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1. Introduction 

Conventional gas turbines (GTs) range from a size of one or a few MWe to more than 

350 MWe (GTW, 2009). Those at the small end of the range are commonly used in industrial 

applications, for mechanical or onsite electrical power production, while the larger ones are 

usually installed in large-scale electrical power plants, often in combined cycle plants, and 

are typically located far away from the consuming region.  

In the future distributed energy systems based on small local power plants are likely to 

spread; since they lie close to the final users, they reduce electrical transport losses, and 

make thermal energy recovery profitable both in energy-related and in economic terms 

(Papermans et al., 2005; IEA, 2002). These benefits explain the increasing interest in small-

size generation systems. 

Recently, gas turbines < 1 MWe, defined as micro gas turbines (MGTs), have appeared on 

the market. MGTs are different from large GTs and cannot therefore be considered merely 

as their smaller versions. Their advantages as distributed energy systems lie in their low 

environmental impact in terms of pollutants and in their competitive operation and 

maintenance (O&M) costs. MGTs appear to be particularly well suited for service sector, 

household and small industrial applications (Macchi et al., 2005; Zogg et al., 2007). 

2. The technology of Micro Gas Turbines  

The small power size of MGTs entails implications that affect the whole structure. In 
particular the low gas mass flow rate is reflected in machine size and rotational speed: the 
smaller the former, the greater the latter. MGTs therefore differ significantly from GTs, 
mainly in (i) the type of turbomachines used; (ii) the presence of a regenerator; and (iii) the 
high rotational speed, which is independent of grid frequency. In fact unlike GTs, MGTs 
commonly use high-revving, single-stage radial turbomachines rather than multi-stage axial 
ones, to achieve greater compactness and low manufacturing costs. As a consequence of the 
high rotational speed, the electrical current is generated at high frequency and is then 
converted to the grid frequency value (50 or 60 Hz) by power electronics. The 
turbocompressor and turbine are usually fitted on the same shaft as the electrical generator, 
which also serves as the starting motor. Single-stage radial machines afford limited 
compression ratios and need a regenerative cycle to attain satisfactory electrical efficiency. 
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Therefore a regenerator is usually installed between the compressor and the combustion 
chamber. Figures 1 and 2 show, respectively, the layout and corresponding thermodynamic 
cycle of a typical cogeneration MGT. 
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Fig. 1. Layout of a typical cogeneration MGT  
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Fig. 2. MGT regenerative Brayton-Joule cycle 

The ambient air (1, in both figures) is compressed by the centrifugal compressor; it then 
enters the regenerator (2), where it is preheated by the exhausts coming from the turbine, 
and is conveyed from the regenerator (3) to the combustion chamber, where it is used in the 
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combustion process to achieve the design turbine inlet temperature (4). The hot gases then 
expand through the turbine (5) and enter the regenerator. Given their fairly high 
temperature at the power unit exit (6), the exhausts can be sent to a heat recovery boiler 
(HRB), where they are used to heat water, before being discharged to the flue (7). In this 
configuration combined heat and power (CHP) production increases fuel energy conversion 
efficiency. When the thermal power demand is lower than the power that can be recovered 
from the exhausts, part of the fumes is conveyed directly to the chimney (7) via a bypass 
valve (BPV). The core power unit is fitted with auxiliary systems that include (i) fuel, (ii) 
lubrication, (iii) cooling, and (iv) control systems. The fuel feeding system compresses the 
fuel to the required injection pressure and regulates its flow to the combustion chamber 
according to the current operating condition. The lubrication system delivers oil to the 
rolling components, with the dual effect of reducing friction and removing heat. The cooling 
system keeps the operational temperatures of the different components, lubrication oil 
included, in the design ranges. The cooling fluid can be air, water, or both. The function of 
the electronic control system is to monitor MGT operation through continuous, real time 
checking of its main operational parameters. 

3. Operation modes 

MGTs can usually operate in two modes: 
1. Non-cogeneration (electricity production only): the MGT provides the electrical power 

required by the user and all the available thermal power is discharged to the flue. 
2. Cogeneration (combined production of electrical and thermal energy): the MGT 

produces the electrical and thermal power required by the user. MGTs operating in 
cogeneration mode can usually be set to work with electrical or with thermal power 
priority. 
a. Electrical priority operating mode 

In this operating mode the MGT produces the electrical power set by the user, 
while heat production is regulated by the BPV installed before the HRB. This is not 
an energy efficiency-optimized operating mode, because in conditions of high 
electrical and low thermal power demand a considerable amount of the recoverable 
heat is discharged to the flue. 

b. Thermal priority operating mode 
Thermal priority operation involves complete closure of the MGT bypass valve, so 
that all the exhaust gases from the regenerator pass through the HRB for thermal 
power recovery. Thermal power production is regulated by setting the electrical 
power. This mode maximizes MGT efficiency in all operating conditions. 

4. Performance and emissions 

The considerations made so far apply to most MGTs. The data presented below have been 
obtained from theoretical studies and experimental testing of a specific machine, a 
Turbec T100 PH (Turbec, 2002), which the authors have been using for their research work 
for several years (Caresana et al., 2006). With due caution, these findings can be extended to 
most MGTs. In this section, the performance and emissions of a real MGT-based plant are 
reported and some criticalities connected to MGT behaviour highlighted.  
The main performance parameters of an MGT are: 
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• electrical power elP ; 

• thermal power thP ; 

• electrical efficiency elη , defined as: 

 el
el

f

P

m LHV
η =

$
 (1) 

• thermal efficiency thη , defined as: 

 th
th

f

P

m LHV
η =

$
 (2) 

• total efficiency totη , defined as: 

 el th
tot el th

f

P P
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η η η

+
= = +

$
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where fm$ and LHV are the mass flow rate and the Lower Heating Value of the fuel, 

respectively. 
Since electrical power is the main final output, we have represented the dependence of the 
other performance parameters on Pel (Figures 3-7). Unless specified otherwise, the 
experimental data refer to ISO ambient conditions, i.e. temperature and relative humidity 
(R.H.) equal to 15 °C and 60 % respectively (ISO, 1989). 
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Fig. 3. Electrical efficiency 

Figure 3 plots the trend of the electrical efficiency, which is consistently high from the 
nominal power down to a partial load of about 70 %, with a maximum slightly > 29 % 
around 80 kWe. Figures 4 and 5 report the thermal power and total efficiency data, 
respectively, for different degrees of BPV opening, calculated as the ratio between the 
thermal power recovered and that which can be recovered at the nominal power. The tests 
were conducted at a constant water flow rate of 2 l/s entering the HRB at a temperature of 
50 °C.  
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Fig. 4. Thermal power for different degrees of BPV opening 
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Fig. 5. Efficiencies for different degrees of BPV opening 

As expected, greater BPV opening entailed a progressive reduction in the thermal power 

recovered, and consequently reduced total efficiency. This confirms that the thermal priority 

cogeneration mode maximizes fuel energy conversion efficiency. Figure 4 shows that a small 

part of the discharged thermal power is however transferred from the exhausts to the water, 

even with a completely open BPV. If this thermal power (about 25 kW at full load) is 

usefully recovered, total efficiency remains greater than electrical efficiency, as shown in 

Figure 5, otherwise total and electrical efficiencies necessarily coincide. 

Figures 6 and 7 show the level of pollutants CO and NOX, respectively. CO concentrations in 

the exhausts are low from 70 % to 100 % of the load, but they rise steeply with lower loads. 

The NOX concentration is very low in all working conditions. 
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Fig. 6. CO concentration @ 15 % O2 
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Fig. 7. NOX concentration @ 15 % O2 
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Fig. 8. Electrical performance vs ambient temperature  
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4.1 Influence of ambient parameters 

The performance of MGTs, like those of GTs, are strongly affected by ambient conditions, 
particularly temperature. Figure 8 shows the values of nominal electrical power and 
efficiency as a function of the ambient temperature. In the T100 PH machine, electrical 
power generation at temperatures < 0 °C is limited electronically, to avoid overworking the 
machine. The decline observed at higher temperatures is explained by the lower air density 
and consequently lower mass flow rate through the power unit. A parallel decrease in 
electrical efficiency can also be noted. 

4.2 Influence of heat recovery 

The performance of a cogeneration system can be evaluated by comparison with the 
separate production of heat and electricity. The most commonly used index is the Primary 
Energy Saving (PES) index which, as the name suggests, quantifies the primary energy 
savings offered by a CHP plant compared with (conventional) separate production of 
electrical and thermal energy. 
The PES index is calculated as (European Parliament, 2004): 

 

_ _

1
1

el th

el ref th ref

PES
η η

η η

= −

+

 (4) 

where: 

•  elη  and thη are the electrical and thermal efficiencies of the cogeneration system 

averaged over a given period; and 

• _el refη  and _th refη are the reference values of efficiency for separate production of 

electrical and thermal energy. 
A positive value of the index means that the primary energy consumption of the CHP 
system is lower compared with separate production over the time period considered. 
Figure 9 shows the PES index of a Turbec T100 PH in different operating conditions for  
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Fig. 9. PES for different degrees of BPV opening 
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different degrees of BPV opening, calculated considering values of 40 % and 90 % of _el refη  

and _th refη , respectively. It is worth noting that heat recovery is crucial to achieve a positive 

PES. In fact, even minor opening of the BPV adversely affects the index. This confirms that 

thermal priority operation (0 % BPV opening) is the mode maximizing fuel savings and 

consequently that it is preferable to the electrical priority mode. 

5. Enhancing performances 

As noted above, major limitations to the further spread of MGTs are their lower electrical 
efficiency compared with their main competitors, i.e. reciprocating engines, and lower 
electrical power production at rising ambient temperatures. Their main advantages, low 
emissions and competitive O&M costs, do not seem to offset these drawbacks. 
In the following paragraphs we describe the research work being conducted by the Systems 
for Energy and the Environment team of Dipartimento di Energetica, Università Politecnica 
delle Marche, Ancona, Italy, to enhance MGT performance. We employed the same MGT 
model that was used to obtain the experimental performance and emissions data, focusing on: 
1. Inlet Air Cooling (IAC); 
2. Bottoming organic Rankine cycles; 
3. Micro STIG; 
4. Trigeneration. 

5.1 Inlet Air Cooling (IAC) 

The simplest way to limit the power reduction consequent to rising ambient temperature is 
to cool the air entering the compressor.  
The air intake system of the MGT studied consists of a single duct carrying the working air 
and the cooling air, which both enter a single ambient inside the cabinet. From here part of 
the air is sucked in by the compressor, while the remaining air flow is conveyed to the 
cooling system via an external fan. Clearly, only the air processed by the compressor 
influences performance. Hence the need for separating the two flows, in order to cool only 
the working air. This can be achieved with minimum changes to the MGT cabinet and by 
mounting a cooling system in the working air inlet duct. 
For the MGT model studied ice formation in the air flow and on the walls, a common risk in 
GTs, is excluded by the manufacturer, who states extreme working condition (-25 °C air 
temperature, 100 % R.H.) that are much more severe than those that can be achieved with 
any cooling system.  
We used a test bed to evaluate two different IAC techniques: 

• direct expansion IAC system; 

• fogging IAC system. 
The tests were conducted in the summer in the ambient condition of an Adriatic seaside 
town in central Italy. 

Direct expansion IAC system 

This system consists of a refrigerating engine, whose evaporator is housed directly in the 
working air intake duct. The refrigerating engine and the condenser fans are electrically 
driven by means of inverters, to improve efficiency. The system uses R507A as the 
refrigerating fluid and is designed to keep the inlet air temperature at the value set by the 
user, external ambient conditions and refrigerating engine power permitting. In fact, 
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although an inlet air cooled temperature of 15 °C (ISO, 1989) was set for all the tests, it was 
not reached consistently. As an example, Figures 10 and 11 show the electrical power and 
efficiency, respectively, in relation to ambient temperature, R.H., and corresponding IAC 
temperature over 200 time steps (about 15 min), with the machine working at maximum 
load. Since the R.H. was greater than the design R.H. (50 %), the minimum IAC temperature 
that could be achieved was slightly > 15 °C (about 17 °C). 
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Fig. 10. Effects of the direct expansion IAC system on inlet air and MGT electrical power 
production 
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Fig. 11. Effects of the direct expansion IAC system on inlet air and MGT electrical efficiency 

The IAC temperature induced a significant increase in gross electrical power production, 
from about 80 kW (without IAC) to around 95 kW. 
However, the net electrical power, which is the crucial output, reached only 84 kW, due to the 
strong influence of the refrigerating engine performance: the lower its coefficient of 
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l, 
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performance (COP), the higher its consumption and the lower the net electrical power of the 
MGT. The COP thus emerges as a crucial parameter, since an excessively low COP can entail a 
net electrical power even lower than the one without IAC. The COP measured during these 
tests was about 2.5. The power increase notwithstanding, the consumption of the refrigerating 
engine adversely affects the electrical efficiency of the MGT. To sum up, the direct expansion 
IAC system can be used to increase electrical power, but it does not enhance efficiency.  

Fogging IAC system 

This system cools the inlet working air via adiabatic saturation (Chaker et al., 2000). The 
main components of the apparatus are nozzles (4 in our test bed) and a high-pressure pump. 
Demineralized water is pumped at a pressure of 70 bar to the nozzles, housed in the intake 
duct, and is then nebulized as droplets whose diameter is usually < 20 µm (Chaker et al., 
2002). The fogging system thus achieves nearly total adiabatic saturation by cooling the air 
to wet bulb temperature, which is the lowest achievable temperature, at an R.H. of about 
100 %. For this reason, the final cool air temperature cannot be preset, but is strongly 
dependent on ambient conditions: the drier the air, the greater the temperature reduction. 
Figures 12 and 13 show electrical power and efficiency, respectively, over a period of 200 
time steps with the machine working at its maximum load. Thanks to the IAC temperature, 
electrical power production increases from about 84 kW to 88 kW, but unlike in the direct 
expansion IAC system, here it is very close to the net electrical power, since the high-
pressure pump consumes only 550 W. Furthermore, the fogging system slightly improves 
electrical efficiency, by about 1 %. 
In conclusion, both IAC techniques were effective in limiting the electrical power reduction 
consequent to rising ambient temperature. Despite the comparable power gain, the fogging 
technique is however preferable, ambient conditions permitting, since besides enhancing 
efficiency it involves a much simpler and, last but not least, cheaper plant. Expansion 
techniques would be interesting if the refrigerating engine were also used for other 
purposes, such as air conditioning of large spaces (e.g. shopping malls, cinemas, office 
blocks). Since air conditioning plants are designed on the warmest local conditions, they 
work at partial load most of the time; the residual power could therefore be used for IAC. 
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Fig. 12. Effects of the fogging IAC system on inlet air and MGT electrical power production 
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Fig. 13. Effects of the fogging IAC system on inlet air and MGT electrical efficiency 

5.2 Bottoming organic Rankine cycles 

The solution proposed here aims to enhance the electrical efficiency of the MGT by 
recovering the heat lost, producing additional electricity. This goal can be achieved with a 
micro combined cycle using bottoming organic Rankine cycles (Caresana et al., 2008). This 
micro combined configuration consists of an MGT, a Heat Recovery Vapour Generator 
(HRVG), and a bottoming vapour plant (Figure 14). This solution minimizes the changes to 
the standard CHP model, since it merely requires replacing the original HRB with an 
HRVG. The MGT exhausts enter the HRVG and are discharged to the environment after 
heating the bottoming working fluid. The vapour generated in the HRVG expands through 
a turbine that drives an electrical generator. 
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Clearly, this configuration greatly affects the cogeneration plant’s performance, since the 
thermal energy is discharged at the bottoming cycle condenser at very low temperatures.  

Selection of the bottoming cycle working fluid 

Whereas traditional, large-size, combined plants commonly use water as the bottoming 
cycle working fluid, organic fluids seem to be more appropriate in micro scale plants, 
because their thermodynamic properties are better suited to the low temperature of the 
exhausts leaving the MGT. Compared with steam, organic fluids allow both more compact 
solutions, by virtue of their higher density, and simpler layouts, by virtue of their 
significantly narrower density variation through evaporation and expansion. 
This work does not examine some common, technically suitable organic fluids, i.e. 
chlorofluorocarbons (CFCs), because they have been banned (United Nations, 2000), and 
hydrochlorofluorocarbons (HCFCs), because they will be banned in the European Union, 
from January 1st 2015 (European Parliament, 2000). Therefore the choice necessarily falls on 
hydrofluorocarbons (HFCs) due to thermo-physical and technical criteria. In fact, the fluid 
in question needs to be: 

• thermally stable in the range of pressures and temperatures involved in the cycles; 

• non-toxic; 

• non-corrosive; 

• non-explosive;  

• non-flammable; 

• compatible with the plant’s process component materials; 

• low ozone-depleting; 

• global warming-neutral. 
HFCs meeting these criteria include R245ca, R245fa, R134a, R407C and R410A, the last two 
being mixtures. Their liquid-vapour curves are reported in a T-s diagram in Figure 15 and 
their critical properties in Table 1. 
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Fig. 15. T-s diagrams of five HFC organic fluids 
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In particular Figure 15 shows that R245fa and R245ca are “dry fluids”, R407C and R410A are 
“wet fluids”, and R134a is an almost “isoentropic fluid”. A dry fluid is one whose vapour 
saturation curve with reference to a given temperature interval has a positive slope on a T-s 
diagram (dT/dS>0); a wet fluid is one having a negative slope (dT/dS<0), and an 
isoentropic fluid is a fluid having a vertical saturation line (dT/dS= ∞). 
 

 R245ca R245fa R134a R407C R410A 

Temperature (°C) 174.42 154.05 101.06 86.03 71.36 

Pressure (MPa) 3.925 3.640 4.059 4.630 4.903 

Table 1. Critical points of the five HFCs 

Bottoming cycles 

Vapour cycles can be: (i) non-superheated or Rankine type; (ii) superheated or Hirn type; or 

(iii) supercritical. Steam cycles are commonly superheated, due to thermodynamic efficiency 

requirements and to the need for limiting droplet condensation during vapour expansion 

through the turbine. With organic cycles the latter problem is partially addressed by proper 

selection of the working fluid. Use of a dry fluid prevents droplet condensation in the 

turbine even without superheating. In fact, at a suitable evaporating pressure the expanding 

dry fluid does not enter the liquid-vapour equilibrium zone and condensation does not take 

place, even starting from the saturated vapour line. However, superheating is still a valuable 

option, since the benefit of removing the superheater must be weighed against the 

consequent decrease in efficiency. In this subsection we present the results of simulations, 

performed with an in house-developed program, where different vapour cycle 

configurations were tested using the five organic fluids mentioned above. 

Since the exhaust mass flow rate and outlet temperature of the MGT studied are known, the 
bottoming cycles can be defined completely by setting the values of the following 
parameters: 

• vapour cycle condensing pressure, cp ; 

• HRVG pressure, vp ; 

• vapour cycle maximum temperature, 3t . 

Furthermore, setting the exhaust temperature at the HRVG outlet, Ex Outt , allows calculation 

of the thermal power that can be recovered from the exhausts, _t recP , as: 

 ( )_ _t rec eg p eg Ex In Ex OutP m c t t= ⋅ ⋅ −$  (5) 

where egm$ and _p egc  are the exhaust mass flow rate and its specific heat, respectively. 

Considering the HRVG as adiabatic, the organic fluid mass flow rate, Vm$ , is therefore: 

 _t rec
V

in

P
m

q
=$  (6) 

where inq  is the heat received by the organic fluid unit of mass (see fluid states of 

Figure 14), which is equal to the increase in enthalpy through the HRVG: 

 3 2inq h h= −  (7) 
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The condensing pressure cp  depends closely on the temperature of the cooling fluid at the 

condenser, _cf int , and results in a condensing temperature, ct , of: 

 _c cf in cft t t τ= + Δ +  (8) 

where, as shown in Figure 16, cftΔ  is the temperature increase of the cooling fluid through 

the condenser and τ  is the temperature difference between the condensing organic fluid 

and the cooling fluid at the outlet.  

The values of τ  and cftΔ are the result of a technical and economic trade-off. The lower 

these values, the lower the condensing temperature and the greater the cycle’s efficiency, as 

well as the heat exchanger’s surface and cost. The study considers four condensing 

technologies, of which the water-cooled system is the most appropriate. However, it also 

addresses cooling technologies that reduce the amount of water needed, such as cooling 

towers, or that completely obviate the need for it, such as air condensers for use at sites 

where water is not consistently available. Finally, it examines condensation with water 

coming from a panel heating system, which makes the plant a micro combined cogeneration 

system. The condensing technologies considered, the assumed values of _cf int , cftΔ ,τ  and 

the resulting ct and cp  are reported in Table 2. 
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Fig. 16. Condenser heat exchange diagram 
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Condenser cooled by ambient air 15 8 7 30 

Condenser cooled by ambient water 12 8 7 27 

Condenser cooled by water from cooling tower 15 8 7 30 

Condenser cooled by water from panel heating 30 5 7 42 

Table 2. Main parameters of the condensing technologies 

An air temperature of 15 °C and an R.H. of 60 % are assumed for condensers cooled by 

ambient air and by water from a cooling tower, according to the ambient ISO conditions 

considered for the gas cycle. In particular, the temperature of the water from the cooling 
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tower is assumed to be 4 °C warmer than the wet bulb temperature of the air, which is about 

11 °C in ISO conditions. For the water cooled condenser, the ambient water temperature is 

assumed to be 12 °C. Finally, if the heat discharged by the vapour cycle is recovered in a 

panel heating plant, it is considered to require water at 35 °C, which then returns to the 

condenser at 30 °C.  

Once pc has been calculated, all relevant plant parameters can then be obtained using the set 
of equations listed in Table 3, where the indexes refer to the points in Figures 14-22 and the 
assumed efficiencies are listed in Table 4. 
The efficiency of the combined plant was then optimized for Rankine, Hirn and supercritical 
bottoming cycles using this set of equations (eqs. 5-18). 
For each condensing pressure, the optimization process involved identification of the 
combination of pv and t3 maximizing the efficiency of the combined plant and meeting the 
following conditions: 
1. minimum vapour quality at the turbine outlet equal to 0.9; 

2. minimum temperature difference, minτ , of 15 °C between the exhausts and the organic 

fluid inside the HRVG. 
The heat exchange and T-s diagrams of the different cycle configurations examined are 
reported in Figures 17-22. 
 

Vapour cycle output heat per 
unit of mass 4 1outq h h= −  (9) 

Vapour cycle expansion work 
per unit of mass 3 4 3 4( )turbine is turbinel h h h h η= − = − ⋅  (10)

Vapour cycle pumping work 
per unit of mass 

2 1
2 1

is
pump

pump

h h
l h h

η
−

= − =  (11)

Vapour cycle thermodynamic 
efficiency 

turbine pump

in

l l

q
η

−
=  (12)

Vapour cycle electrical power ( )_ _ _
_ _

pump
el V turbine m t el g v aux

m p el p

l
P l mη η η

η η

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= ⋅ ⋅ − ⋅ ⋅

⎜ ⎟⋅⎢ ⎥⎝ ⎠⎣ ⎦
$  (13)

Combined plant electrical 
power 

_ _el CC el el VP P P= +  (14)

Combined plant electrical 
efficiency 

_
_

el CC
el CC

f

P

m LHV
η =

⋅$
 (15)

Vapour cycle thermal power 
output 

_th CC V outP m q= ⋅$  (16)

Combined plant thermal 
efficiency 

(panel heating system) 

_
_

th CC
th CC

f

P

m LHV
η =

⋅$
 (17)

Combined plant global 
efficiency 

(panel heating system) 

_ _
_

el CC th CC
g CC

f

P P

m LHV
η

+
=

⋅$
 (18)

Table 3. Equations used to define the main parameters of the combined plant 
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Turbine efficiency turbineη  0.75 

Turbine mechanical efficiency _m tη  0.98 

Electrical generator efficiency _el gη  0.97 

Pump efficiency pumpη  0.70 

Pump mechanical efficiency _m pη  0.98 

Pump motor electrical efficiency _el pη  0.92 

Auxiliary system efficiency (water-cooled condenser and panel 
heating system) * auxη  0.90 

Auxiliary system efficiency (air condenser and cooling tower)* auxη  0.80 

* The power used by fan coils is assumed to reduce the auxiliary system efficiency of the air-cooled 
condenser and of the cooling tower  

Table 4. Efficiency values assumed for the calculations 
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Fig. 17. Rankine cycle heat exchange diagram 
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Fig. 18. Rankine cycle 
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Fig. 19. Hirn cycle heat exchange diagram 
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Fig. 20. Hirn cycle 
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Fig. 21. Supercritical cycle heat exchange diagram 
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Fig. 22. Supercritical cycle 

Performance and results 

As expected, the optimization process highlighted that the ambient water condensing 

technology maximizes the power production of all bottoming cycle configurations with all 

the organic fluids studied, thus also maximizing both the power production and the 

electrical efficiency of the whole micro combined plant. The main results of the optimization 

processes for the ambient water condenser are reported for illustrative purposes in Table 5, 

where the operating data of each cycle configuration and organic fluid are compared. Only 

the dry fluids R245 ca and R245 fa are entered for the Rankine cycle. For the Hirn cycle the 

evaporating pressure is clearly lower than the critical one. 

Table 5 shows the organic fluids R245ca and R245fa to be those offering the best 

performance, with slightly better results for the former. Even though these fluids can be 

employed in Rankine cycles, achieving an electrical efficiency of 36 - 37 %, compared with 

the original 30 % of the MGT, better results are achieved with the Hirn (37 %) and, 

especially, the supercritical cycle (37 - 38 %). The performances of the latter cycles are 

slightly better than that of the Rankine cycle, but they are based on significantly higher 

values of HRVG pressure and of t3. The Rankine bottoming cycle therefore remains a good 

option, due to the lower pressure and temperature levels and to the simpler plant 

configuration. 

The results of the optimization process of the ambient water condenser with R245fa 

supercritical cycles are shown in Figure 23, where the electrical power produced by the 

bottoming cycle is plotted as a function of the evaporating pressure and is parameterized 

with reference to the t3. 

The electrical power that can be achieved based on tc with R245ca supercritical cycles as a 

function of the evaporating pressure is reported in Figure 24 with reference to the water 

cooling technology. These data are also representative of the other condensing technologies, 

the only difference being the efficiency of the auxiliary system. 
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Supercritical 

pv tv η  vm$  _el VP  _el CCP  _el CCη  
Working fluid 

(MPa) (°C) (%)
 

(kg/s)
 

(kW)
 

(kW)
 

(%)
 

R245ca 7.82 226 17.11 0.577 26.57 126.57 38.01 

R245fa 8.92 226 16.51 0.594 25.66 125.66 37.74 

R134a 8.25 181 13.71 0.702 21.13 121.13 36.38 

R407C 8.33 161 11.78 0.736 17.89 117.89 35.40 

R410A 9.65 160 11.74 0.716 17.66 117.66 35.33 
 

Hirn 

pv tv η  vm$  _el VP  _el CCP  _el CCη  
Working fluid 

(MPa) (°C) (%)
 

(kg/s)
 

(kW)
 

(kW)
 

(%)
 

R245ca 3.72 186 16.24 0.586 25.37 125.37 37.65 

R245fa 3.63 183 15.15 0.598 23.68 123.68 37.14 

R134a 4.05 180 11.54 0.604 17.94 117.94 35.42 

R407C 4.33 162 9.34 0.630 14.47 114.47 34.38 

R410A 4.60 162 8.36 0.601 12.93 112.93 33.91 
 

Rankine 

pv tv η  vm$  _el VP  _el CCP  _el CCη  
Working fluid 

(MPa) (°C) (%)
 

(kg/s)
 

(kW)
 

(kW)
 

(%)
 

R245ca 2.45 148 15.10 0.658 23.62 123.62 37.12 

R245fa 2.31 129 13.66 0.728 21.32 121.32 36.43 

Table 5. Condenser cooled by ambient water (tc = 27 °C) 

 

 
 
 
 

Fig. 23. Pel_V as a function of pv and t3 for an R245fa supercritical cycle at tc = 27 °C 
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Fig. 24. Pel_V as a function of pv and tc for an R245ca supercritical cycle 

Figure 24 confirms that the lower the condensing pressure, the more the electrical power 
generated; this applies to all the organic fluids studied. Nevertheless, despite the influence 
of the high condensing temperature on electrical performances, the cogeneration solution 
with the panel heating system results in increased global efficiency due to heat recovery. 

5.3 Micro STIG 

The acronym STIG stands for “Steam-Injected Gas” turbines, a technique used to improve 
the electrical and environmental performance of large-size GTs. The enhanced electrical 
power production and system efficiency are related to the different composition and 
quantity of the working fluid mass flowing through the turbine, due to the steam injected 
into the combustion chamber zone. The steam also involves a reduction in the combustion 
temperature and therefore of the NOx formed in the exhausts. 
Our group has recently addressed the advantages of applying the well-known STIG 
technique to MGTs, from a theoretical standpoint. 
In the micro STIG plant layout reported in Figure 25 the original HRB is replaced with a heat 
recovery steam generator (HRSG), which produces the steam to be injected into the 
combustion chamber. 
The aim was to devise a mathematical model of the micro STIG plant. Each component was 
defined by a set of equations describing its mass and energy balances and its operating 
characteristics, the most significant of which are the performance curves of the 
turbomachines.  
The model was used to assess the influence of steam mass flow rate on electrical power and 
efficiency. Figures 26 to 28 report examples of the preliminary results obtained with the 
model. In particular, Figures 26 and 27 show electrical power and efficiency, respectively, as 
a function of the injected steam mass flow rate in fixed thermodynamic conditions (10 bar 
and 280 °C). Figure 28 shows, for a given flow rate (50 g/s), the trend of the electrical 
efficiency as a function of steam pressure and temperature. 
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Fig. 25. Layout of the STIG cycle-based micro gas turbine 

 

 
 
 
 

Fig. 26. Electrical power vs. injected steam mass flow rate 
 

 
 
 
 

Fig. 27. Electrical efficiency vs. injected steam mass flow rate         

E
le

ct
ri

ca
l 

p
o

w
er

 (
k

W
) 

Injected steam mass flow rate (g/s)

0 10 20 30 40 50

140

130

120

110

E
le

ct
ri

ca
l 

ef
fi

ci
en

cy
 (

%
) 

Injected steam mass flow rate (g/s)

0 10 20 30 40 50

36

34

33

32

35

www.intechopen.com



 Gas Turbines 

 

166 

Preliminary simulations showed that the more steam is injected the greater are electrical 
power and efficiency. Nevertheless, the amount of steam that can be injected is affected on 
the one hand by the thermal exchange conditions at the HRSG—which limit its 
production—and on the other by the turbine choke line, which limits the working mass flow 
rate. 
Once the amount of steam to be injected has been set, the higher its temperature and 
pressure, the greater the electrical efficiency. 
 
 

 
 

 
 

Fig. 28. Electrical efficiency vs. injected steam thermodynamic state 

We are currently conducting a sensitivity analysis to assess the thermodynamic state and the 
amount of injected steam that will optimize the performance of the STIG cycle. 

5.4 Trigeneration 

The issue of heat recovery has been addressed in paragraph 4.2. Cogeneration systems are 

characterized by the fact that whereas in the cold season the heat discharged by the MGT 

can be recovered for heating, there are fewer applications enabling useful heat recovery in 

the warm season. In fact, apart from industrial processes requiring thermal energy 

throughout the year, cogeneration applications that include heating do not work 

continuously, especially in areas with a short winter. The recent development of absorption 

chillers allows production of cooling power for air conditioning or other applications. This 

configuration, where the same plant can simultaneously produce electrical, thermal and 

cooling power, is called trigeneration. The main components of an actual trigeneration 

plant, designed by our research group for an office block, is shown in Figure 29. The plant, 

whose data acquisition apparatus is still being developed, consists of a 100 kWe MGT (right) 

coupled to a heat recovery boiler (centre) and to a 110 kWf absorption chiller (left). The 

exhausts can be conveyed to the boiler or to the chiller, the latter being a direct exhausts 

model. 
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Fig. 29. Trigeneration plant 

6. Conclusions 

This overview of the state of the art of MGTs has highlighted the critical function of heat 

recovery in enhancing the energy competitiveness of the technology. Cogeneration or 

trigeneration must therefore be viewed as native applications of MGTs. The main limitations 

of the MGT technology are the high sensitivity of electrical power production to ambient 

temperature and electrical efficiency. The dependence on ambient temperature can be 

mitigated by using IAC techniques; in particular, the fogging system was seen to be 

preferable under all respects to an ad hoc-designed direct expansion plant. 

Two options have been analysed to increase electrical efficiency: organic Rankine cycles and 

a STIG configuration. The former technology is easier to apply, since it does not require 

design changes to the MGT, but merely replacement of the recovery boiler with an organic 

vapour generator. Furthermore, the technology is already available on the market, since it 

has already been developed for other low-temperature heat recovery applications. 

In contrast, the STIG configuration requires complete redesign of the combustion chamber, 

as well as revision of both the control system and the housing. Both technologies enhance 

electrical efficiency to the detriment of global efficiency, since both discharge heat at lower 

temperature, so that cogeneration applications are often not feasible. 
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