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1. Introduction     

This Chapter presents a review of the basic formulations, solution methods, and simulation 
procedures that are essential in the finite element analysis of deformation and fracture of 
cylindrical tubes under internal moving pressures. Such analyses are applicable to a number 
of theoretical and practical problems, like deformation and rupture of arteries due to blood 
flow, cyclic fracture of gas pipelines, vibrational behavior of pulse detonation engines, etc. 
However, the scope of this chapter is mostly concerned with high-speed moving pressures 
that can cause significant fluctuating stresses in the tube wall. Based on their relative 
magnitudes, these stresses can result in various types of mechanical failure such as: high 
cycle fatigue cracking (Mirzaei et al., 2006c), low cycle fatigue & dynamic tearing (Mirzaei, 
2008a; 2009), and severe dynamic fragmentation (Price, 2006; Goto et al., 2008; Soto et al., 
2010).  
It should be emphasized that finite element simulations of the above mentioned processes 
are rather difficult and not only involve judicial implementation of advanced finite element 
(FE) techniques but also require a clear understanding of the nature of the underlying 
deformation and fracture mechanisms. Hence, this chapter starts with a brief review of the 
basics of deformation and fracture mechanisms that are specific to this type of problems. In 
continuation, the pertinent FE formulations and solution methods are reviewed and a 
treatise of the relevant fracture mechanics parameters is presented. The final sections of this 
chapter are devoted to practical examples including the FE analyses of deformation and 
fracture of an experimental aluminum tube and an exploded steel cylinder. 

 
2. Structural Response of Tubes to High-speed Moving Pressures 
The structural response of a cylindrical tube to internal moving pressure depends on several 
parameters; including the dimensions and mechanical properties of the tube as well as the 
magnitude and speed of the moving pressure. Classical examples include high-speed 
traveling pressure waves with specific profile caused by detonation of gaseous mixtures or 
traveling shock waves (see Fig.1). 
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Fig. 1. Schematic of internal moving pressures a) gaseous detonation b) shock. 
 
Grossly, we may define three pressure levels for which three different types of structural 
response can be expected. These pressures can be designated as low, medium, and high in 
relation with the magnitude of the resultant stresses which can be less than, equal to, or 
higher than the dynamic ultimate tensile strength of the material. 

 
2.1 Low-Pressure Moving Front 
For relatively low pressures (level 1) the passage of pressure front results in a pattern of 
fluctuating elastic strains which can exist even after the moving load dies out. For this case a 
variety of analytical, experimental, and FE solutions is available for the structural response 
(Tang, 1965; Reismann, 1965; Beltman et al., 1999; Beltman & Shepherd, 2002; Mirzaei et al., 
2005,2006a; Mirzaei, 2008b). An interesting application for this type of moving pressure is 
the pulse detonation engine (PDE) which is currently regarded as a promising candidate for 
providing very efficient propulsion systems for both subsonic and supersonic aviation. Since 
the PDE generates quasi steady thrust by high cycling of gaseous detonations, the 
interactions between the stress waves caused by successive detonations can be troublesome 
and cause high-cycle fatigue cracking in the tube wall. 

 
2.2 Medium-Pressure Moving Front 
Traveling of higher pressures (level 2), that can cause stresses in the order of the ultimate 
tensile strength of the material, may initiate axial cracks which with further propagation can 
result in limited fragmentation of the tube wall. There was no report in the open literature 
about confined crack growth in tubes under gaseous detonation, prior to the experimental 
study reported by Chao and Shepherd (2005). Their study was primarily motivated by 
accidents like those occurred in the nuclear power plants in Japan (Naitoh et al., 2003) and 
Germany in 2001. In both incidents, sections of steel steam pipes were fragmented due to 
combustion of hydrogen-oxygen mixtures created by radiolysis. One of the most important 
questions that arose during the accident investigation was whether the type of accidental 
combustion can be deduced from the fracture patterns. Recently it was shown that at this 
pressure level a major portion of crack growth is periodic and under the influence of the 
fluctuating stresses. This cyclic crack growth can result in formation of special markings on 
the crack surfaces and has specific features (Mirzaei, 2008a). According to the schematic 
depicted in Fig. 2, the passage of detonation front results in a pattern of fluctuating hoop 

 

strains which exist even after the detonation loading dies out. In presence of an axial trough-
thickness crack, the points on the crack surface can continue to oscillate radially. However, 
because the crack surface is traction free, these points also tend to displace circumferentially 
under the influence of stresses imposed by the neighboring material. The outcome is that the 
points on the crack surface are forced to displace in the resultant direction. The continuation 
of this effect, which is maximum at the crack center and minimum at the crack tips, results 
in the bulging of crack flaps. With the extension of the bulged area, large tensile stresses 
(equivalent to yield stress) develop in the bulged region in the axial direction of the tube. 
Since cracks usually tend to grow perpendicular to the largest principal stress directions, the 
initial self-similar growth changes into a circumferential growth by curving around the 
bulged region. The occurrence of branching at this point is also possible for the cases that 
the energy release rate of the crack is high enough to support two crack fronts (Mirzaei, 
2008a; Mirzaei et al., 2009). 
 

 
 

Fig. 2. Top: formation of flexural waves by a moving detonation front and the resulting flap 
bulging, curving, and branching (Mirzaei, 2008a). Bottom: a confined rupture of an 
experimental aluminum tube under internal gaseous detonation (Chao, 2004). 
 
Unfortunately, reports on the FE simulation of detonation-driven fracture of tubes at this 
pressure level are not only scarce but also controversial. Due to the complexity of the 
process, researchers have followed two different simulation approaches. In the first 
approach the emphasis is essentially placed on the effects of the structural waves and the 
usage of dynamic fracture properties, while the probable effect of the structural behavior on 
the gas dynamics is ignored (Mirzaei & Karimi, 2006b; Mirzaei et al., 2009). The second 
approach involves coupled fluid dynamic and structural analysis using static fracture 
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resistance values (Cirak et al., 2007). We will discuss these issues in more detail at the end of 
this chapter.  

 
2.3 High-Pressure Moving Front 
For higher pressures (level 3) several cracks can initiate simultaneously and their rapid 
growth and branching can cause severe dynamic fragmentation. This procedure can result 
from both gaseous detonation (Price, 2006) and high-explosive detonation (Goto et al., 2007) 
(see Fig.3). 
 

 
 

Fig. 3. Left: Computed pressure (in Mbar) in a cylinder (15 s after detonation). Right: 
optical image of fragmentation 25 s after detonation (Goto et al., 2007). 
 
A very recent FE study of this procedure was reported by Soto et al. (2010) who proposed an 
efficient fluid–solid coupled finite element scheme for weapon fragmentation simulations. 

 
3. Theoretical Aspects (an overview) 

Successful simulations of deformation and fracture of cylindrical tubes not only involve a 
clear understanding of the underlying mechanisms but also require implementation of 
transient dynamic elasto-plastic FE formulation and specific modeling techniques. In sequel, a 
brief treatise of FE formulation and related fracture parameters is presented. 

 
3.1 Finite Element Formulation 
Scientists and engineers usually formulate mathematical models of physical phenomena in 
terms of differential equations. These equations along with the associated initial and 
boundary conditions form the “initial and boundary value problems”. In practice, finding 
analytical solutions for these problems is not possible for a majority of applications. The 
basic reason is that the solution must possess a certain degree of continuity in differentiation 
which is dictated by the differential equation. In other words, the differential equation 
places strong conditions on the solution. These strong conditions can be weakened by 

 

recasting the differential equation in the form of certain integrals. The evaluation of these 
integrals can be further facilitated if the domain of the problem is subdivided into simple 
parts (elements). In practice, evaluation of the solution for the assemblage of these elements 
involves a large amount of numerical computations which can only be carried out using 
digital computers. The above mentioned activities constitute solution procedures which are 
called Finite Element Methods. 

 
3.2 A Lagrangian Nonlinear Dynamic Formulation 
In this section we will review some general definitions and formulations concerning finite 
element equations for time-dependent and non-linear continuum problems. For analyses 
with large displacements, rotations, and/or strains, we need to track the position and shape 
of the body throughout the analysis. The Lagrangian meshes conform to and move with the 
material points. Thus, they are most suitable for solid mechanics problems as they can 
handle the complicated boundaries with relative ease. Moreover, as they have the ability to 
follow the material points, they are most suitable to handle the history-dependent materials. 
Moreover, in the Updated Lagrangian (UL) formulation, for which Eulerian measures of 
stress and strain are used, the derivatives and integrals are taken with respect to the spatial 
coordinates and the only limitation is the element capabilities to deal with large distortions.  
Fig. 4 shows the undeformed configuration of a material continuum at time t = t0 together 
with the deformed configuration at a later time t = t.  
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Fig. 4. Undeformed and deformed configurations of a material continuum.  
 
We may describe the motion of the body by: 
 

   , ,i it or x t  x X X  (1) 

in which x  denotes the spatial (Eulerian) coordinates, X  is the material (Lagrangian) 
coordinates, t is time (or a time-like parameter), and  defines a mapping between the 
initial (undeformed ) and the current (deformed) configurations (In the TL formulation, the 
initial configuration is also called the reference configuration since all the equations are 
referred to it).  

www.intechopen.com



Finite element analysis of deformation and fracture  
of cylindrical tubes under internal moving pressures 483

 

resistance values (Cirak et al., 2007). We will discuss these issues in more detail at the end of 
this chapter.  

 
2.3 High-Pressure Moving Front 
For higher pressures (level 3) several cracks can initiate simultaneously and their rapid 
growth and branching can cause severe dynamic fragmentation. This procedure can result 
from both gaseous detonation (Price, 2006) and high-explosive detonation (Goto et al., 2007) 
(see Fig.3). 
 

 
 

Fig. 3. Left: Computed pressure (in Mbar) in a cylinder (15 s after detonation). Right: 
optical image of fragmentation 25 s after detonation (Goto et al., 2007). 
 
A very recent FE study of this procedure was reported by Soto et al. (2010) who proposed an 
efficient fluid–solid coupled finite element scheme for weapon fragmentation simulations. 

 
3. Theoretical Aspects (an overview) 

Successful simulations of deformation and fracture of cylindrical tubes not only involve a 
clear understanding of the underlying mechanisms but also require implementation of 
transient dynamic elasto-plastic FE formulation and specific modeling techniques. In sequel, a 
brief treatise of FE formulation and related fracture parameters is presented. 

 
3.1 Finite Element Formulation 
Scientists and engineers usually formulate mathematical models of physical phenomena in 
terms of differential equations. These equations along with the associated initial and 
boundary conditions form the “initial and boundary value problems”. In practice, finding 
analytical solutions for these problems is not possible for a majority of applications. The 
basic reason is that the solution must possess a certain degree of continuity in differentiation 
which is dictated by the differential equation. In other words, the differential equation 
places strong conditions on the solution. These strong conditions can be weakened by 

 

recasting the differential equation in the form of certain integrals. The evaluation of these 
integrals can be further facilitated if the domain of the problem is subdivided into simple 
parts (elements). In practice, evaluation of the solution for the assemblage of these elements 
involves a large amount of numerical computations which can only be carried out using 
digital computers. The above mentioned activities constitute solution procedures which are 
called Finite Element Methods. 

 
3.2 A Lagrangian Nonlinear Dynamic Formulation 
In this section we will review some general definitions and formulations concerning finite 
element equations for time-dependent and non-linear continuum problems. For analyses 
with large displacements, rotations, and/or strains, we need to track the position and shape 
of the body throughout the analysis. The Lagrangian meshes conform to and move with the 
material points. Thus, they are most suitable for solid mechanics problems as they can 
handle the complicated boundaries with relative ease. Moreover, as they have the ability to 
follow the material points, they are most suitable to handle the history-dependent materials. 
Moreover, in the Updated Lagrangian (UL) formulation, for which Eulerian measures of 
stress and strain are used, the derivatives and integrals are taken with respect to the spatial 
coordinates and the only limitation is the element capabilities to deal with large distortions.  
Fig. 4 shows the undeformed configuration of a material continuum at time t = t0 together 
with the deformed configuration at a later time t = t.  
 

undeformed
Configuration

Deformed
Configuration

C

C0

X2

X1X3

u
x2

x 3

x 1

t=t0

t=t

b

R

R0

 
Fig. 4. Undeformed and deformed configurations of a material continuum.  
 
We may describe the motion of the body by: 
 

   , ,i it or x t  x X X  (1) 

in which x  denotes the spatial (Eulerian) coordinates, X  is the material (Lagrangian) 
coordinates, t is time (or a time-like parameter), and  defines a mapping between the 
initial (undeformed ) and the current (deformed) configurations (In the TL formulation, the 
initial configuration is also called the reference configuration since all the equations are 
referred to it).  

www.intechopen.com



Finite Element Analysis484

 

Accordingly, the displacement, velocity, and acceleration can be defined as: 
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For a nonlinear dynamic problem for which we assume the infinitesimal strain condition  
the strong form is: 
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(3) 

Note that in general the stress tensor is a function of the strain tensor, which in turn is a 
function of displacements. The test and trial functions belong to the following spaces: 
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 (4) 

 
Taking the product of the momentum equation with a test function iv  and integrating over 
the current configuration, we have,  
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and the integration by parts results in:  
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The above is known as the principle of virtual power, and is in fact the weak form of the 
momentum equation with the traction boundary conditions. Now we may consider the current 
domain as an assemblage of finite elements. We consider the coordinates of nodes by I

ix , where 

 

the superscript ranges from 1 to nN (number of nodes). We will then use the shape functions 
 IN X  to interpolate the displacement and the virtual velocities between the nodal values 

as:  
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Accordingly, the discrete form of the principle of virtual power can be written as: 
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The subscript ‘e’ denotes an individual element. Since the virtual displacements (test 
functions) are arbitrary for all nodes (except for the boundary) we may write:  
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Since the stress tensor is a function of the strain tensor (which in turn is a function of 
displacements) the above is a system of nonlinear equations which can be solved using the 
Newton-Raphson method (Belytschko et al., 2000 ; Gullerud et al., 2004).   
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(10) 

In order to carry out the differentiation of the strain tensor we use the kinematic equations 
to give, 
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Accordingly, the displacement, velocity, and acceleration can be defined as: 
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Note that in general the stress tensor is a function of the strain tensor, which in turn is a 
function of displacements. The test and trial functions belong to the following spaces: 
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Taking the product of the momentum equation with a test function iv  and integrating over 
the current configuration, we have,  
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and the integration by parts results in:  
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The above is known as the principle of virtual power, and is in fact the weak form of the 
momentum equation with the traction boundary conditions. Now we may consider the current 
domain as an assemblage of finite elements. We consider the coordinates of nodes by I

ix , where 

 

the superscript ranges from 1 to nN (number of nodes). We will then use the shape functions 
 IN X  to interpolate the displacement and the virtual velocities between the nodal values 

as:  
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Accordingly, the discrete form of the principle of virtual power can be written as: 
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The subscript ‘e’ denotes an individual element. Since the virtual displacements (test 
functions) are arbitrary for all nodes (except for the boundary) we may write:  
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Since the stress tensor is a function of the strain tensor (which in turn is a function of 
displacements) the above is a system of nonlinear equations which can be solved using the 
Newton-Raphson method (Belytschko et al., 2000 ; Gullerud et al., 2004).   
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In order to carry out the differentiation of the strain tensor we use the kinematic equations 
to give, 
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Hence, we may rewrite Eq. (10) as follows, 
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in which we used the properties of the Kroneker Delta to change the indices of epsilon and 
N. Now we change the dummy index k to l and rearrange the terms as follows: 
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Another changing of the dummy index m to k for convenience, results in, 
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With the definition of the tangent stiffness matrix and internal and external nodal forces, we 
may write the above as: 
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For which we have, 
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A key element in the above expressions is the derivative of the stress tensor with respect to 
the strain tensor. If plastic deformation is considered as the source of nonlinearity, the stress 
tensor would become a function of the strain-tensor increment (which in turn is a function of 
the displacement increment), defined over a time increment t , for which we have: 
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Here a main difficulty is to compute the stress caused by the incremental strain through the 
integration of the plastic stress-strain equations. On the other hand, the dynamic nature of 
the problem requires progression of the solution in time domain, for which we have explicit 
and implicit time integration methods. The explicit algorithms remove the need to invert the 
stiffness matrix in every time step by de-coupling the equilibrium equations. However, they 
are conditionally stable and the length of the time step must be smaller than a critical value to 
ensure that the solution converges. Hence, explicit algorithms are generally used for 
problems which by nature require small time steps, such as wave propagations, shock 
responses, and explosive or impact loadings. 
The implicit algorithms are unconditionally stable and the maximum time step is governed 
by accuracy considerations. However, they require inversion of the stiffness matrix at every 
time step and this significantly increases the cost of computations. However, the time step 
length can be substantially larger thereby reducing the overall number of time steps. Thus, 
implicit algorithms are suitable for dynamic problems where the responses involve low 
frequency components, such as seismic responses or large deformations of elasto-plastic 
components under ramp or step loadings (Gullerud et al., 2004). 

 
3.3 A Treatise of Related Fracture Parameters 
Fracture is the separation of a component into, at least, two parts. This separation can also 
occur locally due to formation and growth of cracks. The crack propagation can occur in 
many ways, for instance we may have fast-unstable and slow-stable crack growth under 
monotonic loading or a cyclic growth under alternating loads. Based on Fracture Mechanics 
principles an energy criterion for the onset of crack growth can be defined in the following 
general form: 
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Hence, we may rewrite Eq. (10) as follows, 
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in which we used the properties of the Kroneker Delta to change the indices of epsilon and 
N. Now we change the dummy index k to l and rearrange the terms as follows: 
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Another changing of the dummy index m to k for convenience, results in, 
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With the definition of the tangent stiffness matrix and internal and external nodal forces, we 
may write the above as: 
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For which we have, 
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A key element in the above expressions is the derivative of the stress tensor with respect to 
the strain tensor. If plastic deformation is considered as the source of nonlinearity, the stress 
tensor would become a function of the strain-tensor increment (which in turn is a function of 
the displacement increment), defined over a time increment t , for which we have: 
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Here a main difficulty is to compute the stress caused by the incremental strain through the 
integration of the plastic stress-strain equations. On the other hand, the dynamic nature of 
the problem requires progression of the solution in time domain, for which we have explicit 
and implicit time integration methods. The explicit algorithms remove the need to invert the 
stiffness matrix in every time step by de-coupling the equilibrium equations. However, they 
are conditionally stable and the length of the time step must be smaller than a critical value to 
ensure that the solution converges. Hence, explicit algorithms are generally used for 
problems which by nature require small time steps, such as wave propagations, shock 
responses, and explosive or impact loadings. 
The implicit algorithms are unconditionally stable and the maximum time step is governed 
by accuracy considerations. However, they require inversion of the stiffness matrix at every 
time step and this significantly increases the cost of computations. However, the time step 
length can be substantially larger thereby reducing the overall number of time steps. Thus, 
implicit algorithms are suitable for dynamic problems where the responses involve low 
frequency components, such as seismic responses or large deformations of elasto-plastic 
components under ramp or step loadings (Gullerud et al., 2004). 

 
3.3 A Treatise of Related Fracture Parameters 
Fracture is the separation of a component into, at least, two parts. This separation can also 
occur locally due to formation and growth of cracks. The crack propagation can occur in 
many ways, for instance we may have fast-unstable and slow-stable crack growth under 
monotonic loading or a cyclic growth under alternating loads. Based on Fracture Mechanics 
principles an energy criterion for the onset of crack growth can be defined in the following 
general form: 
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in which G is called the energy release rate (also known as the crack driving force), A is the 
cracked area, and R is the resistance of the material to crack growth. The energy release rate, 
G, can be considered as the energy source for the crack growth and may be obtained from the 
stress analysis of the cracked geometry. On the other hand, the resistance to crack growth 
(R) can be considered as the energy sink and depends on the operating fracture mechanism. 
It should be mentioned that the latter depends on many factors including: the chemical 
composition and microstructure of the material, temperature, environment, loading rate, 
and the state of stress. The resistance to crack growth can be defined by a special term called 
the toughness of the material. We should also distinguish between ductile and brittle as two 
different types of fracture. By definition, ductile fracture is always accompanied by a 
significant amount of plastic deformation, while brittle fracture is characterized by very little 
plastic deformation. It should be noted that due to finite strength of materials, there is 
always a small damaged zone around the crack tip. For metals, this damaged zone is referred 
to as the crack tip plastic zone. If the size of the plastic zone is small we may use Linear Elastic 
Fracture Mechanics (LEFM) parameters like G and K (energy release rate and stress intensity 
factor respectively). Nevertheless, for large plastic zone conditions the linear elastic 
assumptions are not correct, i.e., LEFM is not applicable and nonlinear models must be 
used. If this nonlinearity is not very significant, it can be handled with a non-linear elastic 
model, for which a non-linear-elastic energy release rate called J (usually known as the J-
Integral) is used. However, we should note that similar to the LEFM, there is a limit to the 
validity of J with regard to the size of the plastic zone. Thus for situations where the crack 
tip plasticity is wide-spread the appropriate parameter is the crack-tip opening 
displacement or angle (CTOD and CTOA respectively). 

 
3.3.1 CTOA Methodology for FE Simulations of Ductile Crack Growth 
Both CTOD and CTOA can be used for determination of the onset of crack growth in ductile 
fracture problems. However, for problems that involve both initiation and growth phases, it 
has been shown that modeling approaches based on CTOA can provide a viable growth 
criterion for thin materials (Gullerud et al., 1999). Using the FE method, the CTOA is defined 
by nodal displacements normal to the crack plane (Gullerud et al., 1999, 2004). For 2D planar 
problems the CTOA can simply be considered as the angle defined by the first nodal 
displacement, one element back from the crack tip. Note that the CTOA (as defined for 
WARP3D FE code and used here) is the full angle from one crack face to the other. The 
CTOA-controlled crack growth operates by advancing the crack front a prescribed distance 
when the CTOA reaches a specified critical value.  
The critical CTOA is calculated from the critical CTOD, which is a measure of fracture 
toughness. Fracture toughness for a specific material can vary with the thickness, strain rate, 
temperature, etc. The general methodology for using a calibrated value of critical CTOA for 
an arbitrary component made of a specific material can be summarized as: (a) obtain well 
characterized experimental fracture test data with crack tearing up to and beyond maximum 
load; (b) analyze the tests with elastic–plastic CTOA controlled crack-tearing finite element 
analysis with crack front modeling, mesh size, and material model of sufficient fidelity to 

 

represent the tests; (c) iterate the FEA with an assumed CTOA value until the results are 
close to the experimental data in predicting deformation, strains, maximum load and also 
are reasonably close in predicting the trends and amount of crack growth; (d) use this 
calibrated CTOA value, material data, and mesh size to predict crack tearing fracture 
behavior for other types of specimens or applications (Gullerud et al., 1999).  

 
3.3.2 Crack Growth Simulation using Cohesive Elements 
In simulations of ductile crack growth there are instances that a single-parameter treatment 
of cracked bodies may not yield accurate results in presence of widespread yielding. The 
remedy is to use either two-parameter fracture mechanics methods (like the J-Q approach) 
or other solutions based on damage mechanics models (Anderson, 1994; Cornec et al., 2003). 
Among the latter, the cohesive model with interface elements seems very attractive because 
it is computationally efficient and its two parameters can be determined with relative ease. 
In this approach, the crack extension evolves as a direct outcome of the computations by 
creation of new traction free crack faces. This method has been formulated in WARP3D to 
provide it with the capability to simulate mixed mode crack growth, and also phenomena 
such as crack turning and branching (Gullerud et al., 2004). In general, the interface 
elements consist of two surfaces which connect the faces of two adjacent solid elements. The 
crack propagation occurs when the energy release rate reaches a critical value ( cG ). The 
implementation of interface elements requires a cohesive constitutive relation which in 
WARP3D is defined as a traction-separation relationship of the form: 
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In the above, t is the effective traction between the two surfaces of an interface element, c  
is the peak traction which shows the local material strength,   is the effective opening 
displacement, and c denotes the value of   at the point of peak traction. The cohesive 
fracture energy can be described by: 

exp(1.0)c c c    (20) 
 
Using the procedure outlined by Li and Siegmund (2002) for thin-sheet ductile material in 
plane stress condition, the cohesive strength can be selected as 2c y  , where y  is the 
yield stress of the bulk material. Another key parameter is the length of the cohesive zone 
which is defined as the distance from the crack tip to the point where the maximum 
cohesive traction is attained. In order to obtain accurate results using the cohesive zone 
model (CZM), the tractions in the cohesive zone must be represented properly by the FE 
spatial discretization, i.e., a minimum number of elements is required to resolve the 
variations within the cohesive zone (Falk et al., 2001).  
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elements consist of two surfaces which connect the faces of two adjacent solid elements. The 
crack propagation occurs when the energy release rate reaches a critical value ( cG ). The 
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In the above, t is the effective traction between the two surfaces of an interface element, c  
is the peak traction which shows the local material strength,   is the effective opening 
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yield stress of the bulk material. Another key parameter is the length of the cohesive zone 
which is defined as the distance from the crack tip to the point where the maximum 
cohesive traction is attained. In order to obtain accurate results using the cohesive zone 
model (CZM), the tractions in the cohesive zone must be represented properly by the FE 
spatial discretization, i.e., a minimum number of elements is required to resolve the 
variations within the cohesive zone (Falk et al., 2001).  
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4. Practical Examples of FE Simulation 

The following sections present two practical examples of FE simulations of deformation and 
fracture of thin tubes under internal gaseous detonation. The simulations are carried out for 
an experimental detonation tube and an exploded gas cylinder. 

 
4.1 Elastodynamic Response of an Aluminum Tube (Mirzaei & Karimi, 2006b) 
This section presents the FE analysis of the elastodynamic response of an aluminum tube 
without flaw using WARP3D (a 3D research code for dynamic nonlinear fracture analysis of 
solids). In this code the nonlinear dynamic equilibrium equations are solved using an 
incremental-iterative implicit formulation with full Newton iterations to eliminate residual 
nodal forces (Gullerud et al., 2004). Although for this case study axisymmetric elements and 
explicit time integration scheme are the most appropriate choices, the aim of this initial 
analysis was to obtain a validated 3D model before attempting the crack growth simulation. 
The model consisted of 29400 8-node brick elements. The element distribution in the radial, 
longitudinal, and circumferential directions was 5, 280, and 21 respectively. A major part of 
the FE simulation was the modeling and preconditioning of a moving pressure load with 
the required profile. The detonation loading history was preconditioned as a discrete 
version of the exponential approximation to the Taylor-Zeldovich model and was 
prescribed as a function of time at each node. The results of the FE simulation included the 
initial detonation loading and the subsequent reflections of the flexural waves at the flanges. In 
Fig.5 the FE results are compared with the experimental results of Chao (2004). It is clear 
that there is a very good agreement between the results over this time interval.  
  

  

Fig. 5. (a): Experimental result (Chao, 2004) (b): WARP3D solution (Mirzaei & Karimi, 
2006b). 

 
4.2 Crack Growth Simulation for an Aluminum Tube (Mirzaei & Karimi, 2006b) 
In the FE model of the pre-cracked tube the size of the far-field mesh was set to allow the 
simulation of the flexural (breathing mode) waves (in the form of hoop strains) so that they 
can be compared with the experimental strain signals. An upper bound of the mesh size was 
estimated using flexural wavelength. Because of the restrictions imposed by the CTOA 
approach, the crack front could not contain convenient collapsed elements that are used in 
computational fracture mechanics. Thus, the size of the elements near the crack tip was set 
small enough to capture the crack front plasticity and to maintain the accuracy of CTOA 
approach. In his experimental study, Chao (2004) used an axially oriented external notch, 
shaped as a semi elliptical surface crack. However, the finite element modeling of a semi 
elliptical surface crack, 35.2 mm long and 0.64 mm deep within a 0.89 mm wall thickness, 
could cause severe problems with regards to the shape and aspect ratios of the elements. 

 

Therefore, the initial flaw was modeled by considering an equivalent through thickness 
crack. In practice the remote loading process was controlled so that the loading increments 
acting at the crack tip were not so large to cause large deformations in the crack tip elements 
in one loading step. This phenomenon is referred to as overshoot (Gullerud et al., 2004). 
Options are provided in the WARP3D code to control overshoot by restricting the size of 
one loading step based on projecting the expected CTOA from the previous load step. A 
control for general reduction of the step loading schedule is also available. But these 
approaches were not applicable in this study because they interfere with the simulation of 
detonation as a moving pressure load. In general, the "overshoot control" and the "automatic 
load reduction" change the load step, thereby affecting the detonation simulation. Thus, the 
load step size was substantially decreased to avoid the overshoot, resulting in prolonged 
runtimes.  

 
4.2.1 Estimation of critical CTOA 
Unfortunately, a CTOA calibration for the material in question is not available for such high 
strain rates. Hence, the critical CTOA was inferred from the experimental results as follows. 
Table 1 shows the experimental conditions and results for the pre-flawed aluminum tubes. 
 

Shot 
d 2a h Vcj Pcj L 

Fracture behavior 
mm mm mm m/s MPa mm 

30 0.64 35.2 0.89 2384 4.0 610 Crack confined in notch 

34 0.64 35.2 0.89 2404 6.1 610 Forward and Backward growth 

Table 1. Experimental conditions and fracture behavior for a pre-flawed aluminum tube 
(Chao, 2004). 
 
The results indicate that in shot 30 the crack slightly advanced but remained confined within 
the notch, which indicates initiation plus a little propagation. Thus, shot 30 was recognized 
suitable for predicting the critical CTOA under actual dynamic condition that satisfies all of 
the loading rate and component thickness expectations for fracture toughness. The 
experimental results indicated that the crack remained confined in the notch exactly 0.2 ms 
after arrival of detonation loading. Thus, an initial FE simulation was carried out for this 
time period and the resulting maximum value of CTOA (4.61 degrees) was used as 
"dynamic critical CTOA" in the crack growth simulation for Shot 34 (see Table 1). Fig. 6 
shows the results obtained from transient modeling of the moving pressure with full-
dynamic effects.  
As depicted in Fig. 6, the detonation front travels from left to right and causes a pattern of 
flexural structural waves as it proceeds toward the left crack tip. Also, it is clear the crack 
grows more in the forward direction, i.e., in the direction of movement of the detonation 
front. The same phenomenon was observed by Chao and shepherd in their experiments 
(Chao & Shepherd, 2005). 
This asymmetric growth, which is one of the specific features of detonation-driven fracture 
of tubes and occurs quite naturally as a result of the difference between the relative speeds 
of the structural waves with respect to the two crack tips, will be discussed in sequel. 
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elliptical surface crack, 35.2 mm long and 0.64 mm deep within a 0.89 mm wall thickness, 
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Therefore, the initial flaw was modeled by considering an equivalent through thickness 
crack. In practice the remote loading process was controlled so that the loading increments 
acting at the crack tip were not so large to cause large deformations in the crack tip elements 
in one loading step. This phenomenon is referred to as overshoot (Gullerud et al., 2004). 
Options are provided in the WARP3D code to control overshoot by restricting the size of 
one loading step based on projecting the expected CTOA from the previous load step. A 
control for general reduction of the step loading schedule is also available. But these 
approaches were not applicable in this study because they interfere with the simulation of 
detonation as a moving pressure load. In general, the "overshoot control" and the "automatic 
load reduction" change the load step, thereby affecting the detonation simulation. Thus, the 
load step size was substantially decreased to avoid the overshoot, resulting in prolonged 
runtimes.  
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Unfortunately, a CTOA calibration for the material in question is not available for such high 
strain rates. Hence, the critical CTOA was inferred from the experimental results as follows. 
Table 1 shows the experimental conditions and results for the pre-flawed aluminum tubes. 
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The results indicate that in shot 30 the crack slightly advanced but remained confined within 
the notch, which indicates initiation plus a little propagation. Thus, shot 30 was recognized 
suitable for predicting the critical CTOA under actual dynamic condition that satisfies all of 
the loading rate and component thickness expectations for fracture toughness. The 
experimental results indicated that the crack remained confined in the notch exactly 0.2 ms 
after arrival of detonation loading. Thus, an initial FE simulation was carried out for this 
time period and the resulting maximum value of CTOA (4.61 degrees) was used as 
"dynamic critical CTOA" in the crack growth simulation for Shot 34 (see Table 1). Fig. 6 
shows the results obtained from transient modeling of the moving pressure with full-
dynamic effects.  
As depicted in Fig. 6, the detonation front travels from left to right and causes a pattern of 
flexural structural waves as it proceeds toward the left crack tip. Also, it is clear the crack 
grows more in the forward direction, i.e., in the direction of movement of the detonation 
front. The same phenomenon was observed by Chao and shepherd in their experiments 
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This asymmetric growth, which is one of the specific features of detonation-driven fracture 
of tubes and occurs quite naturally as a result of the difference between the relative speeds 
of the structural waves with respect to the two crack tips, will be discussed in sequel. 
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Fig. 6. Snapshots of simulated crack growth for an aluminum tube at different time intervals 
including the contours of the first principal stress component. 
 
The simulations presented in Fig. 6 seem to be representative of a number of actual growth 
characteristics including flap bulging. Nevertheless, there are two major inconsistencies 
between the simulation results and the actual crack growth features. The first one is that the 
simulated crack speed is 2 times the actual average speed during the self-similar growth. 
The reason is that the retardation effects of cyclic crack growth were not considered in this 
analysis (Mirzaei et al., 2009). The second problem is that crack curving and branching could 
not be simulated using the CTOA approach implemented in WARP3D.  

 
4.3 Crack Growth Simulation for an Aluminum Tube (Cirak et al., 2007) 
Cirak et al. (2007) performed large-scale fluid-structure interaction simulation of viscoplastic 
deformation and fracturing of the experimental aluminum tube of Chao & Shepherd (2005). 
In practice, they used the static plain strain fracture toughness IcK  to obtain the properties 
of their cohesive elements.  

 

In general, their results showed some inconsistencies with the experiments, particularly 
with respect to the crack growth magnitude, speed, and premature cracking of the flap 
edges (see Fig.7). They also reported that their computational crack speeds were 2-3 times 
higher than experimentally observed (Deiterding et al., 2006).  
 
  
 
 

 
 

Fig.7. Crack growth simulation for an aluminum tube under internal gaseous detonation. 
Left: (Cirak et al., 2007). Right: (Deiterding et al., 2006) 

 
4.4 FE Analysis of an Exploded Gas Cylinder (Mirzaei et al., 2009) 
This section presents the finite element simulations of deformation and fracture of a gas 
cylinder which catastrophically failed as a result of an accidental explosion (see Fig.8). The 
results of a previous detailed investigation of this incident indicated that detonation of a 
low-pressure oxygen-rich mixture of hydrogen and oxygen was the cause of the cylinder 
failure (Mirzaei, 2008). The overall transient dynamic response of the cylinder to gaseous 
detonation loading was studied using the ANSYS/LS-DYNA V10 package and the crack 
growth simulations were performed using the WARP3D-R15 research code. The crack 
growth analyses were performed using interface cohesive elements. The accuracy of the 
finite element results was verified using analytical solutions and data collected from the 
remains of the cylinder.  
 

 
 

Fig. 8. Remains of an exploded gas cylinder along with a schematic showing the original 
locations of the collected fragments and the crack growth directions. The sketch is not to scale. 
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4.4.1 Elasto-plastic Dynamic Response  
A transient elasto-plastic dynamic analysis was carried out to obtain the structural response 
of the cylinder to a moving pressure load with specific profile using 2011 rotary symmetric 
solid elements. The preconditioning and application of the loading history was similar to the 
procedure described for the aluminum tube before. The simulation was carried out for the 
detonation speed of 2300 m/s, initial pressure of 1.9 MPa, maximum pressure of 37 MPa, 
and exponential decay factor of T = 0.15 ms (Mirzaei, 2008). In order to validate the FE 
model, the results were compared with the analytical solutions reported in Refs (Mirzaei et 
al 2005; Mirzaei 2008b). To avoid the effects of the boundary conditions on the main signal, 
the results were compared at a distance of 200 mm from the upper neck. Fig.9 shows the 
results for a time period of 1ms, which includes the initial detonation loading and the 
subsequent reflections of the flexural waves.  
 

 

 
 
 

 

 

Fig. 9. Left: hoop stress vs. time at a distance of 200 mm from the upper neck. The results 
include the main signal (up to 0.35 ms) plus the reflected waves, a): elasto-dynamic solution 
(analytical), b): elasto-plastic dynamic solution (FE). Right: two snapshots showing the 
development of flexural waves with time and the related distributions of the Von-Mises 
stress (elasto-plastic dynamic FE). The stresses are in MPa. 
 
The very good agreement between the two results for the main signal (the first 4 stress 
waves) is quite clear. However, the FE solution shows a stronger decay in the amplitude of 
the reflected waves. This can be attributed to the restraining effects of the bottom cap which 
was modeled as a simple support in the analytical solution. Fig. 9 also shows two snapshots 
of the development of flexural waves with time and the related distributions of the Von-
Mises stress (elasto-plastic dynamic FE). It is clear that the maximum stress occurs at a 

 

distance of 100 mm from the upper neck. This is the same location that the initiation of a 6-
mm axial crack was recognized on the fragments Nos. 5 and 7 (see Fig.8).  

 
4.4.2 Crack Growth Simulation  

The dynamic mechanical properties of the cylinder material are shown in Table 2. The 
details of the experimental procedures were reported in (Mirzaei, 2008).  

  E    y  u  cK ( h= 6 mm) 

kg/m3 GPa  MPa MPa MPa m  

8000 206 0.33 598 700 72 

Table 2. Mechanical properties for the cylinder material (carbon steel). 
 
Accordingly, the cohesive energy for crack growth was computed as 

 
2

225.16 kJ/mc
c c

KG
E

     
 
(21) 

Although different models have been proposed to estimate the length of the cohesive zone, 
the two most commonly used models in the literature are proposed by Hillerborg et al. 
(1976) and Rice (1979). The simulations reported here are based on the Hillerborg’s model in 
which the cohesive zone length is expressed by:           

2
c

cz
c

Gl E


  
 

(22) 

In this study 7-8 elements were used over the cohesive zone length to be able to fully resolve 
the variations within this zone. Fig.10 depicts the snapshots of simulated crack growth at 
different time intervals showing the contours of the first principal stress component.  The 
successive opening and closing of the crack flaps is a clear indication of a cyclic crack growth 
governed by the flexural waves. Also, it is clear the crack grows more in the forward direction, 
i.e., in the direction of movement of the detonation front. The same phenomenon was 
observed by Chao and shepherd in their experiments (Chao, 2004; Chao & Shepherd 2005). 
This asymmetric growth occurs quite naturally as a result of the difference between the 
relative speeds of the structural waves with respect to the two crack tips. Let us denote the 
speed of the structural waves, the forward tip, and the backward tip by swV , ftV , and btV  
respectively. In practice, the speed at which each stress cycle outdistances from the forward 
tip is; sw ftV V , which is naturally less than sw btV V  (the speed of separation between the 
flexural wave and the backward tip). Hence, the effective time that each stress cycle acts on 
crack tips is longer for the forward tip.  
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4.4.1 Elasto-plastic Dynamic Response  
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Fig. 9. Left: hoop stress vs. time at a distance of 200 mm from the upper neck. The results 
include the main signal (up to 0.35 ms) plus the reflected waves, a): elasto-dynamic solution 
(analytical), b): elasto-plastic dynamic solution (FE). Right: two snapshots showing the 
development of flexural waves with time and the related distributions of the Von-Mises 
stress (elasto-plastic dynamic FE). The stresses are in MPa. 
 
The very good agreement between the two results for the main signal (the first 4 stress 
waves) is quite clear. However, the FE solution shows a stronger decay in the amplitude of 
the reflected waves. This can be attributed to the restraining effects of the bottom cap which 
was modeled as a simple support in the analytical solution. Fig. 9 also shows two snapshots 
of the development of flexural waves with time and the related distributions of the Von-
Mises stress (elasto-plastic dynamic FE). It is clear that the maximum stress occurs at a 

 

distance of 100 mm from the upper neck. This is the same location that the initiation of a 6-
mm axial crack was recognized on the fragments Nos. 5 and 7 (see Fig.8).  

 
4.4.2 Crack Growth Simulation  

The dynamic mechanical properties of the cylinder material are shown in Table 2. The 
details of the experimental procedures were reported in (Mirzaei, 2008).  

  E    y  u  cK ( h= 6 mm) 

kg/m3 GPa  MPa MPa MPa m  

8000 206 0.33 598 700 72 

Table 2. Mechanical properties for the cylinder material (carbon steel). 
 
Accordingly, the cohesive energy for crack growth was computed as 
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Although different models have been proposed to estimate the length of the cohesive zone, 
the two most commonly used models in the literature are proposed by Hillerborg et al. 
(1976) and Rice (1979). The simulations reported here are based on the Hillerborg’s model in 
which the cohesive zone length is expressed by:           

2
c

cz
c

Gl E


  
 

(22) 

In this study 7-8 elements were used over the cohesive zone length to be able to fully resolve 
the variations within this zone. Fig.10 depicts the snapshots of simulated crack growth at 
different time intervals showing the contours of the first principal stress component.  The 
successive opening and closing of the crack flaps is a clear indication of a cyclic crack growth 
governed by the flexural waves. Also, it is clear the crack grows more in the forward direction, 
i.e., in the direction of movement of the detonation front. The same phenomenon was 
observed by Chao and shepherd in their experiments (Chao, 2004; Chao & Shepherd 2005). 
This asymmetric growth occurs quite naturally as a result of the difference between the 
relative speeds of the structural waves with respect to the two crack tips. Let us denote the 
speed of the structural waves, the forward tip, and the backward tip by swV , ftV , and btV  
respectively. In practice, the speed at which each stress cycle outdistances from the forward 
tip is; sw ftV V , which is naturally less than sw btV V  (the speed of separation between the 
flexural wave and the backward tip). Hence, the effective time that each stress cycle acts on 
crack tips is longer for the forward tip.  
  

www.intechopen.com



Finite Element Analysis496

 

 
Fig. 10. Snapshots of simulated crack growth at different time intervals showing the 
contours of the first principal stress component. The movement of the detonation front is 
from left to right. The stresses are in MPa. 
 
Although the simulations presented in Fig. 10 seem to be representative of a number of 
actual growth characteristics, there are major inconsistencies between the simulation results 
and the actual crack growth features. The most important one is that the simulated crack 
speed is 3 times the actual average speed during the self-similar growth. Another problem is 
that the crack branching does not occur at the actual location. These inconsistencies show 
that the implemented approach has not been able to model all the features of the cyclic crack 
growth mechanism. The remedy is that the growth retardations imposed by various fatigue 
crack closure mechanisms should be incorporated in the FE simulations. 

 
4.4.3 Crack Growth Simulation with Retardation 
In practice, the high amplitude stress cycles (caused by high-speed pressure) create an 
extreme low cycle fatigue (LCF) crack growth problem which can be represented by the 
upper portions of the Region III on the classical fatigue crack growth rate diagrams. In this 
Region the static modes of crack propagation are also operative, and because of high 
amounts of plastic deformation at the crack tip and the resultant plastic stretches on the 
crack wake the main retardation mechanism is the plasticity-induced crack closure (Anderson, 
1995). Under these conditions, a cycle by cycle FE simulation of crack closure is the best 
practice. However, such simulation requires specific FE formulation for the cohesive 
elements. Thus, as an initial step, the closure effects were artificially incorporated into the 
WARP3D model by increasing the critical energy release rate in every increment. 
Accordingly, the cohesive parameters of the elements in front of the crack tip were 
proportionally increased to maintain the same stiffness in the linear part of traction-
separation model after every incremental growth. Fig. 11 shows 4 snapshots of simulated 
crack growth with retardation at different time intervals including the contours of the first 
principal stress. 

 

 
Fig. 11. Snapshots of simulated crack growth with retardation at different time intervals 
showing the contours of the first principal stress. The movement of the detonation front is 
from left to right. The stresses are in MPa. 

In practice, the incorporation of retardation effects not only adjusted the overall crack speed 
but also resulted in crack curving and branching at the expected location. It is interesting to 
note that because of the growth retardation caused by closure mechanisms the crack 
experiences a relatively larger number of cycles to grow to a certain length. Accordingly, the 
cyclic bulging of the crack flaps can expand to the extent that the resultant axial stresses are 
significant enough to cause curving and branching. Fig. 12 also shows the onset of a second 
branching similar to the one that actually occurred in the exploded cylinder (see Fig.8). 
 

 
 

Fig. 12. Simulation of crack flap bulging and the resultant crack branching. The onset of the 
second branching is also visible in the magnified image of the upper branch. The stresses are 
in MPa. 
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5. Conclusions and Some Avenues for Future Research 

The structural response of a cylindrical tube to internal moving pressure depends on several 
parameters including the dimensions and mechanical properties of the tube as well as the 
magnitude and speed of the moving pressure. For instance, high-speed traveling of 
relatively low pressures (level 1) can result in a pattern of fluctuating high frequency elastic 
strains. For the FE analysis of this problem an elastodynamic formulation with axisymmetric 
2D elements and explicit time integration is quite appropriate. An interesting research 
activity in this area will be the investigation of the effects of successive gaseous detonations 
on the vibrational behavior of Pulse Detonation Engines. 
Traveling of higher pressures (level 2), that can cause stresses in the order of the ultimate 
tensile strength of the material, may initiate axial cracks which with further propagation can 
result in limited fragmentation of the tube wall. Usually the initial cracks are created by local 
excessive shear and the self-similar crack propagation is governed by the structural waves. 
The FE analysis of this problem requires nonlinear dynamic elasto-plastic FE formulation 
with 3D elements, along with cohesive elements for crack initiation and growth simulation. 
It should be noted that a successful FE simulation of such crack growth should capture a 
number of specific features of detonation-driven fracture of cylindrical tubes. These features 
are: 
 

a)  Cyclic crack propagation during the self-similar growth of the axial crack  
b)  Cyclic bulging of the crack flaps 
c)  Crack curving and branching adjacent to the bulged area 

 
It should be emphasized that, since a major portion of detonation-driven fracture of 
cylindrical tubes can involve cyclic crack growth, successful simulation of the fragmentation 
and accurate assessments of quantities like crack speed require specific procedures that suit 
this particular type of growth. This involves the implementation of specialized techniques in 
the modeling process plus the inclusion of retardation phenomena like fatigue crack closure. 
Unfortunately, the current commercial FE codes do not have built-in capabilities for such 
simulations.  
Finally, traveling of very high pressures (level 3), that can cause stresses much higher than 
the ultimate tensile strength of the material, can simultaneously initiate several cracks in the 
tube wall.  The rapid growth and branching of these cracks result in severe dynamic 
fragmentation. For this class of problems usually Lagrangian FE codes with explicit time 
integration along with simple failure criteria (like the equivalent plastic strain) are used.  
However, a main difficulty is that the problem can involve hundreds of thousands of time 
steps and millions of elements.  Moreover, numerical instabilities caused by separation of 
several fragment of elements must be taken into account. In practice, nonlinear-explicit 3D 
finite element codes like DYNA3D and LS-DYNA provide many capabilities for such 
simulations. 
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