems of machining processes based on acoustic emission sensors. 5th 
CIRP Int. Sem. on Intelligent Computation in Manufacturing Engineering CIRP ICME 
‘06, Ischia, 25-28 July: 189-192. 

Shawaky, A., Rosenberger, T., Elbestawi, M. (1998) In process monitoring and control of 
thickness error in machining hollows shafts. Mechatronics, 8, 301-322. 

Sokolowski, A., Kosmol, J. (2001) Selected examples of cutting process monitoring and 
diagnostics. Journal of Materials Processing Technology, 113, 1-3, 322-330, ISSN: 0924-
0136. 

Spectrum Pressure Lavel (Spl 3100), Manual Version 0.98, Program Version 1.10. 
Teti, R., Buonadonna, P. (1999) Round Robin on Acoustic Emission Monitoring of 

Machining. Annals of the CIRP, 48, 3, 47-69, ISSN: 0007-8506. 
Teti, R., (1995) A Review of Tool Condition Monitoring a Literature. Annals of the CIRP, 44, 2, 

659-666, ISSN: 0007-8506. 
Teti, R., Baciu, I.L. (2004) Neural network processing of audible sound signal parameters for 

sensor monitoring of tool conditions. 4th CIRP Int. Sem. on Intelligent Computation in 
Manufacturing Engineering – CIRP ICME ‘04, Sorrento, 30 June - 2 July: 385-390. 

Teti, R., Baciu, I.L., Rubio, E.M. (2004) Neural network classification of audible sound 
signals for process monitoring during machining. Annals of DAAAM for 2004 & 
Proc. 15th Int. DAAAM Symp. on Intelligent Manufacturing Systems: 
Globalisation-Technology-Man-Nature, Ed. B. Katalinic, DAAAM International, 
ISSN 1726-9679, ISBN 3-901509-42-9: 459-460. 

Tönshoff, H.K., Wulsferg, J.P., Kals, H.J., Köning, W., Van Luttervelt, C.A. (1988) 
Developments and Trends in Monitoring and Control of Machining Processes. 
Annals of the CIRP, 37, 2, 611-622, ISSN: 0007-8506. 

Venkatesh, K., Zhou, M., Caudill, R.J. (1997) Design of artificial neural networks for tool 
wear monitoring. Journal of Intelligent Manufacturing, 8, 3, 215-226, ISSN: 0956-5515. 

Wilcos, S.J., Reuben, R.L., Souquet, P. (1997) The use of cutting force and acoustic emission 
signals for the monitoring the tool insert geometry during rough face milling. 
International Journal of Machine Tools Manufacturing, 32, 4, 481-494, ISSN: 0890-6955. 

Xiaoli, L., Yingxue, Y., Zhejun, Y. (1997) On-line tool condition monitoring system with 
wavelet fuzzy neural network. Journal of Intelligent Manufacturing, 8, 4, 271-276, 
ISSN: 0956-5515. 

Xu, Y., Ge, M. (2004) Hidden Markov model-based process monitoring system. Journal of 
Intelligent Manufacturing, 15, 3, 337-350, ISSN: 0956-5515. 

 
 
 

www.intechopen.com



Future Manufacturing Systems

Edited by Tauseef Aized

ISBN 978-953-307-128-2

Hard cover, 268 pages

Publisher Sciyo

Published online 17, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book is a collection of articles aimed at finding new ways of manufacturing systems developments. The

articles included in this volume comprise of current and new directions of manufacturing systems which I

believe can lead to the development of more comprehensive and efficient future manufacturing systems.

People from diverse background like academia, industry, research and others can take advantage of this

volume and can shape future directions of manufacturing systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Eva Rubio (2010). Machining Process Monitoring System Using Audible Energy Sound Sensors, Future

Manufacturing Systems, Tauseef Aized (Ed.), ISBN: 978-953-307-128-2, InTech, Available from:

http://www.intechopen.com/books/future-manufacturing-systems/machining-process-monitoring-system-using-

audible-energy-sound-sensors



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


