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1. Introduction 

Gas turbine monitoring and diagnostics belong to a common area of condition monitoring 

(health monitoring) of machinery and mechanical equipment such as spacecrafts, aircrafts, 

shipboard systems, various power plants and industrial and manufacturing processes. They 

can be considered as complex engineering systems and become more sophisticated during 

their further development that results in potential degradation of system reliability. In order 

to keep reliability high, various diagnostic tools are applied. Being capable to detect and 

identify incipient faults, they reduce the rate of gross failures. 

Considerable increase of industrial accidents and disasters has been observed in the last 

decades (Rao, 1996). Mechanical failures cause a considerable percentage of such accidents. 

Various deterioration factors can be responsible for these failures. Among them, the most 

common factors that degrade a healthy condition of machines are vibration, shock, noise, 

heat, cold, dust, corrosion, humidity, rain, oil debris, flow, pressure, and speed (Rao, 1996). 

In these conditions, health monitoring has become an important and rapidly developing 

discipline which allows effective machines maintenance. In two last decades the 

development of monitoring tools has been accelerated by advances in information 

technology, particularly, in instrumentation, communication techniques, and computer 

technology.  

Modern sensors trend to preliminary signal processing (filtering, compressing, etc.) in order 

to realize self-diagnostics, reduce measurement errors, and decrease volume of data for 

subsequent processing. So, sensors become more and more “intelligent” or “smart”. 

Development of communication techniques, in particular, wireless technologies drastically 

simplifies data acquisition in the sites of machine operation. Data transmission to 

centralized diagnostic centres is also accelerated. In these centres great volume of data can 

effectively be analyzed by qualified personnel. The personal computer has radically 

changed as well. Large numbers of powerful PCs united in networks allow easy sharing the 

measured data through the company, fast data processing, and suitable access to the 

diagnostic results. Development of the PC technology also allows many independent 

disciplines to be integrated in condition monitoring.  

Success of monitoring not only depends on perfection of monitoring hardware and software 
themselves, but also is determined by tight monitoring integration with maintenance when 
the both disciplines can be considered as one multidiscipline. Behind this trend lies a well 
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known concept of Condition Based Maintenance (CBM) as well as ideas of Condition 
Monitoring and Diagnostic Engineering Management (COMADEM) (Rao, 1996) and 
Prognostics and Health Management (PHM) (Vachtsevanos et al., 2006). As illustrated by 
many examples in (Rao, 1996), the proper organization of the total monitoring and 
maintenance process can bring substantial economical benefits. Numerous engineering 
systems, which considerably differ in nature and principles of operation, need individual 
techniques in order to realize effective monitoring. The variety of known monitoring 
techniques can be divided into five common groups: vibration monitoring, wear debris 
analysis, visual inspection, noise monitoring, and environment pollution monitoring (Rao, 
1996). The two first approaches are typical for monitoring rotating machinery, including gas 
turbines. 
A gas turbine engine can be considered as a very complex and expensive machine. For 

example, total number of pieces in principal engine components and subsystems can reach 

20,000 and more; heavy duty turbines cost many millions of dollars. This price can be 

considered only as potential direct losses due to a possible gas turbine failure. Indirect losses 

will be much greater. That is why, it is of vital importance that the gas turbine be provided 

by an effective monitoring system.  

Gas turbine monitoring systems are based on measured and recorded variables and signals. 
Such systems do not need engine shutdown and disassembly. They operate in real time and 
provide diagnostic on-line analysis and recording data in special diagnostic databases. With 
these databases more profound off-line analysis is performed later.  
The system should use all information available for a diagnosed gas turbine and cover a 

maximal number of its subsystems. Although theoretical bases for diagnosis of different 

engine systems can be common, each of them requires its own diagnostic algorithms taking 

into account system peculiarities. Nowadays parametric diagnostics encompasses all main 

gas turbine subsystems such as gas path, transmission, hot part constructional elements, 

measurement system, fuel system, oil system, control system, starting system, and 

compressor variable geometry system. In order to perform complete and effective diagnosis, 

different approaches are used for these systems. In particular, the application of such 

common approaches of rotating machinery monitoring as vibration analysis and oil debris 

monitoring has become a standard practice for gas turbines.  

However, the monitoring system always includes another technique, which is specific for 

gas turbines, namely gas path analysis (GPA). Its algorithms are based on a well-developed 

gas turbine theory and gas path measurements (pressures, temperatures, rotation speeds, 

and fuel consumption, among others). The GPA can be considered as a principal part of a 

gas turbine monitoring system. The gas path analysis has been chosen as a representative 

approach to the gas turbine diagnosis and will be addressed further in this chapter. 

However, the observations made in the chapter may be useful for other diagnostic 

approaches. 

The gas path analysis provides a deep insight into gas turbine components’ performances, 

revealing gradual degradation mechanisms and abrupt faults. Besides these gas path 

defects, malfunctions of measurement and control systems can also be detected and 

identified. Additionally, the GPA allows estimating main engine performances that are not 

measured like shaft power, thrust, overall engine efficiency, specific fuel consumption, and 

compressor surge margin. Important engine health indicators, the deviations in measured 

variables induced by engine deterioration and faults, can be computed as well. 
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The gas path analysis is an area of extensive studies and thousands of technical papers can 
be found in this area. Some common observations that follow from these works and help to 
explain the structure of this chapter are given below.  
First, it can be stated that gas turbine simulation is an integral part of the diagnostic process. 

The models fulfil here two general functions. One of them is to give a gas turbine 

performance baseline in order to calculate differences between current measurements and 

such a baseline. These differences (or deviations) serve as reliable degradation indices. The 

second function is related to fault simulation. Recorded data rarely suffice to form a 

representative classification because of the rare and occasional appearance of real faults and 

very high costs of real fault simulation on a test bed. That is why mathematical models are 

involved. The models connect degradation mechanisms with gas path variables, assisting in 

this way with a fault classification that is necessary for fault diagnosis.  

Second, a total diagnostic process can be divided into three general and interrelated stages: 
common engine health monitoring (fault detection), detailed diagnostics (fault 
identification), and prognostics (prediction of remaining engine life). Since input data 
should be as exact as possible, an important preliminary stage of data validation precedes 
these principal diagnostic stages. In addition to data filtration and averaging, it also includes 
a procedure of computing the deviations, which are used practically in all methods of 
monitoring, diagnostics, and prognostics.  
Third, gas turbine diagnostic methods can be divided into two general approaches. The first 

approach employs system identification techniques and, in general, so called 

thermodynamic model. The used models relate monitored gas path variables with special 

fault parameters that allow simulating engine components degradation. The goal of gas 

turbine identification is to find such fault parameters that minimize difference between the 

model-generated and measured monitored variables. The simplification of the diagnostic 

process is achieved because the determined parameters contain information on the current 

technical state of each component. The main limitation of this approach is that model 

inaccuracy causes elevated errors in estimated fault parameters. The second approach is 

based on the pattern recognition theory and mostly uses data-driven models. The necessary 

fault classification can be composed in the form of patterns obtained for every fault class 

from real data. Since patterns of each fault class are available, a data-driven recognition 

technique, for example, neural network, can be easily trained without detailed knowledge of 

the system. That is why, this approach has a theoretical possibility to exclude the model 

(and the related inaccuracy) from the diagnostic process.  

Fourth, the models used in condition monitoring and, in particular, in the GPA can be divided 

into two categories – physics-based and data-driven. The physics-based model (for instance, 

thermodynamic model) requires detailed knowledge of the system under analysis (gas 

turbine) and generally presents more or less complex software. The data-driven model gives a 

relationship between input and output variables that can be obtained on the basis of available 

real data without the need of system knowledge. Diagnostic techniques can be classified in the 

same manner as physics-based or model-based and data-driven or empirical.  

Illustrating the above observations, Fig. 1 presents a classification of gas path analysis 

methods. Taking into the account the observations and the classification, the following topics 

will be considered below: real input data for diagnosis, mathematical models involved, 

preliminary data treatment, fault recognition methods and accuracy, diagnosis and monitoring 

interaction, and application of system identification methods for fault diagnosis. 
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Fig. 1. Classification of gas path analysis techniques 

2. Diagnostic models 

2.1 Nonlinear static model 

In the GPA the physics-based models are presented by thermodynamic models for 
simulating gas turbine steady states (nonlinear static model) and transients (nonlinear 
dynamic model). Since the studies of Saravanamuttoo et al., in particular, (Saravanamuttoo 
& MacIsaac, 1983), application of the thermodynamic model for steady states has become 
common practice and now this model holds a central position in the GPA. Such a model 
includes full successive description of all gas path components such as input device, 
compressor, combustion chamber, turbine, and output device. Such models can also be 
classified as non-linear, one-dimensional, and component-based.  

The thermodynamic model computes a (m×1)-vector Y
f

 of gas path monitored variables as a 

function of a vector U
f

 of steady operational conditions (control variables and ambient 

conditions) as well as a (r×1)-vector Θ
f

 of fault parameters, which can also be named health 

parameters or correction factors depending on the addressing problems. Given the above 

explanation, the thermodynamic model has the following structure:  

 ( , )Y F U
→ → →
= Θ .  (1) 

There are various types of real gas turbine deterioration and faults such as fouling, tip rubs, 
seal wear, erosion, and foreign object damage whose detailed description can be found, for 
example, in the study (Meher-Homji et al., 2001). Since such real defects occur rarely during 
maintenance, the thermodynamic model is a unique technique to create necessary class 
descriptions. To take into account the component performance changes induced by real 
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gradual deterioration mechanisms and abrupt faults, the model includes special fault 
parameters that are capable to shift a little the components’ maps.  
Mathematically, the model is a system of nonlinear algebraic equations reflecting mass, heat, 
and energy balance for all components operating under stationary conditions.  
The thermodynamic model represents complex software. The number of algebraic equations 
can reach 15 and more and the software includes dozens of subprograms. The most of the 
subprograms can be designed as universal modules independent of a simulated gas turbine, 
thus simplifying model creation for a new engine.  

System identification techniques can significantly enhance model accuracy. The dependency 

1( )Y f U=
f f

 realized by the model can be well fitted and simulation errors can be lowered up 

to a half per cent. Unfortunately, it is much more difficult to make more accurate the other 

dependency 2( )Y f= Θ
f f

 because faults rarely occur. The study presented in (Loboda & 

Yepifanov, 2010) shows that differences between real and simulated faults can be visible.  
As mentioned before, the thermodynamic model for steady states has wide application in 
gas turbine diagnostics. First, this model is used to describe particular faults or complete 
fault classification (Loboda et al., 2007). Second, the thermodynamic model is an integral 
part of numerous diagnostic algorithms based on system identification such as described in 
(Pinelli & Spina, 2002). Third, this nonlinear model allows computing simpler models 
(Sampath & Singh, 2006), like a linear model (Kamboukos & Mathioudakis 2005) described 
below.  

2.2 Linear static model 

The linear static model present linearization of nonlinear dependency 2( )Y f= Θ
f f

 between 

gas path variables and fault parameters determined for a fixed operating condition U
f

. The 

model is given by a vectorial expression  

 Y Hδ δ= Θ
f f

.  (2) 

It connects a vector δ Θ
f

 of small relative changes of the fault parameters with a vector Yδ
f

 

of the corresponding relative deviations of the monitored variables by a matrix H of 

influence coefficients (influence matrix).  
Since linearization errors are not too great, about some percent, the linear model can be 
successfully applied for fault simulation at any fixed operating point. However, when it is 
used for estimating fault parameters by system identification methods like in study 
(Kamboukos & Mathioudakis, 2005), estimation errors can be significant. Given the 
simplicity of the linear model and its utility for analytical analysis of complex diagnostic 
issues, we can conclude that this model will remain important in gas turbine diagnostics. 

The matrix H can be easily computed by means of the thermodynamic model. The gas path 

variables Y
f

 are firstly calculated by the model for nominal fault parameters 0Θ
f

. Then, 

small variations are introduced by turns in fault parameters and the calculation of the 

variables Y
f

 is repeated for each corrected parameter. Finally, for each pair iY  and jΘ  the 

corresponding influence coefficient is obtained by the following expression  

 
0 0

00

( ) ( )

( )

i j i j ji
ij

jj i

Y YY
H

Y

δ
δ

Θ − Θ Θ −Θ
= =

ΘΘ Θ

f f

f .  (3) 
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2.3 Nonlinear dynamic model 

Although methods to diagnose at steady states are more developed and numerous than the 

methods for transients, current studies demonstrate growing interest in the gas turbine 

diagnosis during dynamic operation (Loboda et al., 2007; Ogaji et al., 2003). A 

thermodynamic gas path model (dynamic model) is therefore in increasing demand. As 

distinct from the static model (1), in the dynamic model a time variable t is added to the 

argument set of the function Y
f

 and the vector U
f

 is given as a time function, i.e. a dynamic 

model has a structure  

 ( ( ), , )Y F U t t
→ → →
= Θ .  (4) 

A separate influence of time variable t is explained by inertia nature of gas turbine dynamic 
processes, in particular, by inertia moments of gas turbine rotors. The gas path parameters 

Y
f

 of the model (4) are computed numerically as a solution of the system of differential 
equations in which the right parts are calculated from a system of algebraic equations 
reflecting the conditions of the components combined work at transients. These algebraic 
equations differ a little from the static model equations, that is why the numeric procedure 
of the algebraic equation system solution is conserved in the dynamic model. Therefore, the 
nonlinear dynamic model includes the most of static model subprograms. Thus, the 
nonlinear static and dynamic models tend to be united in a common program complex.  

2.4 Neural networks 

Artificial Neural Networks (ANNs) present a fast growing computing technique in many 

fields of applications, such as pattern recognition, identification, control systems, and 

condition monitoring (Rao, 1996; Duda et al., 2001). The ANN can be classified as a typical 

data-driven model or black-box model because it is viewed solely in terms of its input and 

output without any knowledge of internal operation. During network supervised learning on 

the known pairs of input and output (target) vectors, weights between the neurons change in a 

manner that ensures decreasing a mean difference (error) e between the target and the network 

output. In addition to the input and output layers of neurons, a network may incorporate one 

or more hidden layers of nodes when high network flexibility is necessary.  

The multilayer perceptron (MLP) has emerged as the most widely used network in gas 

turbine diagnostics (Volponi et al., 2003). Its foundations can be found in any book devoted 

to ANNs and we give below only a brief perceptron description. The MLP is a feed-forward 

network in which signals propagate through the network from its input to the output with 

no feedback. The diagram shown in Fig.2 helps to understand better perceptron operation. 

The presented network includes input, hidden, and output layers of neurons. For each 

hidden layer neuron, the sum of inputs of a vector p
f

 multiplied by waiting coefficients of a 

matrix W1 is firstly computed. The corresponding bias from a vector 1b
f

 is added then, 

forming a neuron input. Finally, inputs of all neurons are transformed by a hidden layer 

transfer function f2 into an output vector 1a
f

. The described procedure can be written by the 

following expression 

 11 1 1( )a f W p b
→ → →

= + .  (5) 
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Fig. 2. Perceptron diagram 

The same procedure is then repeated for the output layer considering 1a
f

 as an input vector. 

Similarly to formula (5), the output layer is given by  

 22 2 2 1( )y a f W a b
→ → → →
= = + .  (6) 

Before the use the network should be trained on known pairs of the input vector and the 
output vector (target) in order to determine unknown waiting coefficients and biases. The 
MLP has been successfully applied to solve difficult pattern recognition problems since a 
back-propagation algorithm had been proposed for the training. It is a variation of so called 
incremental or adaptive training mode that changes unknown coefficients after presentation 
of every individual input vector. In the back-propagation algorithm the error between the 
target and actual output vectors is propagated backwards to correct the weights and biases. 
The correction is repeated successively for all available inputs and targets united in a 
training set. Usually it is not sufficient to reach a global minimum between all targets and 
network outputs and a cycle of calculations with learning set data is repeated many times. 
That is why this algorithm is relatively slow. To apply the back-propagation algorithm, a 
layer transfer function should be differentiable. Generally, it is the tan-sigmoid, log-sigmoid, 
or linear type.  

There is another training mode called a batch mode because a mean error e between all 

network targets and outputs is computed and used to correct the coefficients. In this mode 

the training comes to a common nonlinear minimization problem in which the error 

1 1 2 2( , , , )e W b W b  should be minimized in a multidimensional space of all unknown 

coefficients, waits and biases. This error can be reduced but should not be vanished because 

the network must follow general systematic dependencies between simulated variables and 

should not reflect individual random errors of every input and output.  
Though the trained network is ready for practical use in a gas turbine diagnosis, an 

additional stage of network verification is mandatory. There is a common statistical rule that 
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a function determined on one portion of the random data should be tested on another. 

Consequently, to verify the MLP determined on a training set, we need one more data 

portion called a validation set. If the neural network describes well training data but loses its 

accuracy on validation data it is a clear indication of an overlearning effect. The network 

begins to take into account training set random peculiarities and therefore loses its 

capability to generalize data. 

In addition to the MLP described above, some other network types are also used in the gas 

path analysis, in particular, Radial Basis Networks, Probabilistic Neural Networks 

(Romessis & Mathioudakis, 2003; Romessis et al., 2007), and Bayesian Belief Networks 

(Romessis & Mathioudakis, 2006; Romessis et al., 2007). Foundations of these particular 

recognition and approximation tools can be found in any book in the area of ANNs, for 

instance, in (Haykin, 1994). The language of technical computing MATLAB developed by 

the MathWorks, Inc. offers convenient tools to experiment with different neural networks. It 

contains a neural networks toolbox that simplifies network creation, training, and use. 

MATLAB also allows choosing between various training functions and calculation options. 

With respect to diagnostic problems where the ANNs are used, it can be concluded that in 

most cases networks are employed for gas turbine fault identification, in particular, to form 

fault classification (Ogaji et al., 2003) and to estimate fault parameters (Romessis & 

Mathioudakis, 2006). However, the ANNs not only are applied for recognition problems, 

but they also are famous as good function approximators in many fields including gas 

turbine monitoring (Fast et al., 2009). In addition to ANNs, other and simpler data-driven 

models like polynomials can be successfully applied to simulate gas turbine performances.  

2.5 Polynomials 

It is proven in (Loboda et al., 2004) that complete second order polynomials give sufficient 
approximation of healthy engine performance (baseline). For one monitored gas path 

variable Y  as a function of three arguments ui, such polynomial is written as  

 2 2 2
0 0 1 1 2 2 3 3 4 1 2 5 1 3 6 2 3 7 1 8 2 9 3( )Y U a a u a u a u a u u a u u a u u a u a u a u= + + + + + + + + +

f
.  (7) 

The polynomials for all monitored variables can be given in the following generalized form: 

 0
T TY V

→ →

= A ,  (8) 

where 0
TY

→

 is a (1×m)-vector of monitored variables, TV
→

 is a (1×k)-vector of components 
2 2

1 2 2 31, , ,... ,u u u u , and A  presents a (k×m)-matrix of unknown coefficients ia  for all m 

monitored variables. Since measurements at one steady-state operating point are not 

sufficient to compute the coefficients, data collected at n different points are included into 

the training set and involved into calculations. With new matrixes Y  (n×m) and V  (n×k) 

formed from these data, equation (8) is transformed in a linear system  

 =Y VA .  (9) 

To enhance estimations ˆ
ia , large volume n>>k of input data is involved and the least-

squares method is applied to solve system (9), resulting in the well known solution: 
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 1( )T T
∧

−=A V V V Y .  (10) 

As can be seen, polynomials present a typical data-driven model because only input and 
output data are used to compute polynomials’ coefficients. In the below sections that 
describe the stages of a total diagnostic process, we will return to polynomials and other 
described above models considering their particular applications in the GPA methods. 

3. Data validation and preliminary processing 

3.1 Deviations 

Modern instrumentation and data recording tools allow collecting a great volume of test bed 

and field data of different types. Typically, historical engine sensor data are used in 

diagnostics that were previously filtered, averaged, and periodically recorded (once per 

flight, day, or hour) at steady states. Every measurement section (snapshot) includes engine 

operational conditions U
f

 , which set an engine operating point, and monitored variables 

Y
f

. When recorded over a long period of time, these snapshots can provide valuable 

information about the deterioration and faults. The most common cause of stationary gas 

turbines’ deterioration is compressor fouling and the data with fouling and washing cycles 

are widely used in order to verify diagnostic techniques.  

By direct analysis of the variables themselves it is difficult to discriminate performance 

degradation effects from great changes due to different operating modes. To draw useful 

diagnostic information from raw recorded data, a total gas turbine diagnostic process 

usually includes a preliminary procedure of computing deviations. The deviations, also 

known as residuals and deltas, are defined as differences between measured and engine 

baseline values. As the baseline depends on an engine operating condition, it can be written 

as function 0( )Y U
f f

 usually called a baseline function or model. With this model the 

deviations for each monitored variables , 1,i i mY =  is computed in a relative form   

 
*

* 0

0

( )

( )

i i
i

i

Y Y U
Y

Y U

δ
→

→
−

= ,  (11) 

where *
iY  denotes a measured value.  

The deviation consists of the systematic influence (signal) induced by engine degradation or 
faults and a noise component, which is explained by sensor errors and a baseline model 
inadequacy. When properly computed, the deviations can have relatively high quality 
(signal-to-noise ratio) and can potentially be good indicators of engine health. Since success 
of all principal diagnostic stages directly depends on the deviations’ quality, best efforts 
should be applied to keep deviation errors to a minimum. 

Figure 3 exemplifies the exhaust gas temperature (EGT) deviations of a gas turbine for 

natural gas pumping stations. Let us call this engine GT1. The deviations are plotted here 

against an operation time t (here and below a variable t is given in hours). As can be seen, 

the presented data cover approximately 4.5 thousand hours. The deviations *Yδ  computed 

on real measurements with noise are marked by a grey colour while a black line denotes 

ideal deviations Yδ  without noise. A compressor washing at the time point t = 7970 as well 

as fouling periods before and after the washing are well-distinguishable in the figure. 
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Fig. 3. Deviations' characteristics 

A difference *Y Yε δ δΣ = −  can be considered as an error. If we designate the maximum 

deviation Yδ  as 0δ , the signal-to-noise ratio 

 0 0 ( )δ δ σ εΣ= ,  (12) 

where ( )σ εΣ  is a standard deviation of the errors, will be an index of diagnostic quality of 

the deviations *Yδ . To enhance the quality we should reduce the errors εΣ . According to 

Fig.3, there are three elemental errors given here by error intervals 1δ , 2δ , and 3δ . Total 

error εΣ  consists correspondingly of three components and can be given by the formula: 

 1 2 3ε ε ε εΣ = + + ,  (13) 

where 1ε  is a normal noise smaller than 0.2% that is observed at every time point, 

            2ε  presents slower fluctuations of the amplitude limited by 0.8%, and 

            3ε  means single outliers with the amplitude greater than 0.8%. 
The errors can be induces by both sensor malfunctions and baseline model inadequacy. Let 
us analyse separately these error sources. 

3.2 Sensor malfunction detection 

Developed graphical tools of monitoring systems can promote a successful exploration of 
abnormal sensor behaviour. In particular, different deviation plots can be applied because 
the deviations are very sensitive to sensor errors. However, these plots can not sometimes 
explain a true cause of detected abnormal fluctuations in the deviations. Additional plots 
like the time plot of some parallel measurements of the same variable assist to identify the 
problem. For special cases theoretical analysis can also be applied to make clear the origin of 
the fluctuations. Some examples of sensor malfunctions revealed by the described graphical 
tools are given below. 
It was found in (Loboda & Santiago, 2001) that great outliers ├3 at the end of the analysed 
time interval of Fig.3 are related with wrong measurement of a gas turbine inlet temperature 
tin. As a result of numerical analysis it was found that the inlet temperature error influences 
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the deviations according to the following mechanism: [increasing of temperature tin due to 
the errors] → [drop of the calculated value of a corrected rotation speed] → [reducing an 
inlet guide vane angle by the control system] → [gas flow decreasing and the corresponding 
power drop below the setting level] → [feeding the additional fuel by the control system to 
reach the power setting] → [the increase of gas path variables due to the compressor 
condition change and the regime raising] → [deviation increase]. Thus, the input 
temperature errors resulted in wrong control system operation and undesirable EGT 
increase. 
Another example of input temperature sensor errors is described in (Loboda et al., 2009). It 
was found in the data recorded in a gas turbine driver for an electric generator. Let us call 
this engine GT2. Figure 4 illustrating this case presents the plots of the variables Tin and TH 
and EGT deviations dTt. As can be seen, the TH curve changes a little but the Tin curve 
shows frequent spikes and shifts that are synchronous with anomalies in the dTt curve. The 
explanation is that an abnormal increase in the variable Tin, which is a baseline function 
argument, results in a function increment for all monitored temperatures and the 
corresponding fall in the deviations dTt, which is about -5%. Such errors are capable to hide 
degradation and fault effects completely and to render useless gas turbine monitoring.  
 

 

Fig. 4. GT2 inlet temperature sensor faulty operation 

The next example of sensor data anomalies is related with a fuel consumption, which can be 
regarded as one of the most important variables for control and monitoring systems. In fuel 
consumption deviations dGf computed for one of the units of the GT2, an unusual decrease 
of approximately 7% over a prolonged period of time was found and described in (Loboda 
et al., 2009). Analyzing data from two other units, similar prolonged shifts in the 
consumption deviations were also revealed. The idea arose about a possible common cause 
of the consumption deviation shifts in different gas turbine units. Figure 5 helps to verify 
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this idea. The deviations dGf are plotted here vs. a calendar time for all three units. The 
deviation shifts are well visible from the end of January to the beginning of April and they 
begin and end at the same time for different units. What reasonable explanation can there be 
to the puzzling fact that independent fuel consumption sensors have a common source of 
errors? The answer was related with a variable chemical structure of fuel gas supplied from 
a common source that produces synchronous fluctuations of a gas calorific value in the 
units. 
 

 

Fig. 5. Fuel consumption deviations vs. calendar time (a – unit 1, a – unit 2, a – unit 3) 

The described above cases of sensor abnormal behaviour were found with the use of 
deviation plots. Nevertheless, parallel measurements of the same variable, for example, a 
suite of thermocouple probes installed in a high pressure turbine discharge station of the 
GT2, can also be useful to detect sensor problems. Although the thermocouple data were 
filtered and averaged before recording, some cases of single thermocouple probe faults have 
been found. Graphs (a) and (b) in Fig. 6 illustrate them. Observing two 25% spikes in graph 
(a) and a 50% spike in graph (b), we can conclude with no doubt that they are results of 
probe faults. Opposite spike directions in the graphs probably indicate different 
thermocouple fault origins. The outliers are well visible in the figure and the used filtering 
algorithm should be modified to exclude them.  
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a) 
 

b) 

Fig. 6. EGT probes' errors:  a – single gross errors, unit 1; b – a single gross error, unit 3 

In this way, the deviation quality can be enhanced by the sensor malfunction detection and 
data cleaning from wrong data. The next mode to improve deviations is to make the 
baseline model as adequate as possible. 

3.3 Baseline model improvement 

The baseline model adequacy considerably depends on the learning set but the problem to 
compose a proper set for model determination seems to be challenging. On the one hand, to 
satisfy approximation requirements, the learning set must incorporate extensive data 
collected at all possible operating conditions. On the other hand, a technological process 
requires certain gas turbine power and does not allow arbitrary changes of an operating 
point. Moreover, data collection period is limited by a short time when a gas turbine 
condition can be considered as healthy and invariable. As a result, the baseline model is not 
adequate at the operating conditions not presented in the learning set. Two described below 
methods overcome mentioned difficulties. In the first method, the thermodynamic model is 
applied. 
To demonstrate the possibility and advantages of the baseline model created on the basis of 
the thermodynamic model (see Loboda et al., 2004), two learning set variations are formed. 
Variation 1. The learning set is created from 694 consecutive recorded operating points of the 
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GT1. As can be seen in the Fig.7a, the learning set points occupy only two limited zones of 
the operating space “Gf - nPT - TH” (nPT denotes power turbine rotation speed). To overcome 
this obstacle, it is suggested to apply the thermodynamic model for learning set generation. 
Variation 2. The learning sample includes 270 operating points generated by the 
thermodynamic model. With the help of Fig.7b one can see the advantages of such a model 
based learning set: the points are uniformly distributed in a much greater zone than in the 
case of real data. 
On the basis of the described data sets two corresponding polynomial baseline models have 
been calculated as explained in section 2.2. The deviations were computed then for each model 
and with the same real data that are shown in Fig.3. Figure 8 illustrates these two series of the 
EGT deviations and helps to compare two concerned modes to calculate the baseline model. 
As can be seen, the model based learning set allow computing the deviations with notably 
lower errors. Thus, the use of the thermodynamic model can be recommended.  
 

 

Fig. 7. Learning set points (a – real data; b – thermodynamic model data) 

 

a) b) 

Fig. 8. EGT deviations (a – data based learning set; b – model based learning set) 
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The second method overcoming the learning set difficulties is related with a degraded 
engine model (Loboda et al., 2009), from which the necessary baseline model can be derived. 

Since a compressor fouling severity depends on the engine operation time t  after the last 

washing, it is natural to add this variable to the arguments of the baseline function (7) in 
order to describe a degraded engine. Consequently, the degraded engine model can be 
given by 

 2
0 15 16( , ) ( )m mY U t Y U c t c t

→ →
= + + .  (14) 

Once computed, such model can be easily transformed into the necessary baseline model by 

putting t  equal to zero. Since model (14) takes into consideration a varying deterioration 
level, all recorded data could be used to compute unknown coefficients.  
To examine the idea, the data recorded in unit 1 of the GT2 during the second and third 
periods of fouling (1800 points in total) have been included in the learning set. With the 
baseline model found in this way, the deviations were computed then for all available unit 1 
data and considerable deviation enhancement was achieved.  
The method can be further improved. To that end, for each analyzed fouling period a 
particular model of a degraded engine is computed using all data recorded during the 
period. The resulting baseline model is then determined by averaging the particular baseline 
functions. Traditional and new methods for baseline model formation are illustrated in 
Fig.9. One can see significant deviation improvement provided by the new method. 
Consequently, the idea of a degraded engine model seems to be promising for computing 
the deviations in practice. 
 

 

Fig. 9. Unit 1 power turbine temperature deviations for two methods of baseline model 
computation (a - model determined with 200 successive operating points, b - averaged 
model with the use of a time variable) 
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Choosing the best baseline function arguments (Loboda et al., 2004) can also improve the 
deviations. Unlike a real engine, the baseline model allows to change parameters setting an 
operating point (function arguments). This gives the possibility to examine all measured 
variables as such parameters. The numeric experiment has been conducted with the GT1 
real data included 2608 operating points. The results are given in Table 1, which contains 
averaged errors of each deviation and their mean number presented for all possible 
arguments and ranged according to this mean number. At the first glance, the variable nhp of 
high pressure rotor speed measured with high accuracy could be the best argument. 
However, it can be seen from the table that the parameters nhp and Gf are situated in the 
lower part of the table while the parameter TT occupies the first place. The explanation is 
that argument quality not only depends on its measurement accuracy, but also is defined by 
its influence on the gas turbine behaviour which is great for the parameter nhp.  
 

Deviations Argu- 
ment TТ TPT PC PТ Gf TC nhp Nе   mean 

TТ - 0.12 0.07 0.08 0.13 0.12 0.39 0.17 0.108 

TPT 0.18 - 0.11 0.11 0.17 0.11 0.13 0.15 0.127 

PC 0.08 0.08 - 0.66 0.18 0.45 0.17 1.20 0.141 

PТ 0.09 0.08 0.74 - 0.16 0.92 0.19 6.11 0.143 

Gf 0.12 0.10 0.15 0.16 - 0.67 0.31 0.51 0.157 

TC 0.12 0.08 0.36 0.33 0.86 - 0.27 1.10 0.167 

nhp 0.35 0.14 0.19 0.21 0.36 0.26 - 0.29 0.216 

Nе 0.17 0.11 1.42 1.69 1.01 1.41 0.25 - 0.224 

Table 1. Deviation errors for different arguments 

In all described above methods improving the baseline model, polynomials and the least 
square method have successfully been applied. The resulting model adequacy was sufficient 
for reliable monitoring gas turbine deterioration effects. Nevertheless, artificial neural 
networks are also famous as good function approximators in many fields including gas 
turbine monitoring. Investigations report wide use of artificial neural networks as a tool to 
describe an engine baseline, for example, for a stationary gas turbine (Fast et al., 2009) and 
an aircraft engine (Volponi et al., 2007).  
The growing network application in gas turbine monitoring on the one hand and, on the 
other hand, our own positive experience with the use of polynomials have encouraged us to 
conduct a thorough comparative study of these two techniques. The paper (Loboda & 
Feldshteyn, 2010) verifies whether the application of such a powerful modelling tool as 
artificial neural networks (ANN) instead of polynomials yields higher adequacy of the 
baseline model and better quality of the corresponding deviations. The variety of analyzed 
neural network structures were considered and extensive field data of two different gas 
turbines were involved to compute and validate both techniques in order to draw sound 
conclusions on the network applicability to approximate healthy engine performance. In a 
part of the considered cases, polynomials were better in accuracy and, in the other cases the 
compared techniques were practically equal. However, no manifestations of network 
superiority were detected. Thus, this study shows that a polynomial baseline model can be 
successfully used in real monitoring systems instead of neural networks. At least, it seems to 
be true for simple cycle gas turbines with gradually changed performance, like the turbines 
considered in the study. 

www.intechopen.com



Gas Turbine Condition Monitoring and Diagnostics   

 

135 

Concluding section 3, we would like to note that the considered here stage of data validation 
and computing deviations has received increased attention because this preliminary stage 
has utmost importance for subsequent general stages of a total diagnostic analysis. Among 
these stages, detailed diagnosis or fault identifications can be considered as a principal stage 
and it is addressed in the most of studies in the area of gas turbine diagnostics. A 
considerable part of these studies are based on the pattern recognition theory. 

4. Diagnosis by pattern recognition methods 

4.1 Technical approach to diagnosis at steady states 

As mentioned in sections 2 and 3, models are used in gas turbine diagnostics to describe 
engine performance degradation and faults and the deviations are employed to reveal the 
degradation influence. That is why, a fault classification necessary to apply pattern 
recognition methods is usually constructed in a deviation space using nonlinear or linear 
static models. 

Employing the nonlinear model, the normalized deviations induced by a change ΔΘ
f

 in 

fault parameters can be written as 

 
0 0

0

( , ) ( , )
, 1,

( , )

i i
i i

i Yi

Y U Y U
Z i m

Y U a

ε
→ → → → →

→ →
Θ + ΔΘ − Θ

= + =
Θ

,  (15) 

where coefficients Yia  are employed to normalize deviations. In expression (15) amplitudes 

of random errors iε  are equal to one for all monitored variables iY . Such normalization 

simplifies fault class description and enhances diagnosis reliability. The deviation vector *Z
f

 

is considered as a pattern to be recognized and a fault classification is presented as a set of 

such patterns. 
Engine faults vary considerably. Hence, for the purposes of engine diagnostics this variety 
has to be broken down into a limited number of classes. In the pattern recognition theory, it 
is often supposed that an object state D can belong only to one of q preset classes 

 1 2, ,..., qD D D .  (16) 

We accept this hypothesis for a gas turbine fault classification. It is also assumed that each 
class corresponds to one engine component and is described by the correction factors of this 
component. Two types of classes are simulated: a single fault class and a multiple one. The 
single fault class is formed by changing one fault parameter. The multiple fault class has two 
independently changed parameters for the same component, namely, a flow parameter AΔ  
and an efficiency parameter ηΔ . 

Each class is given by a representative sample of the deviation vectors *Z
f

 computed 

according to expression (15). During the calculations a variable fault severity is determined 

by a uniform distribution and errors are generated according to a normal distribution. The 

whole classification is a composition of these samples Zl  called a learning set. 

A nomenclature of possible diagnoses 1 2, ,..., qd d d  corresponds to the accepted classification 

(16). To make a diagnosis d, a method-dependent criterion *( , )j jR R Z D=
f

 is introduced as a 

measure of membership of a current pattern *Z
f

 to class Dj. To determine the functions 
*( , )j jR R Z D=

f
, the learning set is used. After calculating all values , j 1,qjR = , a decision rule  
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 1 2 if  max( , ,..., )l l qd d R R R R= =   (17) 

is applied. 

To verify a diagnostic algorithm determined with the help of the learning set, one more set 

is required. The necessary set Zv , called a validation set, is created in the same way as the 

set  Zl . The only difference is that other series of random numbers is generated to simulate 

fault severity and errors in the deviations. Every pattern in the validation set pertains to a 

known class. That is why, comparing this class jD  with the diagnosis ld , we can compute 

probabilities ( / )lj l jPd P d D=  and compose a known confusion matrix Pd. Its diagonal 

elements llPd  form a vector P
f

 of true diagnosis probabilities that are indices of classes’ 

distinguishability. Mean number of these elements – scalar P  – characterizes total engine 

diagnosability. No diagonal elements help to identify the causes of bad class 

distinguishability. These elements make up probabilities of false diagnosis 1j jPe P= −  

and  1Pe P= − . 
Thus, the described approach to gas turbine diagnosis under stationary conditions includes 

the fault classification stages, formation of a diagnostic algorithm, and estimation of 

diagnosis reliability indices. With several small corrections this approach is also applicable 

for diagnosis at transients (Loboda et al., 2007). A transient interval is divided into T time 

points and, with measurements at these points, a generalized deviation vector is computed. 

It is a pattern to be recognized in diagnosis under transient conditions.  

Following the presented approach, some studies have been conducted for the GT1 chosen as 
a test case. In these studies steady state operation is determined in the thermodynamic 
model by a fixed gas generator speed and standard ambient condition. Eleven full and part-
load steady states are set by the following speeds: 10700, 10600, …, 9800, 9700 rpm. Six 
simulated gas path variables correspond to a standard measurement system of the GT1. The 
single type fault classification consists of nine classes, which are simulated by nine fault 
parameters. The multiple type classification comprises four items corresponding to four 
main components: an axial air compressor, a combustion chamber, a gas generator turbine, 
and a power turbine. The learning and validation sets include 1000 patterns for each class 
that are sufficient to ensure the necessary computational precision. The first conducted 
study (Loboda & Yepifanov, 2006) compares different recognition tools. 

4.2 Comparison of recognition techniques 

Three recognition techniques that present different approaches in a recognition theory have 

been chosen for diagnosing. The first technique is based on the Bayesian approach (Duda et 

al., 2001), in which each fault class Dj should be described by its probability density function 
*( / )jf Z D

f
 and a posteriori probability *( / )jP D Z

f
 is employed as a decision criterion. 

Difficulty of this method is related with the function *( / )jf Z D
f

 as far as density function 

assessment is a principal problem of mathematical statistics, that is why this function can be 

determined only for a simplified class description. The second technique operates with the 

Euclidian distance to recognize gas turbine fault classes. The criterion jR  for this technique 

is an inverse averaged distance between an actual pattern and all patterns of a fault class 

jD . The third technique applies the neural networks, in particular, a multilayer perception. 

The resulting diagnosis reliability indices – the probabilities of false diagnosis  and  jPe Pe  

for the multiple faults – are placed in Table 2. The given indices demonstrate that 
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probabilities of erroneous diagnosis by methods 1 and 3 are approximately equal and 

significantly lower than the corresponding probabilities of method 2. The calculations for 

single faults have confirmed this conclusion. It is important that neural networks are not 

inferior in diagnosis accuracy to the Bayesian approach, because the latter in its turn is 

known as the best recognition technique if we use the criterion of a correct decision 

probability. Additionally, neural networks do not need the simplifications of the fault class 

description required for Bayesian approach. In this way, neural networks can be 

recommended for the use in real condition monitoring systems.  
Neural networks will also be used in the next study. It proposes and verifies the idea of the 
generalized fault classification (Loboda, Yepifanov et al., 2007; Loboda & Feldshteyn, 2007) 
that drastically simplifies practical realization of diagnostic algorithms. 
 

Methods 
Indices 

1 2 3 

1d  0.109 0.237 0.104 

2d  0.216 0.373 0.214 

3d  0.060 0.051 0.072 

 

P e
→

 

 
4d  0.117 0.051 0.127 

Pe  0.1256 0.1790 0.1293 

Table 2. False diagnosis probabilities (multiple type classification) 

4.3 Generalized fault classification 

The approach presented in subsection 4.1 implies that a laborious procedure of fault 
classification formation is repeated for every new operating condition. It will be difficult to 
realise this approach in practice because an engine frequently changes its operating mode. 
The same problem arises for diagnosis at transients but existing works do not answer how 
to overcome it.  

Diagnosing the considered gas turbine (GT1) at different operating modes, it has been found 

out that the class presentation in the diagnostic space Z
f

 is not strongly dependent on a 

mode change. Therefore we intended to draw up the classification that would be 

independent from operational conditions. This classification has been created by 

incorporating patterns from all 11 steady states into each class of the reference and testing 

sets. Such generalized classification was successively applied to diagnose at each steady 

state. In the classification, a region occupied by any class is more diffused that induces 

greater class intersection, which in its turn leads to losses in the diagnosis reliability. But 

how significant are these losses? 

Numeric experiments with traditional and new classifications helped to quantify such 

losses. To ensure firm conclusions, the classification comparison was drawn for both single 

and multiple class types. Table 3 contains the results for the single class type. In this table, 

the row "Conv." means the probabilities for the conventional classification averaged over all 

steady states. The row "Gen." contains the probabilities for the generalized classification 

created for, and applied at, the same steady states. It can be noted that differences of the 

probabilities eP
f

 between the considered classifications are small for the both class types. The 
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mean probability eP  also rises just a little, by about 0.5%, in the row "Gen.". So the diagnosis 

reliability losses resulting from the classification generalization are insignificant. 
 

eP
→

 
 

Classifi-
cation ΔAc Δηc ΔAhpt Δηhpt ΔApt Δηpt Δσcc Δηcc Δσin 

eP  

Conv. 0.166 0.266 0.132 0.265 0.146 0.172 0.154 0.174 0.168 0.1827 

Gen. 0.156 0.275 0.131 0.269 0.148 0.190 0.161 0.184 0.180 0.1883 

Table 3. Diagnosis errors for single faults (indices of fault parameters  AΔ  and ηΔ  mean 

compressor, high pressure turbine, power turbine, combustion chamber, and input device)  

For additional verification of the generalized classification, the previous analysis was also 
carried out for real operational conditions. Two sets of 25 operating points were made up 
from a six-month database of gas turbine performance registration at different operational 
field conditions. The points of each set correspond to the maximally different conditions. 
The results show (Loboda, Yepifanov et al., 2007) that differences between two 
classifications are small and can be considered as random calculation errors. Consequently, 
the proposed classification does not cause additional accuracy losses. This still holds true 
when the classification is used at the operating points different from the points of 
classification formation. So, the generalized classification can be applied not only to the 
steady state points used for its creation but also to any other points. 
The principle of a generalized classification was also examined for transient operations. In 

(Loboda, Yepifanov et al., 2007) the examination is conducted at 16 transients with different 

transient profiles and ambient temperatures. The resulting accuracy losses due to the 

classification use did not exceed 3.5%. More cases of transient operation are considered in 

(Loboda & Feldshteyn, 2007). The losses are estimated at the level of 2% and it is shown that 

they could be lower in practice.   

In this way, the proposed classification principle was verified separately for steady states 
and transients. In both cases, the results have shown that the generalized classification 
practically does not reduce the diagnosis accuracy level. On the other hand, the suggested 
classification drastically simplifies the gas turbine diagnosis because it is formed once and 
used later without changes. Therefore, the diagnostic technique based on the generalized 
fault classification can be successfully implemented in gas turbine health monitoring 
systems. 
The next study briefly described below also deals with networks-based diagnosis under 
variable operating conditions. In contrast to the previous study, the data from different 
operating points (modes) are grouped to set only a single diagnosis. Such multipoint 
diagnosis promises considerable accuracy enhancement. 

4.4 Multipoint diagnosis 

Although some works deal with the influence of operating conditions on the diagnostic 
process (Kamboukos & Mathioudakis, 2006), no full-length analyses are yet available. It is 
known that multipoint methods, which group the data registered at different operating 
points in order to make a single diagnosis, ensure higher accuracy when compared with 
conventional one-point (one-mode) methods. However, questions arise as to how significant 
this effect is and what its causes are. The diagnosis at transient operation (Ogaji et al., 2003) 
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poses the similar questions. To make one diagnosis, this technique joins data from 
successive measurement sections of one transient and in this regard looks like multipoint 
diagnosis. From a theoretical and practical standpoint, it would be interesting to find out 
how much these two approaches differ in accuracy.  
The investigation to answer the questions has been conducted in (Loboda, Feldshteyn et al., 
2007) for the GT1 and an aircraft engine, called GT3. The following conclusions were drawn. 
First, a total diagnosis accuracy growth due to switching to the multipoint diagnosis and 
data joining from different steady states is significant. It corresponds to a decrease in the 
diagnosis errors by 2-5 times. Second, the main effect of the data joining consists in an 
averaging of the input data and smoothing of the random measurement errors. It is 
responsible for the main part of the total accuracy growth. If variations in fault description 
at different operating points are slight as for the GT1, the averaging effect is responsible for 
the whole growth. Under these conditions, the generalized classification has a certain 
advantage as compared to the conventional one-point diagnosis. Third, if the variations are 
considerable (GT3), they give new information for the fault description and produce an 
additional accuracy growth for the multipoint option. This part depends on the class type 
but in any case it is essentially smaller than the principal part. The diagnosis at transients 
may cause further accuracy growth of this type. However, it will be limited and the 
averaging effect will be a principal part of the total accuracy growth relative to the one-point 
diagnosis. 
We complete here the descriptions of the studies in the area of diagnosis (fault 
identification) based on pattern recognition. In the next section it will be shown how to 
extend the described approach on the problem of gas turbine monitoring (fault detection). 

5. Integrated monitoring and diagnosis 

Detection algorithms deal with two classes, a class of healthy engines and a class of faulty 

engines. In multidimensional space of the deviations they are divided by a healthy class 

boundary (internal boundary). The healthy class implies that small deviations due to usual 

engine performance degradation can certainly take place, although they are not well 

distinguishable against a background of random measurement and registration errors. The 

faulty class requires one more boundary, namely, faulty class boundary (external boundary) 

that means an engine failure or unacceptable maintenance costs. 

Classification (16), created for the purpose of diagnosis and presented by the learning set, 

corresponds to a hypothetical fleet of engines with different faults of variable severity. To 

form a new classification necessary for monitoring, we suppose that the engine fleet, the 

distributions of faults, and their severities are the same. Hence, patterns of the existing 

learning set can be used for a new classification but the classes should be reconstructed. The 

paper (Loboda et al., 2008) thoroughly investigates such approach considering monitoring 

and diagnosis as one integrated process. Below we only give a brief approach description 

and the most important observations made. 

Each former class Dj is divided into two subclasses DM1j and DM2j by the healthy class 

boundary. There is an intersection between the patterns *Z
f

 of these subclasses because of 
the errors ┝ in patterns. A totality of subclasses  

 DM11, DM12, …, DM1q  (17) 
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constitutes the classification of incipient faults for the diagnosis of healthy engines, while 
subclasses  

 DM21, DM22, …, DM2q   (18) 

form the classification of developed faults for the diagnosis of faulty engines. 
To perform the monitoring, the subclasses DM11, DM12, …, DM1q compose a healthy engine 
class M1, while the subclasses DM21, DM22, …, DM2q make up a faulty engine class M2. 
Thus, the classification for monitoring takes the form of 

 M1, M2.  (19) 

It is clear that the patterns of these two classes are intersected, resulting in α- and β-errors.  
Figure 10 provides a geometrical interpretation of the preceding explanations. The former 
and the new classifications are presented here in the space of deviations Z1 and Z2. A point 
“O” means a baseline engine; lines OD1, OD2, …, and ODq are trajectories of fault severity 
growth for the corresponding single classes; closed lines B1 and B2 present boundaries of a 
healthy class M1 (indicated in green) and faulty class M2 (indicated in yellow). 
 

O

Z2 

D2 

Dj 

j

Dq 
… 

… 

R=1

M1 

M2 

B1 

B2 

DM11

DM1jDM1q

DM21

DM22

DM2j

DM2q

DM12

D1 

 Z1 

 

Fig. 10. Schematic class representation for integrated monitoring and diagnosis 

With these three classifications, monitoring accuracy and diagnosis accuracy were estimated 
separately for healthy and faulty classes and some useful results were obtained. First, the 
recognition of incipient faults was found to be possible and advisable before a gas turbine is 
recognized as faulty by fault detection algorithms. Second, the influence of the boundary on 
the monitoring and diagnosis accuracy was also investigated. Third, it has been shown that 
the introduction of an additional threshold, which is different from the boundary, can 
reduce monitoring errors. Fourth, it was demonstrated that a geometrical criterion, which is 
much simpler in application than neural networks, can provide the same results and thus 
can also be used in real monitoring systems. 
The pattern recognition-based approach considered in this section is not however without 
its limitations. The diagnoses made are limited by a rigid classification and fault severity is 
not estimated. The second approach maintained in gas turbine diagnostics and based on 
system identification techniques can overcome these difficulties.  
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6. Diagnosis by system identification methods 

This approach is based on the identification techniques of the models (1), (2) or (4). These 

techniques compute estimates 
ˆ
Θ
f

 as a result of distance minimization between simulated 

and measured gas path variables. In the case of model (1) this minimization problem can be 
written as 

 *arg min ( , )Y Y U

∧
→→ → → →

Θ = − Θ .  (20) 

It is an inverse problem while a direct problem is to compute Y
f

 with use of known Θ
f

. The 

estimates contain information on the current technical state of each engine component 

therefore further diagnostic actions will be simple. Furthermore, the diagnosis will not be 

constrained by a limited number of determined beforehand classes.  
Among system identification methods applied to gas turbine diagnostics, the Kalman filter, 

basic, extended, or hybrid, is mostly used, see, for example (Volponi et al., 2003). However, 

this method uses a linear model that, as shown in (Kamboukos & Mathioudakis, 2005), can 

result in considerable estimation errors. Moreover, every Kalman filter estimation depends 

on previous ones. That is why abrupt faults are detected with a delay.  

Other computational scheme is maintained in (Loboda, 2007). Independent estimations are 

obtained by a special inverse procedure. Then, with data recorded over a prolonged period, 

successive independent estimation are computed and analyzed in time to get more accurate 

results.  

Following this scheme, a regularizing identification procedure is proposed and verified on 

simulated and real data in (Loboda et al., 2005). The testing on simulated data has shown 

that the regularization of the estimated state parameters makes the identification procedure 

more stable and reduces an estimation scatter. On the other hand, the regularization shifts 

mean values of the estimations and should be applied carefully. In the conditions of fulfilled 

calculations, the values 0.02-0.03 of the regularization parameter were recommended. The 

application of the proposed procedure on real data has justified that the regularization of 

the estimations can enhance their diagnostic value. 

Next diagnostic development of the gas turbine identification is presented in (Loboda, 2007). 

The idea is proposed to develop on the basis of the thermodynamic model a new model that 

takes gradual engine performance degradation in consideration. Like the polynomial model 

of a degraded engine described in section 3.3, such a model has an additional argument, 

time variable, and can be identified on registered data of great volume. If we put the time 

variable equal to zero, the model will be transformed into a good baseline function for 

diagnostic algorithms. Two purposes are achieved by such model identification. The first 

purpose consists in creating the model of a gradually degraded engine while the second is to 

have a baseline function of high accuracy. The idea is verified on maintenance data of the 

GT1. Comparison of the modified identification procedure with the original one has shown 

that the proposed identification mode has better properties. The obtained model taking into 

account variable gas path deterioration can be successfully used in gas turbine diagnostics 

and prognostics. Moreover, this model can be easily converted into a baseline model of a 

high quality. Such a model can be widely used in monitoring systems as well. 
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Another novel way to get more diagnostic information from the estimations is to identify a 
gas turbine at transients as shown in (Loboda & Hernandez Gonzalez, 2002). However, this 
paper is only the first study, which needs to be continued.  

7. Conclusions 

In this chapter, we tried to introduce the reader into the area of engine health monitoring. 
The chapter contains the basis of gas turbine monitoring and a brief overview of the applied 
mathematical techniques as well as provides new solutions for diagnostic problems. In 
order to draw sound conclusions, the presented studies were conducted with the use of 
extended field data and different models of three different gas turbines. 
The chapter pays special attention to a preliminary stage of data validation and computing 
deviations because the success of all subsequent diagnostic stages of fault detection, fault 
identification, and prognostics strongly depends on deviation quality. To enhance the 
quality, the cases of abnormal sensor data are examined and error sources are identified. 
Different modes to improve a baseline model for computing the deviations are also 
proposed and justified.  
On the basis of pattern recognition, the chapter considers monitoring and diagnostic stages 
as one united process. It is shown that the introduction of an additional threshold, which is 
different from the boundary between healthy and faulty classes, reduces monitoring errors. 
Many improvements are proposed, investigated, and confirmed for fault diagnosis by 
pattern recognition and system identification methods, in particular, generalized fault 
classification, regularized nonlinear model identification procedure, and model of a 
degraded engine.  
We hope that the observations made in this chapter and the recommendations drawn will 
help to design and rapidly tailor new gas turbine health monitoring systems.  
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