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1. Introduction    

First investigations on the dynamic response of bridges due to moving loads were 
motivated by the collapse of the Chester railway bridge in the UK in the middle of the 19th 
century. This failure made evident the need to gain some insight on how bridges and 
vehicles interact, and derived into the first models of moving loads by Willis (1849) and 
Stokes (1849). These models consisted of a concentrated moving mass where the inertial 
forces of the underlying structure were ignored. The latter were introduced for simple 
problems of moving loads on beams in the first half of the 20th century (Jeffcott, 1929; Inglis, 
1934; Timoshenko & Young, 1955). Although Vehicle-Bridge Interaction (VBI) problems 
were initially addressed by railway engineers, they rapidly attracted interest in highway 
engineering with the development of the road network and the need to accommodate an 
increasing demand for heavier and faster vehicle loads on bridges. In the 1920’s, field tests 
carried out by an ASCE committee (1931) laid the basis for recommendations on dynamic 
allowance for traffic loading in bridge codes, and further testing continued in the 50’s as 
part of the Ontario test programme (Wright & Green, 1963). However, site measurements 
are insufficient to cover all possible variations of those parameters affecting the bridge 
response, and VBI modelling offers a mean to extend the analysis to a wide range of 
scenarios (namely, the effect of road roughness or expansion joints, the effect of vehicle 
characteristics such as suspension, tyres, speed, axle spacing, weights, braking, or the effect 
of bridge structural form, dimensions and dynamic properties). A significant step forward 
took place in the 50’s and 60’s with the advent of computer technology. It is of particular 
relevance the work by Frýba (1972), who provides an extensive literature review on VBI and 
solutions to differential equations of motion of 1-D continuous beam bridge models when 
subjected to a constant or periodic force, mass and sprung vehicle models. At that time, VBI 
methods were focused on planar beam and vehicle models made of a limited number of 
degrees of freedom (DOFs). From the decade of the 70’s, the increase in computer power has 
facilitated the use of numerical methods based on the Finite Element Method (FEM) and 
more realistic spatial models with a large number of DOFs. This chapter reports on the most 
widely used finite element techniques for modelling road vehicles and bridges, and for 
implementing the interaction between both. 
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The complexity of the mathematical models used to describe the dynamic response of a 
structure under the action of a moving load varies with the purpose of the investigation and 
the desired level of accuracy. 1-D models can be used in preliminary studies of the bridge 
vibration, although they are more suited to bridges where the offset of the vehicle path with 
respect to the bridge centreline is small compared to the ratio of bridge length to bridge 
width. Bridge models can be continuous or made of discretized finite elements. Vehicle 
models can consist of moving constant forces, masses or sprung masses. The simplest 
vehicle models are made of constant forces that ignore the interaction between vehicle and 
bridge, and thus, they give better results when the vehicle mass is negligible compared to 
the bridge mass. The mass models allow for inertial forces of the moving load, but they are 
unable to capture the influence of the road irregularities on the vehicle forces and 
subsequently on the bridge response. The sprung mass models allow for modelling 
frequency components of the vehicle and they vary in complexity depending on the 
assumptions adopted for representing the performance of tyres, suspensions, etc. Once the 
equations of motion of bridge and vehicle models have been established, they are combined 
together to guarantee equilibrium of forces and compatibility of displacements at the contact 
points. The fundamental problem in VBI modelling is that the contact points move with 
time and for each point in time, the displacements of the vehicle are influenced by the 
displacements of the bridge, which affect the vehicle forces applied to the bridge which in 
turn again alter the bridge displacements and interaction forces. This condition makes the 
two sets of equations of motion coupled, prevents the existence of a closed form solution 
(except for simple models, i.e., moving constant forces), and makes the use of numerical 
methods necessary. It is the aim of this chapter to show how to formulate and solve the VBI 
problem for a given road profile, and sophisticated vehicle and bridge FE models. The 
chapter is divided in four sections: the definition of the dynamic behaviour of the bridge 
model (Section 2), those equations describing the response of the vehicle model (Section 3), 
the road profile (Section 4), and the algorithm used to implement the interaction between 
vehicle, road and bridge models (Section 5).  

 
2. The Bridge  

The response of a discretized FE bridge model to a series of time-varying forces can be 
expressed by: 
 

 b b b b b b b[M ]{w } + [C ]{w } + [K ]{w } = {f }  (1) 
 
where [Mb], [Cb] and [Kb] are global mass, damping and stiffness matrices of the model 
respectively, b{w } ,  b{w } and  b{w } are the global vectors of nodal bridge displacements and 
rotations, their velocities and accelerations respectively, and {fb} is the global vector of 
interaction forces between the vehicle and the bridge acting on each bridge node at time t. In 
Equation (1), damping has been assumed to be viscous, i.e., proportional to the nodal 
velocities. Rayleigh damping is commonly used to model viscous damping and it is given 
by: 
 

b b b[C ] = α[M ] + β[K ] (2) 

where  and  are constants of proportionality. If  is assumed to be constant,  and  can 
be obtained by using the relationships  = 212/(1+2) and  = 2/(1+2) where 1 and 
2 are the first two natural frequencies of the bridge, although   can also be varied for each 
mode of vibration (Clough & Penzien, 1993). The damping mechanisms of a bridge may 
involve other phenomena such as friction, but they are typically ignored because the levels 
of damping of a bridge are small, and a somewhat more complex damping modelling would 
not change the outcome significantly. Cantieni (1983) tests 198 concrete bridges finding an 
average viscous damping ratio () of 1.3% (minimum of 0.3%), Billing (1984) reports on an 
average value of 2.2% (minimum of 0.8%) for 4 prestressed concrete bridges of spans 
between 8 and 42 m, and  1.3% (minimum of 0.4%) for 14 steel bridges with spans between 4 
and 122 m, and Tilly (1986) gives values of 1.2% (minimum 0.3%) for 213 concrete bridges of 
span between 10 and 85 m, and 1.3% (minimum 0.9%) for 12 composite, steel-concrete 
bridges of span between 28 and 41 m (Green, 1993). Damping usually decreases as the 
bridge length increases, and it is smaller in straight bridges than in curved or skew bridges. 
Regarding the first natural frequency (in Hz) of the bridge, Cantieni (1983) finds a 
relationship with bridge span length L (in meters) given by 95.4L-0.933 based on 224 concrete 
bridges (205 of them prestressed). Nevertheless, the scatter is significant due to the variety 
of bridges, and when focusing the analysis on 100 standard bridges of similar characteristics 
(i.e., relatively straight), a regression analysis resulted into 90.6L-0.923. Tilly (1986) extended 
Cantieni’s work to 874 bridges (mostly concrete) leading to a general expression of 82L-0.9. 
Heywood et al (2001) suggests a relationship 100/L for a preliminary estimation of the main 
frequency of the bridge, although there could be significant variations for shorter spans and 
singular structures going from 80/L to 120/L (i.e., timber and steel bridges exhibit smaller 
natural frequencies than reinforced or prestressed concrete bridges). The theoretical 
equation for the first natural frequency of a simply supported beam given by 

( )2
1f = π EI μ 2L  where  is mass per unit length and E is modulus of elasticity, has been 

found to be a good approximation for single span simply supported bridges (Barth & Wu, 
2007). For bridges 15 m wide, span to depth ratio of 20 and assuming E = 35x109 N/m2, the 
theoretical equation of the beam leads to a frequency given by the relationship 85/L for 
solid slab decks made of inverted T beams (L < 21 m) and by 84.7L-0.942 (approximately 
102/L) for beam-and-slab sections (17 m < L < 43 m). Single spans with partially restrained 
boundary conditions or multi-span structures lead to higher first natural frequencies than 
the one obtained with the theoretical equation of the simply supported beam. In this case, 
Barth & Wu (2007) suggests multiplying the frequency obtained using the equation of the 
beam by a correction factor 2 that depends on the maximum span length, average section 
stiffness and number of spans. 

 
2.1 Types of FE Models for Bridges 
The size and values of [Mb], [Cb] and [Kb] are going to depend on the type of elements 
employed in modelling the bridge deck. The coefficients of these matrixes are established 
using the FEM by: (a) applying the principal of virtual displacements to derive the 
elementary mass, damping and stiffness matrixes and then, assembling them into the global 
matrixes of the model, or (b) simply constructing the model based on the built-in code of a 
FE package such as ANSYS (Deng & Cai, 2010), LS-DYNA (Kwasniewski et al., 2006), 
NASTRAN (Baumgärtner, 1999; González et al., 2008a), or STAAD (Kirkegaard et al., 1997).  
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involve other phenomena such as friction, but they are typically ignored because the levels 
of damping of a bridge are small, and a somewhat more complex damping modelling would 
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bridge length increases, and it is smaller in straight bridges than in curved or skew bridges. 
Regarding the first natural frequency (in Hz) of the bridge, Cantieni (1983) finds a 
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Cantieni’s work to 874 bridges (mostly concrete) leading to a general expression of 82L-0.9. 
Heywood et al (2001) suggests a relationship 100/L for a preliminary estimation of the main 
frequency of the bridge, although there could be significant variations for shorter spans and 
singular structures going from 80/L to 120/L (i.e., timber and steel bridges exhibit smaller 
natural frequencies than reinforced or prestressed concrete bridges). The theoretical 
equation for the first natural frequency of a simply supported beam given by 

( )2
1f = π EI μ 2L  where  is mass per unit length and E is modulus of elasticity, has been 

found to be a good approximation for single span simply supported bridges (Barth & Wu, 
2007). For bridges 15 m wide, span to depth ratio of 20 and assuming E = 35x109 N/m2, the 
theoretical equation of the beam leads to a frequency given by the relationship 85/L for 
solid slab decks made of inverted T beams (L < 21 m) and by 84.7L-0.942 (approximately 
102/L) for beam-and-slab sections (17 m < L < 43 m). Single spans with partially restrained 
boundary conditions or multi-span structures lead to higher first natural frequencies than 
the one obtained with the theoretical equation of the simply supported beam. In this case, 
Barth & Wu (2007) suggests multiplying the frequency obtained using the equation of the 
beam by a correction factor 2 that depends on the maximum span length, average section 
stiffness and number of spans. 

 
2.1 Types of FE Models for Bridges 
The size and values of [Mb], [Cb] and [Kb] are going to depend on the type of elements 
employed in modelling the bridge deck. The coefficients of these matrixes are established 
using the FEM by: (a) applying the principal of virtual displacements to derive the 
elementary mass, damping and stiffness matrixes and then, assembling them into the global 
matrixes of the model, or (b) simply constructing the model based on the built-in code of a 
FE package such as ANSYS (Deng & Cai, 2010), LS-DYNA (Kwasniewski et al., 2006), 
NASTRAN (Baumgärtner, 1999; González et al., 2008a), or STAAD (Kirkegaard et al., 1997).  
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Given that a simple 1-D beam model is unable to accurately represent 2-D or 3-D bridge 
behaviour, the most common techniques for modelling bridge decks can be classified into: 2-
D plate modelling (Fig. 1), 2-D grillage modelling (Fig. 2) and 3-D FE models. A 3-D FE 
model can be made of 3-D solid elements (Kwasniewski et al., 2006; Deng & Cai, 2010) or a 
combination of 1-D, 2-D and/or 3-D finite elements. The global matrixes of the 2-D grillage 
and plate bridge models are the result of assembling 1-D beam and 2-D plate elementary 
matrixes respectively. The number, location and properties of the elements employed in 2-D 
FE models are discussed here. 
 

 
Fig. 1. Plate model of a bridge deck 
 

 
Fig. 2. Grillage model of a bridge deck 
 
Plate bridge models have been used to investigate VBI by Olsson (1985), Kirkegaard et al 
(1997), Henchi et al (1998), Zhu & Law (2002), Cantero et al (2009) and González et al (2010). 
They are based on thin plate theory, which assumes the normal and shear strains in the ‘z’ 
direction (perpendicular to the plate plane) to be negligible. Using kinematic, constitutive 
and equilibrium equations, it is possible to derive the expressions for internal moment 
(Mx,My,Mxy are total moments acting on each face and mx,my,mxy are per unit breadth) and 
shear (Qx,Qy) shown in Fig. 1 as a function of nodal vertical displacement in the ‘z’ direction 
(w=w(x,y)), material (Ex,Ey,vx,vy,G) and section properties (a,b,i,j). 
Grillage bridge models are also often found in VBI literature (Huang et al., 1992; Wang et al., 
1996; Tan et al., 1998; Liu et al., 2002; Nassif & Liu, 2004). While a plate model of a bridge 
deck is a mesh made of 2-D plate elements, a grillage model of a bridge is a skeletal 

structure consisting of a mesh of 1-D beams. The static equations that provide the bending 
moments (Mx,My) and shear (Qx,Qy) for a series of beams in the ‘x’ and ‘y’ directions are 
given in Fig. 2. A large investigation by West (1973) concluded that grillage modelling is 
very well suited for analysis of slab and beam-and-slab bridge decks and it has obvious 
advantages regarding simplicity, accuracy, computational time and ease to interpretate the 
results. It must be noted that there are a number of inaccuracies associated to grillage 
modelling (OBrien & Keogh, 1999). I.e., the diagram of internal forces is discontinuous at the 
grillage nodes and it is difficult to ensure the same twisting curvature in two perpendicular 
directions (kxy = kyx), although these limitations can be greatly reduced by the use of a fine 
mesh. Therefore, the influence of curvature in the direction perpendicular to the moment 
being sought (products vxkx and vyky in Equations of bending moment in Fig. 1) is ignored 
in grillage calculations, but the low value of Poisson’s ratio and the fact that this effect is 
ignored in both directions reduces the implications of this inconsistency. Finally, the 
influence of the twisting moment is neglected on the calculation of shear, which may be 
significant in the case of very high skew bridges.  

 
2.2 Guidelines for Deck Modeling 
The properties of the 1-D beam elements of a grillage model or the 2-D elements of a plate 
model will depend of the type of deck cross-section being modelled: a solid slab, a voided 
slab, a beam-and-slab, or a cellular section, with or without edge cantilevers. When 
modelling a bridge deck using a plate FE model, OBrien & Keogh (1999) recommend to: (a) 
use elements as regularly shaped as possible. In the case of a quadrilateral element, one 
dimension should not be larger than twice the other dimension; (b) avoid mesh 
discontinuities (i.e., in transitions from a coarse mesh to a fine mesh all nodes should be 
connected); and (c) place element nodes at bearings and use elastic springs if compressibility 
of bearings or soil was significant. It must also be noted there are inaccuracies associated to 
the calculation of shear near supports which can result in very high and unrealistic values.  
The idealisation of a uniform solid slab deck as in Fig. 3 by a plate FE model is 
straightforward, i.e., the plate elements are given the same depth and material properties as 
the original slab. If using a grillage to model a solid slab deck, each grillage beam element 
(longitudinal or transverse) must have the properties (second moment of area and torsional 
constants) that resemble the longitudinal and transverse bending and twisting behaviour of 
the portion of the bridge being represented. By comparison of equations in Figs. 1 and 2, and 
neglecting the terms vyky and vxkx, the second moments of area for the grillage beams in the 
‘x’ and ‘y’ directions that imitate the behaviour of a thin plate of width a, length b and depth 
d are given by: 
 

x
x y

i
I = a ai

1 - v v
;          y

x y

i
I = b bi

1 - v v
 (3) 

 
where i is the second moment of area per unit breadth of a thin plate or d3/12. The torsional 
constants of the beams in the longitudinal and transverse directions will be given by: 
 

xJ = aj ;          yJ = bj  (4) 
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where j is the torsional constant per unit breadth of a slab or d3/6. Hambly (1991) provides 
the following recommendations to decide on the number of beams and location of nodes for 
a grillage model: (a) place grillage beams along load paths within the structure (i.e., where 
longitudinal or transverse beams are located in the bridge, above bearings, etc.); (b) consider 
how stresses distribute within the structure (i.e., in the case of a solid thin plate, since the 
vertical shear flow due to a twisting moment stops at 0.3d from the section edge - d is the 
section depth -, an edge longitudinal grillage beam should be placed at this location); (c) the 
number of longitudinal beams can go from 1 to 20 and the spacing between longitudinal 
beams typically varies between 2d and L/4 where L is the span length. A grillage model is 
unable to capture the local load dispersion throughout the depth, therefore, smaller spacings 
than 2d do not necessarily improve accuracy; (d) the spacing between transverse grillage 
beams should be approximately equal to the spacing between longitudinal grillage beams; 
(e) in straight bridges, transverse grillage beams are perpendicular to longitudinal grillage 
beams except in the case of skew reinforcement; (f) when modelling high skew bridges, very 
close bearings or compressible soil, springs may be necessary to allow for possible vertical 
displacements of the grillage nodes at the support locations and; (g) a fine mesh should be 
employed in those areas with large variations of load effect, i.e., over internal supports. The 
load effect in a beam resulting from a grillage analysis represents the total moment acting on 
a portion of the bridge. Hence, small spacings between grillage beams are associated to 
small portions of the bridge and allow a better definition of the load effect distribution than 
a coarse mesh. 
Fig. 3 shows plan, cross-section and elevation view of a grillage model associated to a solid 
slab deck of width W, span length L and depth d (an overhang of length V is allowed at 
both end supports). Placing the longitudinal edge beams at 0.3d from the edge and initially 
assuming the longitudinal beams are spaced by 2d, the number of longitudinal beams, nL, is 
given by the integer part, typically rounded to an odd number, of ((W-2x0.3d)/2d+1). 
Therefore, the spacing between longitudinal beams, SL, will be given by (W-2x0.3d)/(nL-1). 
This value should be adjusted to facilitate the existence of longitudinal grillage beams across 
the path of the vehicle wheels. Similarly, the number of transverse beams, nT, is initially 
estimated by assuming they have the same spacing as longitudinal beams (nT = 
integer(L/SL+1)), and their final spacing will be given by ST = L/(nT-1). In the grillage model 
of Fig. 3, there are 4 types of beams: longitudinal interior (thick dashed lines), longitudinal 
edge (thin dashed), transverse interior (thick dotted) and transverse edge (thin dotted). For a 
uniform slab deck, all beams bend about the neutral axis of the cross-section they represent 
(mid-depth). Therefore, the total second moment of area, I, and torsional constant, J, will be 
the result of multiplying i (= d3/12) and j (= d3/6) respectively by the width of the portion of 
the bridge that each grillage beam is associated to (Equations (3) and (4)). When calculating 
the beam torsional constant, only the breadth where shear stresses act needs to be taken into 
account (i.e., there will be no shear stresses within 0.3d from the bridge edge).  
In the case of modelling a slab with edge cantilever (Fig. 4(a)), three regions can be 
distinguished: the edge elements that constitute the cantilever, the interior elements that 
form the main bridge deck and the transition elements separating the other two. When 
calculating the properties of the longitudinal beams, it must be taken into account that: (a) 
the edge portion of the bridge will bend about the neutral axis of the cantilever (i.e., i = 
dc3/12 where dc is the cantilever thickness); (b) the interior elements will bend about the 
neutral axis of the bridge (i.e., i = [dm((dm/2)-zb)2+dm3/12] where zb and dm are the location 

of the neutral axis of the cross-section of the bridge and the depth of the main deck 
respectively); and (c) the transition elements will bend about some axis in-between (i.e., 
inertia is obtained subtracting the inertia of the cantilever about its own axis from the inertia 
of both the transition and cantilever elements with respect to the bridge neutral axis. This 
adjustment allows for a gradual variation of the neutral axis of the bridge that rises from the 
interior elements towards the edge elements). The thickness of the edge (te), interior (tm) and 

transition (tt) plate elements can be obtained from t  3 12i using the value of second 
moment of area per unit breadth, i, corresponding to the element under investigation. 
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Dx and Dy relate bending moments to curvatures in the ‘x’ and ‘y’ directions respectively 
(Fig. 1). If Ex = Ey, then Dx = Dy (isotropic). For the case of a voided slab deck (Fig. 4(b)), the 
flexural rigidities per unit breadth in the ‘x’ and ‘y’ directions, derived in Equation (6) using 
theory of continuum mechanics (OBrien & Keogh, 1999), can be clearly different depending 
on the ratio void diameter to bridge depth (i.e., highly orthotropic). 
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where j is the torsional constant per unit breadth of a slab or d3/6. Hambly (1991) provides 
the following recommendations to decide on the number of beams and location of nodes for 
a grillage model: (a) place grillage beams along load paths within the structure (i.e., where 
longitudinal or transverse beams are located in the bridge, above bearings, etc.); (b) consider 
how stresses distribute within the structure (i.e., in the case of a solid thin plate, since the 
vertical shear flow due to a twisting moment stops at 0.3d from the section edge - d is the 
section depth -, an edge longitudinal grillage beam should be placed at this location); (c) the 
number of longitudinal beams can go from 1 to 20 and the spacing between longitudinal 
beams typically varies between 2d and L/4 where L is the span length. A grillage model is 
unable to capture the local load dispersion throughout the depth, therefore, smaller spacings 
than 2d do not necessarily improve accuracy; (d) the spacing between transverse grillage 
beams should be approximately equal to the spacing between longitudinal grillage beams; 
(e) in straight bridges, transverse grillage beams are perpendicular to longitudinal grillage 
beams except in the case of skew reinforcement; (f) when modelling high skew bridges, very 
close bearings or compressible soil, springs may be necessary to allow for possible vertical 
displacements of the grillage nodes at the support locations and; (g) a fine mesh should be 
employed in those areas with large variations of load effect, i.e., over internal supports. The 
load effect in a beam resulting from a grillage analysis represents the total moment acting on 
a portion of the bridge. Hence, small spacings between grillage beams are associated to 
small portions of the bridge and allow a better definition of the load effect distribution than 
a coarse mesh. 
Fig. 3 shows plan, cross-section and elevation view of a grillage model associated to a solid 
slab deck of width W, span length L and depth d (an overhang of length V is allowed at 
both end supports). Placing the longitudinal edge beams at 0.3d from the edge and initially 
assuming the longitudinal beams are spaced by 2d, the number of longitudinal beams, nL, is 
given by the integer part, typically rounded to an odd number, of ((W-2x0.3d)/2d+1). 
Therefore, the spacing between longitudinal beams, SL, will be given by (W-2x0.3d)/(nL-1). 
This value should be adjusted to facilitate the existence of longitudinal grillage beams across 
the path of the vehicle wheels. Similarly, the number of transverse beams, nT, is initially 
estimated by assuming they have the same spacing as longitudinal beams (nT = 
integer(L/SL+1)), and their final spacing will be given by ST = L/(nT-1). In the grillage model 
of Fig. 3, there are 4 types of beams: longitudinal interior (thick dashed lines), longitudinal 
edge (thin dashed), transverse interior (thick dotted) and transverse edge (thin dotted). For a 
uniform slab deck, all beams bend about the neutral axis of the cross-section they represent 
(mid-depth). Therefore, the total second moment of area, I, and torsional constant, J, will be 
the result of multiplying i (= d3/12) and j (= d3/6) respectively by the width of the portion of 
the bridge that each grillage beam is associated to (Equations (3) and (4)). When calculating 
the beam torsional constant, only the breadth where shear stresses act needs to be taken into 
account (i.e., there will be no shear stresses within 0.3d from the bridge edge).  
In the case of modelling a slab with edge cantilever (Fig. 4(a)), three regions can be 
distinguished: the edge elements that constitute the cantilever, the interior elements that 
form the main bridge deck and the transition elements separating the other two. When 
calculating the properties of the longitudinal beams, it must be taken into account that: (a) 
the edge portion of the bridge will bend about the neutral axis of the cantilever (i.e., i = 
dc3/12 where dc is the cantilever thickness); (b) the interior elements will bend about the 
neutral axis of the bridge (i.e., i = [dm((dm/2)-zb)2+dm3/12] where zb and dm are the location 

of the neutral axis of the cross-section of the bridge and the depth of the main deck 
respectively); and (c) the transition elements will bend about some axis in-between (i.e., 
inertia is obtained subtracting the inertia of the cantilever about its own axis from the inertia 
of both the transition and cantilever elements with respect to the bridge neutral axis. This 
adjustment allows for a gradual variation of the neutral axis of the bridge that rises from the 
interior elements towards the edge elements). The thickness of the edge (te), interior (tm) and 

transition (tt) plate elements can be obtained from t  3 12i using the value of second 
moment of area per unit breadth, i, corresponding to the element under investigation. 
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where E is the modulus of elasticity, d is the full depth of the voided slab, dv is the void 
diameter and sv is the distance between void centres. In order to be able to imitate the 
response of an orthotropic deck as closely as possible, the flexural rigidities of a plate FE 
model (Equation (5)) must be adjusted to match those in the original voided slab deck 
(Equation (6)). For this purpose, two different modulus of elasticity are assumed, xE  and 


yE . Then, by doing 

xE = E , it is possible to obtain the value of the plate thickness replacing 

the flexural rigidity of the original bridge in the ‘x’ direction (from Equation (6)) into 

Equation (5), i.e., 3t  xD E . Similarly, the modulus of elasticity in the ‘y’ direction, 
yE , is 

adjusted to give the correct Dy (from Equation (6)) through  3
y yyE = D i = 12D t . 

 
   (a)                                                                               (b) 
Fig. 4. Grillage and plate FEM: (a) Slab with edge cantilever; (b) Voided slab 
 
When using a grillage to model a beam-and-slab deck, the girders and diaphragms of the 
deck are associated to longitudinal and transverse grillage beams respectively. Additional 
transverse grillage beams representing only slab will be necessary to cover for the entire 
bridge span. When calculating the properties of the longitudinal grillage beams, it must be 
taken into account that the portion of the deck being represented will bend about its own 
axis (and not about the neutral axis of the entire bridge cross-section) due to the poor load 
transfer of this type of construction. The torsional constant of a longitudinal grillage beam 
will be equal to the torsional constant of the bridge beam plus the torsional constant of the 
thin slab. Therefore, in the case of a composite section made of different materials for beam 
and slab, properties will be obtained using an equivalent area in one of the two materials, 
adjusting the width of the other material based on the modular ratio. When transverse 
grillage beams are not placed at the location of diaphragm beams, and they only represent 
slab, they will bend about the neutral axis of the slab and their torsional constant will be 
equal to the torsional constant of a thin slab. Alternatively, a beam-and-slab bridge deck can 
be modelled using a combination of 1-D beams and 2-D plates. The guard rails, longitudinal 
and transverse beams in the bridge will be idealised with beam elements while the deck will 
be modelled with plate elements (Chompooming & Yener, 1995; Kim et al., 2005; González 
et al., 2008a). 
In the case of using a grillage to model a cellular deck, a longitudinal grillage beam can be 
placed at the location of each web making the cross-section. These grillage beams will bend 
about the neutral axis of the full section. The properties of edge longitudinal grillage 
members representing edge webs must take into account the contribution of edge 

cantilevers to torsion and bending stiffness. The sum of the torsional constants of all grillage 
longitudinal beams will be equal to the sum of the torsional constants of the individual cells 
(i.e., a closed section) plus the torsional constants of the edge cantilevers (i.e., a thin slab). 
Caution must be placed upon the determination of the area of the transverse grillage beams, 
which should be reduced to allow for transverse shear distortion, typical of cellular sections. 
Models of bridges with cables attached to the deck can be found in Wang & Huang (1992), 
Chatterjee et al (1994a), Guo & Xu (2001), Xu & Guo (2003) and Chan et al (2003). 

 
3. The Vehicle 

While the equations of motion of the bridge are obtained using the FEM, there are three 
alternative methods to derive the equations of motion of the vehicle: (a) imposing 
equilibrium of all forces and moments acting on the vehicle and expressing them in terms of 
their DOFs (Hwang & Nowak, 1991; Kirkegaard et al., 1997; Tan el al., 1998; Cantero et al., 
2010), (b) using the principle of virtual work (Fafard et al., 1997) or a Lagrange formulation 
(Henchi et al., 1998), and (c) applying the code of an available FE package. The equations of 
equilibrium deal with vectors (forces) and they can be applied to relatively simple vehicle 
models, while an energy approach has the advantage of dealing with scalar amounts (i.e., 
contribution to virtual work) that can be added algebraically and are more suitable for 
deriving the equations of complex vehicle models. Similarly to the bridge, the equations of 
motion of a vehicle can be expressed in matrix form as: 
 

 v v v v v v v[M ]{w } + [C ]{w } + [K ]{w } = {f }  (7) 
 
where [Mv], [Cv] and [Kv] are global mass, damping and stiffness matrices of the vehicle 
respectively, v{w } ,  v{w }

 
and  v{w }

 
are the vectors of global coordinates, their velocities 

and accelerations respectively, and {fv} is the vector of forces acting on the vehicle at time t.  
The modes of vibration of the theoretical model should resemble the body pitch/bounce 
and axle hop/roll motions of the true vehicle. Body oscillations are related to the stiffness of 
suspensions and sprung mass (vehicle body) and they have frequencies between 1 and 3 Hz 
for a heavy truck and between 2 and 5 Hz for a light truck. Axle oscillations are mainly 
related to the unsprung masses (wheels and axles) and have higher frequencies, in a range 
from 8 Hz to 15 Hz. In the presence of simultaneous vehicle presence, frequency matching 
and resonance effects on the bridge response are unlikely. But in the case of a single truck, 
Cantieni (1983) has measured average dynamic increments on bridges with normal 
pavement conditions of 30-40% (maximum of 70%) when their first natural frequency felt 
within the range 2 to 5 Hz, that decreased to an average dynamic increment between 10 and 
20% when the natural frequency felt outside that frequency range. Green et al (1995) analyse 
the decrease in bridge response when the vehicles are equipped with air-suspensions 
compared to steel suspensions due to the low dynamic forces they apply to the bridge.  

 
3.1 Types of FE Models for Vehicles  
There is a wide range of sprung vehicle models used in VBI investigations. Planar vehicle 
models have been found to provide a reasonable bridge response for ratios bridge width to 
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where E is the modulus of elasticity, d is the full depth of the voided slab, dv is the void 
diameter and sv is the distance between void centres. In order to be able to imitate the 
response of an orthotropic deck as closely as possible, the flexural rigidities of a plate FE 
model (Equation (5)) must be adjusted to match those in the original voided slab deck 
(Equation (6)). For this purpose, two different modulus of elasticity are assumed, xE  and 


yE . Then, by doing 

xE = E , it is possible to obtain the value of the plate thickness replacing 

the flexural rigidity of the original bridge in the ‘x’ direction (from Equation (6)) into 

Equation (5), i.e., 3t  xD E . Similarly, the modulus of elasticity in the ‘y’ direction, 
yE , is 

adjusted to give the correct Dy (from Equation (6)) through  3
y yyE = D i = 12D t . 

 
   (a)                                                                               (b) 
Fig. 4. Grillage and plate FEM: (a) Slab with edge cantilever; (b) Voided slab 
 
When using a grillage to model a beam-and-slab deck, the girders and diaphragms of the 
deck are associated to longitudinal and transverse grillage beams respectively. Additional 
transverse grillage beams representing only slab will be necessary to cover for the entire 
bridge span. When calculating the properties of the longitudinal grillage beams, it must be 
taken into account that the portion of the deck being represented will bend about its own 
axis (and not about the neutral axis of the entire bridge cross-section) due to the poor load 
transfer of this type of construction. The torsional constant of a longitudinal grillage beam 
will be equal to the torsional constant of the bridge beam plus the torsional constant of the 
thin slab. Therefore, in the case of a composite section made of different materials for beam 
and slab, properties will be obtained using an equivalent area in one of the two materials, 
adjusting the width of the other material based on the modular ratio. When transverse 
grillage beams are not placed at the location of diaphragm beams, and they only represent 
slab, they will bend about the neutral axis of the slab and their torsional constant will be 
equal to the torsional constant of a thin slab. Alternatively, a beam-and-slab bridge deck can 
be modelled using a combination of 1-D beams and 2-D plates. The guard rails, longitudinal 
and transverse beams in the bridge will be idealised with beam elements while the deck will 
be modelled with plate elements (Chompooming & Yener, 1995; Kim et al., 2005; González 
et al., 2008a). 
In the case of using a grillage to model a cellular deck, a longitudinal grillage beam can be 
placed at the location of each web making the cross-section. These grillage beams will bend 
about the neutral axis of the full section. The properties of edge longitudinal grillage 
members representing edge webs must take into account the contribution of edge 

cantilevers to torsion and bending stiffness. The sum of the torsional constants of all grillage 
longitudinal beams will be equal to the sum of the torsional constants of the individual cells 
(i.e., a closed section) plus the torsional constants of the edge cantilevers (i.e., a thin slab). 
Caution must be placed upon the determination of the area of the transverse grillage beams, 
which should be reduced to allow for transverse shear distortion, typical of cellular sections. 
Models of bridges with cables attached to the deck can be found in Wang & Huang (1992), 
Chatterjee et al (1994a), Guo & Xu (2001), Xu & Guo (2003) and Chan et al (2003). 

 
3. The Vehicle 

While the equations of motion of the bridge are obtained using the FEM, there are three 
alternative methods to derive the equations of motion of the vehicle: (a) imposing 
equilibrium of all forces and moments acting on the vehicle and expressing them in terms of 
their DOFs (Hwang & Nowak, 1991; Kirkegaard et al., 1997; Tan el al., 1998; Cantero et al., 
2010), (b) using the principle of virtual work (Fafard et al., 1997) or a Lagrange formulation 
(Henchi et al., 1998), and (c) applying the code of an available FE package. The equations of 
equilibrium deal with vectors (forces) and they can be applied to relatively simple vehicle 
models, while an energy approach has the advantage of dealing with scalar amounts (i.e., 
contribution to virtual work) that can be added algebraically and are more suitable for 
deriving the equations of complex vehicle models. Similarly to the bridge, the equations of 
motion of a vehicle can be expressed in matrix form as: 
 

 v v v v v v v[M ]{w } + [C ]{w } + [K ]{w } = {f }  (7) 
 
where [Mv], [Cv] and [Kv] are global mass, damping and stiffness matrices of the vehicle 
respectively, v{w } ,  v{w }

 
and  v{w }

 
are the vectors of global coordinates, their velocities 

and accelerations respectively, and {fv} is the vector of forces acting on the vehicle at time t.  
The modes of vibration of the theoretical model should resemble the body pitch/bounce 
and axle hop/roll motions of the true vehicle. Body oscillations are related to the stiffness of 
suspensions and sprung mass (vehicle body) and they have frequencies between 1 and 3 Hz 
for a heavy truck and between 2 and 5 Hz for a light truck. Axle oscillations are mainly 
related to the unsprung masses (wheels and axles) and have higher frequencies, in a range 
from 8 Hz to 15 Hz. In the presence of simultaneous vehicle presence, frequency matching 
and resonance effects on the bridge response are unlikely. But in the case of a single truck, 
Cantieni (1983) has measured average dynamic increments on bridges with normal 
pavement conditions of 30-40% (maximum of 70%) when their first natural frequency felt 
within the range 2 to 5 Hz, that decreased to an average dynamic increment between 10 and 
20% when the natural frequency felt outside that frequency range. Green et al (1995) analyse 
the decrease in bridge response when the vehicles are equipped with air-suspensions 
compared to steel suspensions due to the low dynamic forces they apply to the bridge.  

 
3.1 Types of FE Models for Vehicles  
There is a wide range of sprung vehicle models used in VBI investigations. Planar vehicle 
models have been found to provide a reasonable bridge response for ratios bridge width to 
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vehicle width greater than 5 (Moghimi & Ronagh, 2008a). A single-DOF model can be used 
for a preliminary study of the tyre forces at low frequencies due to sprung mass bouncing 
and pitching motion (Chatterjee et al., 1994b; Green & Cebon, 1997) and a two-DOF model 
(i.e., a quarter-car) can be employed to analyse main frequencies corresponding to body-
bounce and axle hop modes (Green & Cebon, 1994; Chompooming & Yener, 1995; Yang & 
Fonder, 1996; Cebon, 1999). If the influence of axle spacing was investigated, then a rigid 
walking beam (Hwang & Nowak, 1991; Green & Cebon, 1994; Chompooming & Yener, 
1995) or an articulated multi-DOF model (Veletsos & Huang, 1970; Hwang & Nowak, 1991; 
Green et al., 1995; Harris et al., 2007) will become necessary. The vehicle model can be 
extended to three dimensions to allow for roll and twisting motions. Most of these spatial 
models consist of an assemblage of 1-D elements, but they can also be made of 2-D and 3-D 
FEs for a detailed representation of the vehicle aerodynamic forces and deformations 
(Kwasniewski et al., 2006). However, it seems unlikely such a degree of sophistication could 
affect the bridge response significantly.  
So, spatial FE vehicle models are typically composed of mass, spring, bar and rigid elements 
that are combined to model tyre, suspension, axle/body masses and connections between 
them. The equations of motion of a spatial vehicle model can be established for rigid (Tan et 
al., 1998; Zhu & Law, 2002; Kim et al., 2005) or articulated configurations (EIMadany, 1988; 
Fafard et al., 1997; Kirkegaard et al., 1997; Nassif & Liu, 2004; Cantero et al., 2010). In the 
latter, equations of motion can be formulated for the tractor and trailer separately, and the 
DOFs of both parts can be related through a geometric condition that takes into account the 
hinge location. A series of lumped masses are employed to represent axles, tractor and 
trailer body. The body masses are connected to the frame by rigid elements, and the frame is 
connected to the axles by spring-dashpot systems that model the response of the suspension. 
Each axle is typically represented as a rigid bar with lumped masses at both ends that 
correspond to the wheel, axle bar, brakes and suspension masses (Alternatively, the axle 
mass can be assumed to be concentrated at the local centre of gravity of the rigid bar 
connecting both wheels with two DOFs: vertical displacement and rotation about the 
longitudinal axis). Then, the lumped mass at each wheel is connected to the road surface by 
a spring-dashpot system simulating the response of the tyre. Fig. 5 illustrates the forces 
acting on the tractor and trailer masses of an articulated vehicle travelling at constant speed. 
Equations of motion for a vehicle braking or accelerating can be found in Law & Zhu (2005) 
and Ju & Lin (2007).  
The system of time-varying forces acting on each lumped mass consists of inertial forces 
(i.e., i- j i- jm w ), gravity forces (mi-jg), suspension forces (fS,i-j) and tyre forces (fT,i-j). 

Equilibrium of vertical forces acting on the sprung mass of the tractor and equilibrium of 
moments of all forces about a ‘y’ axis going through its centroid (Fig. 5(a)) lead to Equations 
(8) and (9) respectively. 
 

p
( ) S,i-left S,i-rights s H

i=1
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where fH is the interaction force at the hinge and p is the number of axles supporting the 
sprung mass. 
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where xi is the distance from axle i to the centroid of the sprung mass, and it can be positive 
(to the right of the centroid) or negative (to the left of the centroid). Similar equations of 
equilibrium can be obtained for the sprung mass of the trailer. From equilibrium of 
moments of all forces acting on the body mass about an ‘x’ axis going through its centroid 
(Fig. 5(b)), it is possible to obtain: 
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  (a)                                                                                                      (b) 
Fig. 5. Sprung lumped mass models: (a) Forces acting on tractor and trailer sprung masses 
(side view), (b) Forces acting on the sprung and unsprung masses (front view) 
 
Wheel, axle and suspension mass are assumed to be concentrated at both ends of an axle i 
(mi-left and mi-right), and equilibrium at these lumped masses is given by Equation (11). 
Identical equations can be obtained for the unsprung masses of the trailer. 
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The two equations of equilibrium of vertical forces of the tractor (Equation (8)) and trailer 
body masses can be combined into one by cancelling out fH. Therefore, the suspension and 
tyre forces can be expressed as a function of the DOFs of the vertical displacement of the 
unsprung and sprung masses. Tyre forces can be defined by viscous damping elements 
(proportional to the damping constant and the relative change in velocity between the two 
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vehicle width greater than 5 (Moghimi & Ronagh, 2008a). A single-DOF model can be used 
for a preliminary study of the tyre forces at low frequencies due to sprung mass bouncing 
and pitching motion (Chatterjee et al., 1994b; Green & Cebon, 1997) and a two-DOF model 
(i.e., a quarter-car) can be employed to analyse main frequencies corresponding to body-
bounce and axle hop modes (Green & Cebon, 1994; Chompooming & Yener, 1995; Yang & 
Fonder, 1996; Cebon, 1999). If the influence of axle spacing was investigated, then a rigid 
walking beam (Hwang & Nowak, 1991; Green & Cebon, 1994; Chompooming & Yener, 
1995) or an articulated multi-DOF model (Veletsos & Huang, 1970; Hwang & Nowak, 1991; 
Green et al., 1995; Harris et al., 2007) will become necessary. The vehicle model can be 
extended to three dimensions to allow for roll and twisting motions. Most of these spatial 
models consist of an assemblage of 1-D elements, but they can also be made of 2-D and 3-D 
FEs for a detailed representation of the vehicle aerodynamic forces and deformations 
(Kwasniewski et al., 2006). However, it seems unlikely such a degree of sophistication could 
affect the bridge response significantly.  
So, spatial FE vehicle models are typically composed of mass, spring, bar and rigid elements 
that are combined to model tyre, suspension, axle/body masses and connections between 
them. The equations of motion of a spatial vehicle model can be established for rigid (Tan et 
al., 1998; Zhu & Law, 2002; Kim et al., 2005) or articulated configurations (EIMadany, 1988; 
Fafard et al., 1997; Kirkegaard et al., 1997; Nassif & Liu, 2004; Cantero et al., 2010). In the 
latter, equations of motion can be formulated for the tractor and trailer separately, and the 
DOFs of both parts can be related through a geometric condition that takes into account the 
hinge location. A series of lumped masses are employed to represent axles, tractor and 
trailer body. The body masses are connected to the frame by rigid elements, and the frame is 
connected to the axles by spring-dashpot systems that model the response of the suspension. 
Each axle is typically represented as a rigid bar with lumped masses at both ends that 
correspond to the wheel, axle bar, brakes and suspension masses (Alternatively, the axle 
mass can be assumed to be concentrated at the local centre of gravity of the rigid bar 
connecting both wheels with two DOFs: vertical displacement and rotation about the 
longitudinal axis). Then, the lumped mass at each wheel is connected to the road surface by 
a spring-dashpot system simulating the response of the tyre. Fig. 5 illustrates the forces 
acting on the tractor and trailer masses of an articulated vehicle travelling at constant speed. 
Equations of motion for a vehicle braking or accelerating can be found in Law & Zhu (2005) 
and Ju & Lin (2007).  
The system of time-varying forces acting on each lumped mass consists of inertial forces 
(i.e., i- j i- jm w ), gravity forces (mi-jg), suspension forces (fS,i-j) and tyre forces (fT,i-j). 

Equilibrium of vertical forces acting on the sprung mass of the tractor and equilibrium of 
moments of all forces about a ‘y’ axis going through its centroid (Fig. 5(a)) lead to Equations 
(8) and (9) respectively. 
 

p
( ) S,i-left S,i-rights s H

i=1
m w g (f f ) f 0      zF = 0  (8) 

 
where fH is the interaction force at the hinge and p is the number of axles supporting the 
sprung mass. 
 

p
y S,i-right S,i-lefty y i H H

i=1
= 0 I θ (f f )x f x 0     M  (9) 

 
where xi is the distance from axle i to the centroid of the sprung mass, and it can be positive 
(to the right of the centroid) or negative (to the left of the centroid). Similar equations of 
equilibrium can be obtained for the sprung mass of the trailer. From equilibrium of 
moments of all forces acting on the body mass about an ‘x’ axis going through its centroid 
(Fig. 5(b)), it is possible to obtain: 
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p p
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M = 0 I θ + f a f a- = 0  (10) 

 

 
  (a)                                                                                                      (b) 
Fig. 5. Sprung lumped mass models: (a) Forces acting on tractor and trailer sprung masses 
(side view), (b) Forces acting on the sprung and unsprung masses (front view) 
 
Wheel, axle and suspension mass are assumed to be concentrated at both ends of an axle i 
(mi-left and mi-right), and equilibrium at these lumped masses is given by Equation (11). 
Identical equations can be obtained for the unsprung masses of the trailer. 
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;  i=1,…,p (11) 

 
The two equations of equilibrium of vertical forces of the tractor (Equation (8)) and trailer 
body masses can be combined into one by cancelling out fH. Therefore, the suspension and 
tyre forces can be expressed as a function of the DOFs of the vertical displacement of the 
unsprung and sprung masses. Tyre forces can be defined by viscous damping elements 
(proportional to the damping constant and the relative change in velocity between the two 
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end points of the damper), and spring elements (proportional to the stiffness constant and 
the relative change in displacement between the two end points of the spring) as given in 
Equation (12) for the wheel forces in the left side.  
 

( ) ( )  T,i-left T,i-left i-left i-left i-left T,i-left i-left i-left i-leftf = k w + u - r + c w + u - r  (12) 
  
where ui-left and ri-left represent the bridge displacement and the height of the road 
irregularities respectively under the left wheel of axle i at a specified point in time. ui-j is 
related to the nodal displacements and rotations {wb}(e) of the bridge element where the 
wheel i-j is located through the displacement interpolation functions {N(x, y)}  of the element. 
The values of {N(x, y)} are a function of the coordinates (x, y)  of the wheel contact point with 
respect to the coordinates of the bridge element.  
 

(e)T
i- j bu = {N(x, y)} {w }  (13) 

 
In Figure 5(b), suspension systems have also been defined by a viscous damping element in 
parallel with a spring element. In this case of linear suspension elements, the forces fS are 
given by Equation (14) for the suspension forces in the left side of the vehicle. 
 

      y x y xθ θ θ θ   S,i-left S,i-left s i i-left i-left i-left S,i-left s i i-left i-left i-leftf = k w + x + a b - w + c w + x + a b - w
(14) 

 
The equations of tractor and trailer are not independent, as a compatibility condition can be 
defined between both rigid bodies rotating about the hinge (also known as fifth wheel 
point). Therefore, the number of DOFs of the system can be reduced by considering the 
following relationship between the displacements of the centroids of tractor and trailer: 
  

y yθ θ s s H Hw = w + x + x  (15) 
 
All equations of equilibrium can be expressed as a function of the vertical displacements of 
the wheels ( )   1-left 1-right p-left p-right 1-left 1-right p-left p-rightw , w , ...., w , w , w , w , ...., w , w , the three DOFs of 

the tractor (ws,x,y) and the two DOFs of the trailer (  
x yθ , θ ), by replacing Equations (12), 

(14) and (15) into the equations of equilibrium of the lumped masses. The equations can be 
expressed in a matrix form which will lead to the mass, stiffness and damping matrices of 
the vehicle (Equation (7)). The coefficients of these matrixes can be found in Cantero et al 
(2010) for an arbitrary number of tractor and trailer axles. The forcing vector {fv} will be a 
combination of tyre properties (stiffness/damping) and height of the road/bridge profile. 
Values for parameters of suspension and tyre systems are available in the literature (Wong, 
1993; Kirkegaard et al., 1997; Fu & Cebon, 2002; Harris et al., 2007). In the case of a 5-axle 
articulated truck, typical magnitudes are 7000 kg for a tractor sprung mass, 700 kg for a steer 
axle, 1000 kg for a drive axle, 800 kg each trailer axle, tyre stiffness of 735x103 kN/m and 
damping of 3x103 kNs/m, suspension stiffness of 300x103 kN/m for a steer axle, 500x103 and 
1000x103 kN/m for a drive axle if air- and steel-suspension respectively, 400x103 and 

1250x103 kN/m for a trailer axle if air- and steel-suspension respectively, and suspension 
viscous damping of 3x103 kNs/m.  
The general form of the equations of motion described in this section is only valid for linear 
tyre and suspension systems and it needs to be adapted to introduce different degrees of 
complexity within the vehicle behaviour, such as tyre or suspension non-linearities. Green & 
Cebon (1997) propose the following equation that facilitates the incorporation of non-linear 
elements: 
 

[ ]{ }v v v S v TM w = [S ]{f } + [T ]{f } + {G}  (16) 
 
where {fS} and {fT} are vectors of suspension and tyre forces respectively, [Sv] and [Tv] are 
constant transformation matrices relating the suspension and tyre forces respectively to the 
global coordinates of the vehicle, and  G  is the vector of gravitational forces applied to the 
vehicle. The relationship between Equations (7) and (16) is given by {fv} = 
[Tv][KT]{v} [ ]{ } TC v  where [KT] and [CT] are stiffness and damping matrices respectively 
for tyre elements and {v} is the height of road irregularities (or road irregularities plus 
bridge deflections), [Cv]=[Sv]{CS][Sv]T+[Tv][CT][Tv]T and [Kv]=[Sv][KS][Sv]T+[Tv][KT][Tv]T 
where [KS] and [CS] are stiffness and damping matrices respectively for suspension 
elements.  

 
4. The Road  

The road profile can be measured or simulated theoretically. When simulating a profile r(x), 
it can be generated from power spectral density functions as a random stochastic process: 
 

N

d k k i
i=1

r(x)= 2G (n )Δncos(2πn x-θ )  (17) 

 
where Gd(nk) is power spectral density function in m2/cycle/m; nk is the wave number 
(cycle/m); i is a random number uniformly distributed from 0 to 2; Δn is the frequency 
interval (Δn = (nmax–nmin)/N where nmax and nmin are the upper and lower cut-off 
frequencies respectively); N is the total number of waves used to construct the road surface 
and x is the longitudinal location for which the road height is being sought. The road class is 
based on the roughness coefficient a (m3/cycle), which is related to the amplitude of the 
road irregularities, and determines Gd(nk) (Gd(nk) is equal to a/(2nk)2). ISO standards 
specify ‘A’ (a < 2x10-6), ‘B’ (2x10-6 ≤ a < 8x10-6), ‘C’ (8x10-6 ≤ a < 32x10-6), ‘D’ (32x10-6 ≤ a < 
128x10-6) and other poorer road classes depending on the range of values where a is located 
(ISO 8608, 1995).  For a given roughness coefficient, different road profiles can be obtained 
varying the random phase angles i. When using two parallel tracks of an isotropic surface, 
a coherence function needs to be employed to produce a second random profile correlated 
with the first profile (Cebon & Newland, 1983; Cebon, 1999; Nassif & Liu, 2004). The 
coherence function guarantees good and poor correlation between two parallel tracks for 
long and short wavelengths respectively. The contact between the bridge and the vehicle is 
typically assumed to be at a single point rather than the area corresponding to the tyre 
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end points of the damper), and spring elements (proportional to the stiffness constant and 
the relative change in displacement between the two end points of the spring) as given in 
Equation (12) for the wheel forces in the left side.  
 

( ) ( )  T,i-left T,i-left i-left i-left i-left T,i-left i-left i-left i-leftf = k w + u - r + c w + u - r  (12) 
  
where ui-left and ri-left represent the bridge displacement and the height of the road 
irregularities respectively under the left wheel of axle i at a specified point in time. ui-j is 
related to the nodal displacements and rotations {wb}(e) of the bridge element where the 
wheel i-j is located through the displacement interpolation functions {N(x, y)}  of the element. 
The values of {N(x, y)} are a function of the coordinates (x, y)  of the wheel contact point with 
respect to the coordinates of the bridge element.  
 

(e)T
i- j bu = {N(x, y)} {w }  (13) 

 
In Figure 5(b), suspension systems have also been defined by a viscous damping element in 
parallel with a spring element. In this case of linear suspension elements, the forces fS are 
given by Equation (14) for the suspension forces in the left side of the vehicle. 
 

      y x y xθ θ θ θ   S,i-left S,i-left s i i-left i-left i-left S,i-left s i i-left i-left i-leftf = k w + x + a b - w + c w + x + a b - w
(14) 

 
The equations of tractor and trailer are not independent, as a compatibility condition can be 
defined between both rigid bodies rotating about the hinge (also known as fifth wheel 
point). Therefore, the number of DOFs of the system can be reduced by considering the 
following relationship between the displacements of the centroids of tractor and trailer: 
  

y yθ θ s s H Hw = w + x + x  (15) 
 
All equations of equilibrium can be expressed as a function of the vertical displacements of 
the wheels ( )   1-left 1-right p-left p-right 1-left 1-right p-left p-rightw , w , ...., w , w , w , w , ...., w , w , the three DOFs of 

the tractor (ws,x,y) and the two DOFs of the trailer (  
x yθ , θ ), by replacing Equations (12), 

(14) and (15) into the equations of equilibrium of the lumped masses. The equations can be 
expressed in a matrix form which will lead to the mass, stiffness and damping matrices of 
the vehicle (Equation (7)). The coefficients of these matrixes can be found in Cantero et al 
(2010) for an arbitrary number of tractor and trailer axles. The forcing vector {fv} will be a 
combination of tyre properties (stiffness/damping) and height of the road/bridge profile. 
Values for parameters of suspension and tyre systems are available in the literature (Wong, 
1993; Kirkegaard et al., 1997; Fu & Cebon, 2002; Harris et al., 2007). In the case of a 5-axle 
articulated truck, typical magnitudes are 7000 kg for a tractor sprung mass, 700 kg for a steer 
axle, 1000 kg for a drive axle, 800 kg each trailer axle, tyre stiffness of 735x103 kN/m and 
damping of 3x103 kNs/m, suspension stiffness of 300x103 kN/m for a steer axle, 500x103 and 
1000x103 kN/m for a drive axle if air- and steel-suspension respectively, 400x103 and 

1250x103 kN/m for a trailer axle if air- and steel-suspension respectively, and suspension 
viscous damping of 3x103 kNs/m.  
The general form of the equations of motion described in this section is only valid for linear 
tyre and suspension systems and it needs to be adapted to introduce different degrees of 
complexity within the vehicle behaviour, such as tyre or suspension non-linearities. Green & 
Cebon (1997) propose the following equation that facilitates the incorporation of non-linear 
elements: 
 

[ ]{ }v v v S v TM w = [S ]{f } + [T ]{f } + {G}  (16) 
 
where {fS} and {fT} are vectors of suspension and tyre forces respectively, [Sv] and [Tv] are 
constant transformation matrices relating the suspension and tyre forces respectively to the 
global coordinates of the vehicle, and  G  is the vector of gravitational forces applied to the 
vehicle. The relationship between Equations (7) and (16) is given by {fv} = 
[Tv][KT]{v} [ ]{ } TC v  where [KT] and [CT] are stiffness and damping matrices respectively 
for tyre elements and {v} is the height of road irregularities (or road irregularities plus 
bridge deflections), [Cv]=[Sv]{CS][Sv]T+[Tv][CT][Tv]T and [Kv]=[Sv][KS][Sv]T+[Tv][KT][Tv]T 
where [KS] and [CS] are stiffness and damping matrices respectively for suspension 
elements.  

 
4. The Road  

The road profile can be measured or simulated theoretically. When simulating a profile r(x), 
it can be generated from power spectral density functions as a random stochastic process: 
 

N

d k k i
i=1

r(x)= 2G (n )Δncos(2πn x-θ )  (17) 

 
where Gd(nk) is power spectral density function in m2/cycle/m; nk is the wave number 
(cycle/m); i is a random number uniformly distributed from 0 to 2; Δn is the frequency 
interval (Δn = (nmax–nmin)/N where nmax and nmin are the upper and lower cut-off 
frequencies respectively); N is the total number of waves used to construct the road surface 
and x is the longitudinal location for which the road height is being sought. The road class is 
based on the roughness coefficient a (m3/cycle), which is related to the amplitude of the 
road irregularities, and determines Gd(nk) (Gd(nk) is equal to a/(2nk)2). ISO standards 
specify ‘A’ (a < 2x10-6), ‘B’ (2x10-6 ≤ a < 8x10-6), ‘C’ (8x10-6 ≤ a < 32x10-6), ‘D’ (32x10-6 ≤ a < 
128x10-6) and other poorer road classes depending on the range of values where a is located 
(ISO 8608, 1995).  For a given roughness coefficient, different road profiles can be obtained 
varying the random phase angles i. When using two parallel tracks of an isotropic surface, 
a coherence function needs to be employed to produce a second random profile correlated 
with the first profile (Cebon & Newland, 1983; Cebon, 1999; Nassif & Liu, 2004). The 
coherence function guarantees good and poor correlation between two parallel tracks for 
long and short wavelengths respectively. The contact between the bridge and the vehicle is 
typically assumed to be at a single point rather than the area corresponding to the tyre 
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patch. Therefore, the lengths of randomly generated road profile are passed through a 
moving average filter to simulate the envelope of short wavelength disturbances by the tyre 
contact patch (i.e., 0.2 m). The magnitude of the bridge response depends strongly not only 
on the general unevenness of the bridge surface, but also on the velocity of the vehicles 
(González et al., 2010), the condition of the road leading to the bridge, and the effects of 
occasional large irregularities such as potholes, misalignments at the abutments or 
expansion joints that are often found on the bridge approach. Chompooming & Yener (1995) 
show how certain combinations of bumps and vehicle speed can originate a high dynamic 
excitation of the bridge. 

 
5. Vehicle-Bridge Interaction Algorithms 

When analysing the VBI problem, two sets of differential equations of motion can be 
established: one set defining the DOFs of the bridge (Equation (1)) and another set for the 
DOFs of the vehicle (Equation (7)). It is necessary to solve both subsystems while ensuring 
compatibility at the contact points (i.e., displacements of the bridge and the vehicle being the 
same at the contact point of the wheel with the roadway). The algorithms to carry out this 
calculation can be classified in two main groups: (a) those based on an uncoupled iterative 
procedure where equations of motion of bridge and vehicle are solved separately and 
equilibrium between both subsystems and geometric compatibility conditions are found 
through an iterative process (Veletsos & Huang, 1970; Green et al., 1995; Hwang & Nowak, 
1991; Huang et al., 1992; Chatterjee et al., 1994b; Wang et al., 1996; Yang & Fonder, 1996; 
Green & Cebon, 1997; Zhu & Law, 2002; Cantero et al., 2009), and (b) those based on the 
solution of the coupled system, i.e., there is a unique matrix for the system that is formed by 
eliminating the interaction forces appearing in the equations of motion of bridge and 
vehicle, and updated at each point in time (Olsson, 1985; Yang & Lin, 1995; Yang & Yau 
1997; Henchi et al., 1998; Yang et al., 1999, 2004a; Kim et al., 2005; Cai et al., 2007; Deng & 
Cai, 2010; Moghimi & Ronagh, 2008a). The use of Lagrange multipliers can also be found in 
the solution of VBI problems (Cifuentes, 1989; Baumgärtner, 1999; González et al., 2008a).  
A step-by-step integration method must be adopted to solve the uncoupled or coupled 
differential equations of motion of the system. These numerical methods break the time 
down into a number of steps, Δt, and calculate the solution w(t+Δt) from w(t) based on 
assumed approximations for the derivatives that appear in the differential equations. They 
are different from methods for single-DOF systems because most FE models with lots of 
DOFs poorly idealise the response of the higher modes, and the integration method should 
have optimal dissipation properties for the removal of those non-reliable high frequency 
contributions.   
Fourth-order Runge-Kutta is a popular integration method in the solution of large multi-
DOF VBI systems (Frýba 1972; Huang et al., 1992; Wang & Huang, 1992; Cantero et al., 2009; 
Deng & Cai, 2010). Acceleration is expressed as a function of the other lower derivatives and 
a change of variable transforms the second order equation of motion into two first order 
equations (Equation (18)). Then, the recurrence formulae of fourth-order Runge-Kutta is 
employed to approximate the derivatives according to a weighted average of four estimates 
of the slope in the interval Δt.  

{Z} = {w}
 
;        

1{{f} [ ]{ } }  {Z} = [M] C Z [K]{w}  (18) 
 

Fourth-order Runge-Kutta is easy to implement, however, it is conditionally stable and it 
requires evaluating several functions per time step which can be time-consuming. For these 
reasons, some authors prefer implicit unconditionally stable integration methods such as 
Newmark- (Olsson, 1985; Hwang & Nowak, 1991; Chompooming & Yener, 1992; Yang & 
Fonder, 1996; Fafard et al., 1997; Yang & Yau, 1997; Zhu & Law, 2002; Kim et al., 2005) or 
Wilson- (Tan et al., 1998; Nassif & Liu, 2004). The Newmark family of integration methods 
is based on a truncation of Taylor’s series that assumes a linear variation of acceleration 
from time t to time (t+Δt) (a constant acceleration with parameters  = 0.25 and  = 0.5 is 
typically used to avoid instability problems). Wilson- is a modified version of the 
Newmark method, where acceleration is assumed to vary linearly from time t to time 
(t+Δt) (  1.37, usually 1.4). After the conditions at time (t+Δt) are known, they are 
referred back to produce a solution at time (t+Δt). Clough & Penzien (1993) recommend a 
time step Δt ≤ 1/(10fmax) where fmax is the maximum frequency of the system to ensure 
convergence. Typical values of Δt lie between 0.001 and 0.0001 s. 
In the case of non-linear equations of motion, i.e., the non-linear relationship between the 
force and nodal displacements in leaf-spring suspensions, an iterative procedure needs to be 
implemented for each point in time (Veletsos & Huang, 1970; Hwang & Nowak, 1991; Wang 
& Huang, 1992; Chatterjee et al., 1994a,b; Tan et al., 1998; Nassif & Liu, 2004). The initial 
values of the force and nodal displacement of the suspension are assumed to be those of the 
preceding time step. However, once the equations of the system are solved for the current 
time, the suspension nodal displacement will be somehow different from the value in the 
previous time step and the associated suspension force may change with respect to the 
assumed initial value. The calculations need to be repeated with the updated value of 
suspension force, and treated in an iterative procedure until reaching an acceptable 
tolerance that indicates negligible difference between displacements/forces of two 
successive iterations.  

 
5.1 Algorithms based on an Uncoupled Iterative Procedure 
These algorithms treat the equations of motion of the vehicle and the bridge as two 
subsystems and solve them separately using a direct integration scheme. The compatibility 
conditions and equilibrium equations at the interface between the vehicle tyres and bridge 
deck are satisfied by an iterative procedure. The basic idea behind this procedure consists of 
assuming some initial displacements for the contact points, which can be replaced in the 
equations of motion of the vehicle to obtain the interaction forces. Then, these interaction 
forces are employed in the equations of motions of the bridge to obtain the bridge 
displacements that will represent improved estimates of the initial displacements assumed 
for the contact points. The process is repeated until differences in two successive iterations 
are sufficiently small. These algorithms typically employ implicit schemes of integration 
such as Newmark- or Wilson- methods to solve each subsystem and to achieve 
convergence after a number of iterations. The time step t here is larger than in the coupled 
solution, although the convergence rate may be slow. 
One possible algorithm within the group of iterative procedures is illustrated in Fig. 6. The 
vehicle and the bridge interact through the tyre forces imposed on the bridge deck. The 
profile, v(x,t), that is used to excite the vehicle is the sum of the original road profile (r(x)) 
and the deflection of the bridge (wb(x,t)) (In the first step of the iterative procedure, no 
bridge displacements have been calculated yet and v(x,t) can be taken to be r(x)). The 
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patch. Therefore, the lengths of randomly generated road profile are passed through a 
moving average filter to simulate the envelope of short wavelength disturbances by the tyre 
contact patch (i.e., 0.2 m). The magnitude of the bridge response depends strongly not only 
on the general unevenness of the bridge surface, but also on the velocity of the vehicles 
(González et al., 2010), the condition of the road leading to the bridge, and the effects of 
occasional large irregularities such as potholes, misalignments at the abutments or 
expansion joints that are often found on the bridge approach. Chompooming & Yener (1995) 
show how certain combinations of bumps and vehicle speed can originate a high dynamic 
excitation of the bridge. 

 
5. Vehicle-Bridge Interaction Algorithms 

When analysing the VBI problem, two sets of differential equations of motion can be 
established: one set defining the DOFs of the bridge (Equation (1)) and another set for the 
DOFs of the vehicle (Equation (7)). It is necessary to solve both subsystems while ensuring 
compatibility at the contact points (i.e., displacements of the bridge and the vehicle being the 
same at the contact point of the wheel with the roadway). The algorithms to carry out this 
calculation can be classified in two main groups: (a) those based on an uncoupled iterative 
procedure where equations of motion of bridge and vehicle are solved separately and 
equilibrium between both subsystems and geometric compatibility conditions are found 
through an iterative process (Veletsos & Huang, 1970; Green et al., 1995; Hwang & Nowak, 
1991; Huang et al., 1992; Chatterjee et al., 1994b; Wang et al., 1996; Yang & Fonder, 1996; 
Green & Cebon, 1997; Zhu & Law, 2002; Cantero et al., 2009), and (b) those based on the 
solution of the coupled system, i.e., there is a unique matrix for the system that is formed by 
eliminating the interaction forces appearing in the equations of motion of bridge and 
vehicle, and updated at each point in time (Olsson, 1985; Yang & Lin, 1995; Yang & Yau 
1997; Henchi et al., 1998; Yang et al., 1999, 2004a; Kim et al., 2005; Cai et al., 2007; Deng & 
Cai, 2010; Moghimi & Ronagh, 2008a). The use of Lagrange multipliers can also be found in 
the solution of VBI problems (Cifuentes, 1989; Baumgärtner, 1999; González et al., 2008a).  
A step-by-step integration method must be adopted to solve the uncoupled or coupled 
differential equations of motion of the system. These numerical methods break the time 
down into a number of steps, Δt, and calculate the solution w(t+Δt) from w(t) based on 
assumed approximations for the derivatives that appear in the differential equations. They 
are different from methods for single-DOF systems because most FE models with lots of 
DOFs poorly idealise the response of the higher modes, and the integration method should 
have optimal dissipation properties for the removal of those non-reliable high frequency 
contributions.   
Fourth-order Runge-Kutta is a popular integration method in the solution of large multi-
DOF VBI systems (Frýba 1972; Huang et al., 1992; Wang & Huang, 1992; Cantero et al., 2009; 
Deng & Cai, 2010). Acceleration is expressed as a function of the other lower derivatives and 
a change of variable transforms the second order equation of motion into two first order 
equations (Equation (18)). Then, the recurrence formulae of fourth-order Runge-Kutta is 
employed to approximate the derivatives according to a weighted average of four estimates 
of the slope in the interval Δt.  

{Z} = {w}
 
;        

1{{f} [ ]{ } }  {Z} = [M] C Z [K]{w}  (18) 
 

Fourth-order Runge-Kutta is easy to implement, however, it is conditionally stable and it 
requires evaluating several functions per time step which can be time-consuming. For these 
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Newmark- (Olsson, 1985; Hwang & Nowak, 1991; Chompooming & Yener, 1992; Yang & 
Fonder, 1996; Fafard et al., 1997; Yang & Yau, 1997; Zhu & Law, 2002; Kim et al., 2005) or 
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In the case of non-linear equations of motion, i.e., the non-linear relationship between the 
force and nodal displacements in leaf-spring suspensions, an iterative procedure needs to be 
implemented for each point in time (Veletsos & Huang, 1970; Hwang & Nowak, 1991; Wang 
& Huang, 1992; Chatterjee et al., 1994a,b; Tan et al., 1998; Nassif & Liu, 2004). The initial 
values of the force and nodal displacement of the suspension are assumed to be those of the 
preceding time step. However, once the equations of the system are solved for the current 
time, the suspension nodal displacement will be somehow different from the value in the 
previous time step and the associated suspension force may change with respect to the 
assumed initial value. The calculations need to be repeated with the updated value of 
suspension force, and treated in an iterative procedure until reaching an acceptable 
tolerance that indicates negligible difference between displacements/forces of two 
successive iterations.  

 
5.1 Algorithms based on an Uncoupled Iterative Procedure 
These algorithms treat the equations of motion of the vehicle and the bridge as two 
subsystems and solve them separately using a direct integration scheme. The compatibility 
conditions and equilibrium equations at the interface between the vehicle tyres and bridge 
deck are satisfied by an iterative procedure. The basic idea behind this procedure consists of 
assuming some initial displacements for the contact points, which can be replaced in the 
equations of motion of the vehicle to obtain the interaction forces. Then, these interaction 
forces are employed in the equations of motions of the bridge to obtain the bridge 
displacements that will represent improved estimates of the initial displacements assumed 
for the contact points. The process is repeated until differences in two successive iterations 
are sufficiently small. These algorithms typically employ implicit schemes of integration 
such as Newmark- or Wilson- methods to solve each subsystem and to achieve 
convergence after a number of iterations. The time step t here is larger than in the coupled 
solution, although the convergence rate may be slow. 
One possible algorithm within the group of iterative procedures is illustrated in Fig. 6. The 
vehicle and the bridge interact through the tyre forces imposed on the bridge deck. The 
profile, v(x,t), that is used to excite the vehicle is the sum of the original road profile (r(x)) 
and the deflection of the bridge (wb(x,t)) (In the first step of the iterative procedure, no 
bridge displacements have been calculated yet and v(x,t) can be taken to be r(x)). The 
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interaction forces (tyre forces {fT}) are obtained solving for the DOFs of Equation (7) and 
replacing into Equation (12). These interaction forces are converted to equivalent bridge 
forces acting on the bridge nodes in the vicinity of the contact point using a location matrix 
({fb}=[L]{fT} where [L] is a location matrix that relates the tire forces to the DOFs of the 
bridge). Then, {fb} is employed to obtain a new set of displacements wb(x,t) using Equation 
(1). This procedure is repeated for a number of iterations at each time step until some 
convergence criteria is met (i.e., difference between the bridge deflection wb(x,t) of two 
successive iterations being sufficiently small). Green & Cebon (1997) suggest to average 
bridge displacements in two successive iterations to facilitate convergence which they define 
as the relative difference in displacement of two successive iterations with respect to the 
maximum bridge deflection to be smaller than 2%. At that point, the vehicle is moved 
forward and the iterative procedure is repeated for the new location of the forces on the 
bridge.  
 

 
Fig. 6. VBI iterative procedure 
 
Cantero et al (2009) suggest an alternative iterative procedure, where rather than calculating 
the final interaction forces at each time step, an initial estimate of the entire force history 
{fT}(1) is obtained using Equations (7) and (12) with only the road profile r(x) (=v(x,t)(1)) as 
excitation source. Equation (1) is employed to calculate the bridge deflections, wb(x,t)(1), due 
to the equivalent nodal forces {fb}(1) derived from {fT}(1). The bridge deflection wb(x,t)(1) is 
then added to the road profile r(x) to form v(x,t)(2), and a new estimated of the force history 
{fT}(2) is obtained using the equations of motion of the vehicle and the profile v(x,t)(2) as 
excitation source. These time-varying forces {fT}(2) are converted into bridge nodal forces 
{fb}(2) that will result into a new bridge deflection history wb(x,t)(2) using Equation (1). The 
process is repeated until convergence is achieved.  
While the previous algorithms have been formulated in the time domain, Green & Cebon 
(1994,1997), Green et al (1995) and Henchi et al (1997) propose to solve the uncoupled 

system of equations in the frequency domain. The equations of motion are solved by 
convolution of modal impulse response functions and modal excitation forces through the 
FFT, and application of modal superposition. 
It must be noted that many DOFs are involved in the FE model of the bridge subsystem, but 
only the first modes of vibration make a significant contribution to the dynamic response of 
a VBI system. Therefore, the modal superposition method (MSM) is typically employed to 
solve the equations of motion of the bridge which reduces the computation effort 
considerably (Clough & Penzien, 1993). The basis of the MSM is the transformation of the 
original system of coupled equations (Matrixes in Equation (1) with non-zero off-diagonal 
terms) into a smaller set of uncoupled independent modal coordinate equations (i.e., zero 
off-diagonal terms). The total dynamic response will be obtained by superposition of the 
response obtained for each modal coordinate. The displacement vector of the bridge {wb} 
can be expressed as a function of the modal coordinates {qb} as follows: 
 

b b b{w }=[ ]{q }  (19) 
 
where [Фb]=[{Ф1}{Ф2}…{Фm}] is the normalized modal shape matrix containing a number m 
of mode shapes. The mode shapes {Фi} 

and frequencies associated to these mode shapes i can be found using eigenvalue analysis: 
 

 [ ] [ ] { }  
2

b i b iK - ω M Φ = 0  (20) 

 
Therefore [Фb]

 
is normalized such that: 

 
T

b b b[Φ ] [M ][Φ ]=[I]      ;    
T 2

b b b b[Φ ] [K ][Φ ]=[ω ]  (21) 
 
where [b2] is a diagonal matrix containing the squares of the natural frequencies. Equation 
(1) can be written in modal coordinates as: 
 

[ ][ ]{ } [ ][ ]{ } [ ][ ]{ }   b b b b b b b b b bM q + C q + K q = {f }  (22) 
 
Assuming that the damping matrix [Cb] satisfies modal orthogonality conditions (e.g., 
Rayleigh damping) and premultiplying both sides of the equation by [Фb]T, the following 
simplified system with m differential equations in modal coordinates results: 
 

2 T
b b b b b b b b{q }+2[ξ ][ω ]{q }+[ω ]{q }=[ ] {f }   (23) 

where [b] and [b] are modal damping and modal frequency matrixes of the bridge 
respectively and their size is related to the number of modes of vibration considered; {qb} is 
the modal coordinate vector and a dot means derivative with respect to time. Modal 
Equation (23) is a series of independent single-DOF equations, one for each mode of 
vibration, that can be solved by Newmark, Wilson-, Runge-Kutta or a piece-wise 
interpolation integration technique. The total response is obtained from the superposition of 
the individual modal solutions (Equation (19)). In some cases, the modal equations can 
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interaction forces (tyre forces {fT}) are obtained solving for the DOFs of Equation (7) and 
replacing into Equation (12). These interaction forces are converted to equivalent bridge 
forces acting on the bridge nodes in the vicinity of the contact point using a location matrix 
({fb}=[L]{fT} where [L] is a location matrix that relates the tire forces to the DOFs of the 
bridge). Then, {fb} is employed to obtain a new set of displacements wb(x,t) using Equation 
(1). This procedure is repeated for a number of iterations at each time step until some 
convergence criteria is met (i.e., difference between the bridge deflection wb(x,t) of two 
successive iterations being sufficiently small). Green & Cebon (1997) suggest to average 
bridge displacements in two successive iterations to facilitate convergence which they define 
as the relative difference in displacement of two successive iterations with respect to the 
maximum bridge deflection to be smaller than 2%. At that point, the vehicle is moved 
forward and the iterative procedure is repeated for the new location of the forces on the 
bridge.  
 

 
Fig. 6. VBI iterative procedure 
 
Cantero et al (2009) suggest an alternative iterative procedure, where rather than calculating 
the final interaction forces at each time step, an initial estimate of the entire force history 
{fT}(1) is obtained using Equations (7) and (12) with only the road profile r(x) (=v(x,t)(1)) as 
excitation source. Equation (1) is employed to calculate the bridge deflections, wb(x,t)(1), due 
to the equivalent nodal forces {fb}(1) derived from {fT}(1). The bridge deflection wb(x,t)(1) is 
then added to the road profile r(x) to form v(x,t)(2), and a new estimated of the force history 
{fT}(2) is obtained using the equations of motion of the vehicle and the profile v(x,t)(2) as 
excitation source. These time-varying forces {fT}(2) are converted into bridge nodal forces 
{fb}(2) that will result into a new bridge deflection history wb(x,t)(2) using Equation (1). The 
process is repeated until convergence is achieved.  
While the previous algorithms have been formulated in the time domain, Green & Cebon 
(1994,1997), Green et al (1995) and Henchi et al (1997) propose to solve the uncoupled 

system of equations in the frequency domain. The equations of motion are solved by 
convolution of modal impulse response functions and modal excitation forces through the 
FFT, and application of modal superposition. 
It must be noted that many DOFs are involved in the FE model of the bridge subsystem, but 
only the first modes of vibration make a significant contribution to the dynamic response of 
a VBI system. Therefore, the modal superposition method (MSM) is typically employed to 
solve the equations of motion of the bridge which reduces the computation effort 
considerably (Clough & Penzien, 1993). The basis of the MSM is the transformation of the 
original system of coupled equations (Matrixes in Equation (1) with non-zero off-diagonal 
terms) into a smaller set of uncoupled independent modal coordinate equations (i.e., zero 
off-diagonal terms). The total dynamic response will be obtained by superposition of the 
response obtained for each modal coordinate. The displacement vector of the bridge {wb} 
can be expressed as a function of the modal coordinates {qb} as follows: 
 

b b b{w }=[ ]{q }  (19) 
 
where [Фb]=[{Ф1}{Ф2}…{Фm}] is the normalized modal shape matrix containing a number m 
of mode shapes. The mode shapes {Фi} 

and frequencies associated to these mode shapes i can be found using eigenvalue analysis: 
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b i b iK - ω M Φ = 0  (20) 

 
Therefore [Фb]

 
is normalized such that: 
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b b b[Φ ] [M ][Φ ]=[I]      ;    
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b b b b[Φ ] [K ][Φ ]=[ω ]  (21) 
 
where [b2] is a diagonal matrix containing the squares of the natural frequencies. Equation 
(1) can be written in modal coordinates as: 
 

[ ][ ]{ } [ ][ ]{ } [ ][ ]{ }   b b b b b b b b b bM q + C q + K q = {f }  (22) 
 
Assuming that the damping matrix [Cb] satisfies modal orthogonality conditions (e.g., 
Rayleigh damping) and premultiplying both sides of the equation by [Фb]T, the following 
simplified system with m differential equations in modal coordinates results: 
 

2 T
b b b b b b b b{q }+2[ξ ][ω ]{q }+[ω ]{q }=[ ] {f }   (23) 

where [b] and [b] are modal damping and modal frequency matrixes of the bridge 
respectively and their size is related to the number of modes of vibration considered; {qb} is 
the modal coordinate vector and a dot means derivative with respect to time. Modal 
Equation (23) is a series of independent single-DOF equations, one for each mode of 
vibration, that can be solved by Newmark, Wilson-, Runge-Kutta or a piece-wise 
interpolation integration technique. The total response is obtained from the superposition of 
the individual modal solutions (Equation (19)). In some cases, the modal equations can 
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become coupled (i.e., damping matrix of the system not being diagonal after modal 
transformation) and the modal equations will need to be solved using a step-by-step 
integration method simultaneously rather than individually, but the reduction of the 
original number of equations where all DOFs were considered to a number m of modal 
equations will still be computationally advantageous. If the number of DOFs of the vehicle 
was considerably large, the MSM can also be applied to the equations of motion of the 
vehicle subsystem (Equation (7)).  

 
5.2 Algorithms based on the Solution of the Coupled System 
These algorithms are based on the solution of a unique system matrix at each point in time. 
The system matrix changes as the vehicle moves and its time-dependent properties can be 
derived using the principle of virtual work. These algorithms commonly use a step-by-step 
integration scheme such as Newmark- (Kim et al., 2005) or fourth order Runge-Kutta 
(Deng & Cai, 2010) with a small time step t to solve the system matrix at each point in time. 
This procedure can be carried without any iteration if linear elements are employed, but if 
non-linear elements, such as friction, were present in the model, iterations will be necessary 
regardless of the vehicle-bridge system being solved as two subsystems or as one. The 
vehicle-bridge equations can be combined to form the system given below:  
 

 
b b b b-b b-v b b b-b b-v b b-r

v v v-b v v v-b v v b-r

[M ] [0] {w } [C +C ] [C ] {w } [K +K ] [K ] {w } {f }
+ + =

[0] [M ] {w } [C ] [C ] {w } [K ] [K ] {w } {f } { }
{ } { } { } { }


     
          

 
  G   (24) 

 
where {G} are gravity forces and, [Cb-b], [Cb-v], [Cv-b], [Kb-b], [Kb-v], [Kv-b] and {fb-r} are time 
dependent matrixes/vectors that depend on the value and location of the interaction forces 
at each point in time. Equation (25) shows how MSM can be used to simplify the bridge 
subsystem of Equation (24). 
 

T T
b bb b b b-b b b b-v

v v vv-b b v

2 T T T
bb b b-b b b b-v b b-r

vv-b b v b-r

{q } {q }[I] [0] 2[ξ ][ω ]+[ ] [C ][ ] [ ] [C ]
+

[0] [M ] {w } {w }[C ][ ] [C ]

{q }[ω ]+[ ] [K ][ ] [ ] [K ] [ ] {f }
+ =

{w }[K ][ ] [K ] {f } { }

{ } { }

{ } { }

  



   

 

  
     

 
  

 
 

G

 (25) 

 
The approach above is adopted by Deng & Cai (2010) and Henchi et al (1998) that combine DOFs 
of the bridge in the modal space and DOFs of the vehicle derived from a Lagrange formulation. 
Henchi et al (1998) use a central difference method to solve the coupled equations which finds 
computationally more efficient than an uncoupled approach solved using Newmark-. 
However, some authors note some disadvantages of this method regarding computational effort 
as a result of properties of the vehicle and bridge matrixes such as symmetry being lost in the 
process, the need to update the coefficients matrices of the system at every time step with new 
positions of the vehicle on the bridge, or to carry new calculations of coefficients if the vehicle or 
bridge model changed (Yang & Lin, 1995; Yang & Fonder, 1996; Kirkegaard et al., 1997). 
An alternative approach that leads to considerable savings in computational time is to implement 
the interaction on an element level rather than on a global level (Olsson, 1985; Yang & Lin, 1995; 
Yang & Yau, 1997; Yang et al., 1999). An interaction element is defined as that bridge element in 

contact with a vehicle wheel. Those bridge elements that are not directly under the action of 
vehicle wheels remain unaltered in the global matrixes of the system. The interaction element is 
characterised by two sets of equations: those of the bridge element and those of the moving 
vehicle above the bridge element. The DOFs of the moving vehicle can be solved in time domain 
using finite-difference equations of the Newmark type, and then, the DOFs of the vehicle that are 
not in direct contact with the bridge are eliminated and condensed to the DOFs of the associated 
bridge element via the method of dynamic condensation. The interaction element has the same 
number of DOFs as the original bridge element and it can be directly assembled with the other 
bridge elements into the global matrixes, while retaining properties that are lost when 
condensation takes place on a global level. 

 
5.3 Algorithms based on Lagrange Multipliers 
The system of equations (24) can be extended with a number of additional coordinates to 
maintain symmetry. The differential equations of motion of the vehicle-bridge system are 
formed by the equations of the bridge and vehicle which appear without overlapping in the 
system matrix, and a number of additional constraints that enforce the compatibility 
condition at the contact points of vehicle and bridge. An advantage of this approach is the 
ease to accommodate it to a standard FE package (to qualify, the software should have the 
capability for solving a transient dynamic response, and to allow for direct inputs into the 
system matrix) while a drawback is the number of additional rows and columns in the 
system matrix that may require a significant computational effort.  
Compatibility conditions between the vertical displacement uj(t) of each moving wheel j and 
the vertical displacement of the bridge at the contact point wb(xj,t), are established for any 
time t with the use of time-dependent functions (Aij(t) and Bij(t) which vary for each node i 
and load j at each instant t). These auxiliary functions produce a constraint consistent with 
the shape functions of the bridge elements and they facilitate to formulate the compatibility 
condition at the contact point of the wheel j as: 
 

 
N N

j i j b,i i j b,ii=1 i=1
u (t) = A (t)w (t) + B (t)θ (t) ;   j = 1,2, …p (26) 

 
where wb,i(t) (=wb(xi,t)) and i(t) are the displacements and rotations of the node i in the 
bridge FE model, and N and p are the total number of bridge nodes and moving wheels 
respectively. Aij(t) and Bij(t) can be completely defined prior to the simulation once the 
velocity of the moving loads, the approach length, the spacings between loads and the 
coordinates of the bridge nodes on the wheel path are known. For illustration purposes 
only, the shape of these functions for bridge beam elements with nodes numbered 5, 6 and 7 
and moving load 1 is shown in Fig. 7 (The values of Bij(t) will depend on the distance 
between consecutive nodes, x). They have zero value outside the interval between adjacent 
nodes, and for the location of a vehicle wheel j over a bridge node i, Aij(t) and Bij(t) become 1 
and 0 respectively, which satisfies uj(t)=wb,i(t). The numerical expression for these auxiliary 
functions can be found in Cifuentes (1989) and González et al (2008a).  
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become coupled (i.e., damping matrix of the system not being diagonal after modal 
transformation) and the modal equations will need to be solved using a step-by-step 
integration method simultaneously rather than individually, but the reduction of the 
original number of equations where all DOFs were considered to a number m of modal 
equations will still be computationally advantageous. If the number of DOFs of the vehicle 
was considerably large, the MSM can also be applied to the equations of motion of the 
vehicle subsystem (Equation (7)).  

 
5.2 Algorithms based on the Solution of the Coupled System 
These algorithms are based on the solution of a unique system matrix at each point in time. 
The system matrix changes as the vehicle moves and its time-dependent properties can be 
derived using the principle of virtual work. These algorithms commonly use a step-by-step 
integration scheme such as Newmark- (Kim et al., 2005) or fourth order Runge-Kutta 
(Deng & Cai, 2010) with a small time step t to solve the system matrix at each point in time. 
This procedure can be carried without any iteration if linear elements are employed, but if 
non-linear elements, such as friction, were present in the model, iterations will be necessary 
regardless of the vehicle-bridge system being solved as two subsystems or as one. The 
vehicle-bridge equations can be combined to form the system given below:  
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where {G} are gravity forces and, [Cb-b], [Cb-v], [Cv-b], [Kb-b], [Kb-v], [Kv-b] and {fb-r} are time 
dependent matrixes/vectors that depend on the value and location of the interaction forces 
at each point in time. Equation (25) shows how MSM can be used to simplify the bridge 
subsystem of Equation (24). 
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The approach above is adopted by Deng & Cai (2010) and Henchi et al (1998) that combine DOFs 
of the bridge in the modal space and DOFs of the vehicle derived from a Lagrange formulation. 
Henchi et al (1998) use a central difference method to solve the coupled equations which finds 
computationally more efficient than an uncoupled approach solved using Newmark-. 
However, some authors note some disadvantages of this method regarding computational effort 
as a result of properties of the vehicle and bridge matrixes such as symmetry being lost in the 
process, the need to update the coefficients matrices of the system at every time step with new 
positions of the vehicle on the bridge, or to carry new calculations of coefficients if the vehicle or 
bridge model changed (Yang & Lin, 1995; Yang & Fonder, 1996; Kirkegaard et al., 1997). 
An alternative approach that leads to considerable savings in computational time is to implement 
the interaction on an element level rather than on a global level (Olsson, 1985; Yang & Lin, 1995; 
Yang & Yau, 1997; Yang et al., 1999). An interaction element is defined as that bridge element in 

contact with a vehicle wheel. Those bridge elements that are not directly under the action of 
vehicle wheels remain unaltered in the global matrixes of the system. The interaction element is 
characterised by two sets of equations: those of the bridge element and those of the moving 
vehicle above the bridge element. The DOFs of the moving vehicle can be solved in time domain 
using finite-difference equations of the Newmark type, and then, the DOFs of the vehicle that are 
not in direct contact with the bridge are eliminated and condensed to the DOFs of the associated 
bridge element via the method of dynamic condensation. The interaction element has the same 
number of DOFs as the original bridge element and it can be directly assembled with the other 
bridge elements into the global matrixes, while retaining properties that are lost when 
condensation takes place on a global level. 

 
5.3 Algorithms based on Lagrange Multipliers 
The system of equations (24) can be extended with a number of additional coordinates to 
maintain symmetry. The differential equations of motion of the vehicle-bridge system are 
formed by the equations of the bridge and vehicle which appear without overlapping in the 
system matrix, and a number of additional constraints that enforce the compatibility 
condition at the contact points of vehicle and bridge. An advantage of this approach is the 
ease to accommodate it to a standard FE package (to qualify, the software should have the 
capability for solving a transient dynamic response, and to allow for direct inputs into the 
system matrix) while a drawback is the number of additional rows and columns in the 
system matrix that may require a significant computational effort.  
Compatibility conditions between the vertical displacement uj(t) of each moving wheel j and 
the vertical displacement of the bridge at the contact point wb(xj,t), are established for any 
time t with the use of time-dependent functions (Aij(t) and Bij(t) which vary for each node i 
and load j at each instant t). These auxiliary functions produce a constraint consistent with 
the shape functions of the bridge elements and they facilitate to formulate the compatibility 
condition at the contact point of the wheel j as: 
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where wb,i(t) (=wb(xi,t)) and i(t) are the displacements and rotations of the node i in the 
bridge FE model, and N and p are the total number of bridge nodes and moving wheels 
respectively. Aij(t) and Bij(t) can be completely defined prior to the simulation once the 
velocity of the moving loads, the approach length, the spacings between loads and the 
coordinates of the bridge nodes on the wheel path are known. For illustration purposes 
only, the shape of these functions for bridge beam elements with nodes numbered 5, 6 and 7 
and moving load 1 is shown in Fig. 7 (The values of Bij(t) will depend on the distance 
between consecutive nodes, x). They have zero value outside the interval between adjacent 
nodes, and for the location of a vehicle wheel j over a bridge node i, Aij(t) and Bij(t) become 1 
and 0 respectively, which satisfies uj(t)=wb,i(t). The numerical expression for these auxiliary 
functions can be found in Cifuentes (1989) and González et al (2008a).  
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Fig. 7. Auxiliary Functions: (a) Aij(t), (b) Bij(t) (x=1) 
 
The vector of equivalent nodal forces {fb} composed of forces fi(t) and moments Mi(t) acting 
on a bridge node i at time t can also be expressed as a function of the p interaction forces 
using the auxiliary functions: 
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i i j j jj=1
M (t) = B (t)(R + G ) ;      i = 1,2, …N (27) 

 
where Rj and Gj represent dynamic and static components respectively of the moving force j. 
The final system matrix is given in Equation (28) for a discretized beam bridge model with 
N nodes and p moving forces (Baumgärtner, 1999). The group of equations in the first row 
of the system matrix represents the motion of the bridge. The forcing term corresponding to 
this first row is expressed as a function of the auxiliary functions as defined by Equation 
(27). The second row assigns values of the auxiliary functions to scalar points ({s}) and it has 
a size equal to the number of bridge nodes in each wheel path multiplied by twice the 
number of wheels (Aij and Bij). The third and fourth rows of the system matrix represent the 
equations of motion of the vehicle. The equations of motion relating the DOFs of the wheel 
contact points (=p) to the interaction forces {Rj} are given in the third row while the 
equations of motion of the remaining DOFs of the vehicle are given in the fourth row. In the 
fifth row, the only terms that are not zero are those that impose the constraint condition 
between deflections of the moving wheels and the bridge (Equation (26)). When comparing 
the system matrix of Equation (28) to the one in Equation (24), it can be observed that the 
system matrix is larger, but it is not time dependent. Therefore, in Equation (24) the forcing 
vector contains only forces and the vector of unknowns contains only displacements while 
in Equation (28) these vectors contain both forces and displacements. This coupling between 
vectors requires an iteration procedure at each point in time until achieving convergence. 
Details of the implementation of this technique using a fully computerized approach where 
the bridge and vehicle models are built using NASTRAN are given by González (2010).  
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6. Conclusions 

This chapter has reviewed the techniques used for simulating the response of a bridge to the 
passage of a road vehicle, from the initial stages of preparation of the FE models of bridge 
and vehicle to the implementation of the interaction between both. VBI simulations can be 
used to compare the performance of alternative bridge designs or retrofitting options when 
traversed by traffic and to identify those bridge solutions less prone to dynamic excitation. 
They can also be employed to quantify the increase in dynamic amplification due to a 
rougher profile or a deteriorated expansion joint. Other relevant topics in VBI research 
concern traffic properties, i.e., suspension and tyre types, speed, acceleration/deceleration, 
vehicle weights and configuration, frequency matching or multiple vehicle presence.  
A direct application of VBI modelling is related to the characterization of the total traffic 
load on a bridge. The traffic load model specified in the bridge design codes is a function of 
the bridge span length (or natural frequency), number of lanes or load effect, and it is 
necessarily conservative due to the uncertainties governing the bridge response to a critical 
traffic loading event prior to its construction. For instance, the critical traffic loading 
condition is likely to consist of vehicle configurations with very closely spaced axles, which 
generally tend to produce relative dynamic increments smaller than configurations with 
longer axle spacings. Additionally, in the case of long span bridges, the critical traffic 
loading condition consists of a traffic jam situation where vehicles travel at low speed and 
typically cause a minor dynamic excitation of the bridge. In the case of short-span bridges, 
the critical situation will be composed of a reduced number of vehicles travelling at 
highway speed that cause dynamic amplification factors very sensitive to the condition of 
the road profile before and on the bridge. Thus, bridge codes recommend higher dynamic 
allowances for shorter spans. Nevertheless, a number of authors have shown that the site-
specific dynamic amplification derived from VBI simulation models and field data can 
represent a significant reduction with respect to these recommendations and save an 
existing bridge from unnecessary rehabilitation or demolition (Gonzalez et al., 2008a; OBrien 
et al., 2009).  
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Other applications include the analysis of bridge-friendly truck suspensions (Green et al., 
1995; Harris et al., 2007), investigations regarding the occupants of the vehicle and riding 
comfort (Esmailzdeh & Jalili, 2003; Yang et al., 2004a; Moghimi & Ronagh, 2008b), 
interaction with the ground/substructure and induced vibrations (Yang et al., 2004a; Zhang 
et al., 2005; Chen et al., 2007; Yau, 2009), the effect of structural deterioration (Law & Zhu, 
2004;  Zhu & Law, 2006) or environmental conditions (Xu & Guo, 2003; Cai & Chen, 2004) on 
the bridge response to traffic, development of structural monitoring techniques (Yang et al., 
2004b), testing of bridge weigh-in-motion (González, 2010) or moving force identification 
algorithms (González et al., 2008b), fatigue (Chang et al., 2003), vibration control (Kwon et 
al., 1998), noise (Chanpheng et al., 2004) and ambient vibration analysis (Kim et al., 2003). 
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