
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

18

Open Software Architecture
for Advanced Control of Robotic Manipulators

J. Gomez Ortega, J. Gamez García,
L. M. Nieto Nieto and A. Sánchez García

System Engineering and Automation Department at Jaén University,
Spain

1. Introduction

So far, the robotic applications has been dominated by proprietary based hardware and
software devices developed for industrial applications with a large volume manufacturing,
like the automotive and electronics industries. Then, the main goal of the automation
technologies has been an optimized robot design for precise assembly tasks, resulting in
complex systems with a reduced flexibility.
Traditional robotic applications have a fixed configuration, with the advantages of high

accuracy and a well studied kinematics. However, since recent years, the number of service

robots in our daily life environments is increasing. There are many new applications, i.e.

teleoperation, human-robot-collaborative works, etc. that require reconfigurable hardware

and expansibility to accomplish new working modes in not-structured scenarios and not-

intensive manufacturing tasks. However, these systems must meet diverse user

requirements and integrate different hardware and software systems developed for a

particular proprietary platform. As a result, many different researchers have solved similar

issues with non-interchangeable products, working from scratch each time, adapting the

traditional industrial robots platform for the new applications.

Today, a new robotic system is an integration of different processors and hardware
platforms manufactured by different vendors, controlled by software modules developed
using different programming languages and different communication protocols. In
addition, as robotic manipulator is expected to accomplish more complex tasks, it needs the
integration of multiple sensors working with different time bases and bandwidths (Gamez
et al., 2009; Luo et al., 2002), and new capabilities are needed that traditional control
technology of current industrial robots is not offering. In order to solve these problems
different open robotics platforms have been presented.

1.1 Open robotic platforms: an overview

From the definition of an Open Systems (IEEE 1003.0), an Open (Robotic) Platform should
"provide capabilities that enable properly implemented applications to run on a variety of
platforms from multiple vendors interoperate with other system applications and present a
consistent style of interaction with the user". This leads to the following properties:
• Portability of the software, to reuse it in other platforms with minor changes.

www.intechopen.com

 Advanced Strategies for Robot Manipulators

382

• Reusability is an issue that should be addressed from the beginning of the development
process, identifying common problems that could be solved with reusable solutions and
shared within the robotics community.

• Extensibility to change or add several component (of hardware or software) to the
system from different vendors.

• Adaptability/dynamic reconfigurability, providing mechanism of easy adaptation of its
parameters according to the application requirements.

• Interoperability refers to the ability to support interchange of information between
robotic modules designed by different vendors, providing effective communication and
working in a coordinated manner. In particular it relies on the network and
communication protocols that must provide effective real-time communication among
distributed components, independently of the system specific particularities.

Diverse approaches have been proposed to achieve these capabilities. Some solutions use
Matlab/Simulink and Real Time Workshop to generate control applications for robotic
systems with a proprietary operating systems (Gamez et al., 2007), but with the
disadvantage of a limited interoperability. Today, most of the research and robotic
applications developed based on proprietary hardware used a layered software architecture.
This approach typically includes a standard based middleware to provide integration,
efficient communication, interoperability, abstraction of software components, also
providing portability. At the top level different reusable software components are used. In
the low level layer, the hardware is controlled by drivers developed to run on a proprietary
RTOS. However, since last decade, developers have a growing interest on developing open
source applications based on Linux RTOS. Thus, vendors are offering commercial-grade
Linux operating systems (Saravanan et al., 2009; Gamez et al. 2009).
Another approach based on hardware modularity can support integration of new
components from various vendors. The corresponding software must provide a well
defined interface to provide easily integration between interconnected devices, and the
capabilities of extensibility and modification (Xuemei & Liangzhong, 2007).
As the hardware is always vendor-dependent, the integration of different devices may be
difficult due to incompatibility reasons. To overcome this problem, some hardware
standards have been proposed, however this method is considered too restrictive to achieve
reusability of existing hardware (Hong et al. 2001).

1.2 Related research

In recent years, an increasing number of initiatives have been presented:

• OROCOS (Open Robot Control Software) project (OROCOS, 2010), is a European
initiative for providing free software project to develop advanced robotics applications.
The project supports different C++ libraries for creating control applications over
different proprietary operating systems (e.g. Win32, Mac OS). Also includes the Real-
Time Toolkit (RTT) library for writing hard real-time control applications in C++ for
Linux based systems, and tools from contributors to generate components using Real-
Time Workshop from Matlab/Simulink. To achieve reusability, the framework
supports standard component interfaces and CORBA for interoperability between
distributed components over a network. Some others not real-time projects have
derived from OROCOS, like ORCA (ORCA, 2010) and SmartSOFT (Schlegel, 1999).

• RT-Middleware (from Robot-Technology) (Ando et al., 2006; Chishiro et al. 2009) is a
CORBA based software platform for robot system integration developed in Japan, with

www.intechopen.com

Open Software Architecture for Advanced Control of Robotic Manipulators

383

the participation of the Japan Robot Association (JARA). One of the objectives of the
project is to simplify the construction of customized robot combining selected RT-
components. In recent years, the Object Management Group (OMG) (OMG, 2008)
started a standardization process for these RT-components to achieve interoperability,
interconnectivity and integration of components from different manufacturers.

• In Korea, the Open Platform for Robotic Services (OPRoS) (Park & Han, 2009) is another
open software project promoted to unify different robots platforms. The framework
includes standardized components, an integrated development environment (IDE) and
a simulation and testing environment. OPRoS supports CORBA and the Universal Plug
and Play (UPnP) (Ahn et al., 2006) standards for modular integration. The operational
scheme employs a server-client model to interact with the robot system as a target
robot, and external servers for heavy computation.

• The Coupled Layered Architecture for Robotic Autonomy (CLARAty) (Nesnas et al.,
2003) was initiated in the NASA to provide a software framework to develop advanced
robotic technologies for robotic platforms employed in other NASA programs. Unlike
others architectures, CLARAty is a two-level architecture were the system
decomposition allows for intelligent behavior at low levels while the structure of the
different levels is maintained. In this scheme, the high level Decision Layer sends
command to the Functional Layer and in a client-server model, and the Functional
Layer provides different levels of abstractions to achieve adaptation of the reusable
components to the hardware of different robots. Also, the Decision Layer provides a
unified representation of activity plans based on a declarative model.

• For the Mobile and Autonomous Robotics Integration Environment (MARIE), the main
goal was to provide a common component-based middleware to reuse and interconnect
different programming environments (Cote et al., 2006). The framework followed a one-
to-many interaction model between different components to coordinate the interaction
within a virtual shared space, and allowing each component to use its own
communication protocol.

• MIRO (Utz et al., 2002) is a CORBA based middleware organized in three layers: a
device layer provides object-oriented interface abstraction for the hardware, and a
service layer provides CORBA interface services between the device layer and the top
layer. This layer provides reusability and easy integration in an object oriented
framework.

• In recent years, several RT-Linux based open projects are developed: RTOC (Xu & Jia,
2006) is a RT-Linux based architecture based upon the OSACA model (OSACA, 1996)
that can be ported to not PC-based platforms. In its layered model, a database stores
universal application modules for control, path planning, etc. Other Linux based
platforms use ST-RTL to generate control applications from Simulink models
(Ostrovrsnik et al., 2003). Xenomai (Xenomai, 2010) is another Linux-based Real Time
operating system used to develop robot control systems using open source and
standardized communications protocols (Sarker et al. 2006).

The remainder of this paper is organized as follows. Firstly, a brief explanation of the
necessity of these platforms is introduced in Section 2. Later, Section 3 describes the
hardware structure. In this section the main characteristics of both hardware configurations
are presented. In Sec. 4, the software structure is presented, while Sec. 5 presents
experimental results which validate the performance of the proposed architecture. Finally,
Discussions and Conclusions are presented in Section 6 and 7, respectively.

www.intechopen.com

 Advanced Strategies for Robot Manipulators

384

2. Why the necessity of these robotic platforms

It has been long recognized that multisensor-based control is an important problem in
robotics (Gamez et al. 2008), the need to take advantage of multiple sensors in controlling a
system becomes increasingly important. On the other hand, to the purpose of getting an
adequate interaction between the manipulator and its environment, force/position feedback
control is necessary, above all, if the environment where the robot wants to interact is
unknown or changing (Gamez et al., 2005). In general, given the classical hierarchical
control structure of a robot microcomputer controller (Groover, 2008) (Fig. 1), the
possibilities of control or the integration of new sensors into the setup, are not offered
nowadays by the robot manufacturers.

Fig. 1. Classical hierarchical control structure of a robot microcomputer controller.

A representative example of implementation of a force/position controller could be the
impedance controller (Hogan, 1985). The purpose is to ensure that the manipulator is able to
operate in a non-ideally structured constrained environment while maintaining contact
forces within suitable limits. A description of this system is sumarized in fig. 2:

Fig. 2. Impedance controller structure.

However, an intrinsic problem occurs when trying the application of this control algorithm,
if only a wrist force sensor has been used, in a dynamic situation, where the manipulator is

www.intechopen.com

Open Software Architecture for Advanced Control of Robotic Manipulators

385

moving in either free or constraint space, the interaction forces and moments at the contact
point, and also the noncontact ones, are measured by this sensor (Gamez et al., 2004).
Furthermore, the magnitude of these dynamics disturbances cannot be ignored when large
accelerations and fast motions are considered (Khatib & Burdick, 1986), when the
manipulator carries out tasks with heavy tools (Johansson & Robertsson, 2003), or when the
environment is not perfectly known (not allowing the use of switching strategies that
compensate for the free space phase).
To solve this problem, the integration of different sensors such as a force/torque and a
acceleration sensor could be use to solve this problem (Gamez et al., 2008; Kroger et al.,
2007); however, fusion of data from multiple sensors into a robust and consistent model
meets some difficulties such as measurements with different time bases (Luo et al., 2002) or
noise and incompleteness of sensor data (Larsson et al., 1996). Another problem could be to
easily connect these sensors, which are from diverse manufacturers, to the hardware setup
(Gamez et al. 2009).
Thus, observing these problems, it can be guessed why a complex dynamic system, such as
robotic manipulator, is demanding new and highly sophisticated capabilities that traditional
control technology of current industrial robots is not offering (Wills et al., 2001).

3. Hardware elements of the platform

This section describes the hardware components that convert this platform in a non-
conventional one from an industrial point of view. Also, we will describe the necessity of
these elements that were used to test and validate new control concepts for manipulators
that interacts with an unknown environments. In this point, it is necessary to point out that
two different hardware configurations, and thus two software structure, were carried out. In
both cases, the experimental setup contained the following elements: an anthropomorphic 6-
DOF Stäubli RX60 industrial manipulator and a CS8 controller, a Phantom 6D Haptic
Device, a vision system composed of two cameras, a 6-DOF ATI wrist force/torque sensor, a
3-DOF capacitive accelerometer , a 3-DOF gyroscope, a special purpose end effector and the
teach pendant, an acquisition board integrated in the robot controller, a workcell and a
number PCs to mainly develop software and to collect data.

3.1 Old hardware configuration

Initially we designed a hardware scheme that had the structure shown in Figure 3 (Gamez

et al., 2009).

The kernel of this architecture is the CS8 controller PC. It is in charged of the high-level

operations (execution of the path planner, trajectory generation, sercos communication, etc.),

and also of reading external sensors such us the wrist force and torque sensor or the

acceleration sensor. These elements were connected to the open PCI slot in the controller PC.

With this structure, software modules for collecting data where mainly resident in this PC.

The main advantage of using a PC-based standard interface is that it ensures that the

extensibility and scalability are available. Therefore, the hardware and software components

can be integrated or replaced easily.

Due to proprietary reasons, the operating system running on this PC is VxWorks (Wind-

River, 2005), which allows easy integration of many commercially available add-on

peripherals such as acquisition boards, ethernet boards, etc.. It also provides deterministic

www.intechopen.com

 Advanced Strategies for Robot Manipulators

386

context switching, timeliness, support for open standard. The external sensors used to

model the environment, and thus to make the robot capable of interacting with it, are: a ATI

wrist force/torque (f/t) sensor (MINI SI80-4) where the f/t strain gauge signals are

conditioned using an intermediate module, called supply board, and later transmitted

through a DAQ acquisition board which processes the strain gauge information and offers it

through the PCI slot. A 3D accelerometer, which was attached to the end-effector of the

manipulator and a 3D gyroscope of CFX Technology (an UCG-TX model). These two last

sensors were also read by the same acquisition board.

CS8 Controller

CPU Pentium

32 MB RAM

USB Board
I/O

Servo
Controllers

(original
units)

Ethernet

Host PC

DAQ (PCI)
Teach

Pendant

Force and
acc. sensors

+
Vision Sensors

Haptic
Device PC

External PC for
Computer Vision

Ethernet

Fig. 3. Hardware configuration for the old system.

Regarding the vision system, the cameras are connected directly to a dedicated computer
vision PC. Later, the image is processed and the required information -normally a vector
with coordinates of positions and orientations- sent to the controller PC through ethernet.
The haptic device is a PHANTOM 3/6DOF with six degrees of freedom in position and
force feedback in three translational degrees of freedom. The 3.0/6 DOF has a range of
motion approximating full arm movement pivoting at the shoulder. This device is connected
to an extra PC via the parallel port (EPP) interface. The sample time of the haptic device is
higher than the controller loop (1 Khz against 250 Hz.), and since there is no physical
distance between them, the delay is one controller sample time at maximum. The
bandwidth of all the mentioned sensors apart from the vision sensor is 250 Hz. This sample
time has been chosen in order to synchronize the sensor readings with the robot control
loop. The bandwidth of the vision sensor is smaller (around 30 Hz), because of the high
computational effort required and the camera speed. Shortly, we are going to change these
cameras to new ones with a bandwidth of 120 frames/sec.

www.intechopen.com

Open Software Architecture for Advanced Control of Robotic Manipulators

387

3.2 New hardware configuration

The main drawbacks that can be found in the former robotic system are:

• The master PC, where a huge number of applications are running -sensor readings,
control algorithm execution, robot movements- , is placed in the controller PC, so this
structure is subject to a PC that in few years is antiquated and cannot be changed
(without the manufacturer collaboration).

• A great part of the code running in the controller is unknown -belongs to the
manufacturer- and sometimes it occurs problems because of the inconsistency between
the original code and the experimental one (as uncontrolled modifications of some
common data). These problems are difficult to solve, again, without a close
collaboration with the manufacturer. Also, while the experimental code is more
complex and bigger, the inconsistencies are more probable.

• The time synchronization is easier and more robust if we have an external master PC that
configures and controls all the sensors, the control algorithms and the actuation system.

To solve the problems that the first configuration presented, a new hardware and software
structure is being developed. Similar to first one, the main difference can be found in where
the main executions are carried out. Figure 4 shows a scheme of this new configuration.

MASTER PC

UP TO DATE
COMPUTER

Ethernet

DAQ (PCI)

CS8
CONTROLLER

Force and
acceleration

sensors

Haptic Device

Parallel
Port

IEEE 1394

Vision Sensors

Fig. 4. Hardware configuration for the new system.

With respect to the old system, this new system introduces the following changes:
• The operating system is based on LINUX with a real time framework called XENOMAI

(Xenomai, 2010).
• The vision sensors are read through a IEEE 1394 port placed in the master PC. From the

experimental tests, it was checked that the computational effort required by a normal
vision system processing does not bother to the rest of the tasks.

• The haptic device is connected directly to the Master PC through a parallel port.
• The external sensors, i.e. the wrist force sensor, the accelerometer, or other sensors, are

connected to a Data Acquisition Board plugged into a PCI slot of the Master PC.

4. Software structure

In this section, we describe a component-based control software architecture developed in
order to get a robust and easy-to-maintain experimental robotic platform. Two fundamental

www.intechopen.com

 Advanced Strategies for Robot Manipulators

388

goals were established for the architecture: first, it should standardize functions that are
common across sensors and open robotic platforms; second, the architecture should enable
design by composition. Since the most interesting configuration is the new one, we limit this
section to its the description. Further information about the old software configuration can
be found in (Gamez et al. 2010).

4.1 Layer architecture and component definitions
Although the software structure of the experimental setup contains basically two PCs: the
master PC and the controller PC, it consists of a hierarchy of components that are divided
into four main layers proposed originally by (Nilsson & Johansson, 1999): lowest layer,
middle layer, high layer and end-user layer. Each layer contains different types of
components, which are classified depending on their functionality (Fig. 5). This components
are related, in the major cases, to a block or system of the hardware structure. The four
layers are:
1. Lowest layer: whose components correspond to those ones closer to the physical

environment. Examples are the different sensor components or the joint control
components.

2. Middle layer: Components can use the information of the lowest layer and the high
layer. Examples could be a virtual sensor component or a manipulator control
component.

3. High layer: Trajectory generator components.
4. End-user layer: Task planner components.

Fig. 5. Structure of the components developed for the platform.

www.intechopen.com

Open Software Architecture for Advanced Control of Robotic Manipulators

389

The end-user layer describes the task to be carried out in terms of final positions,

orientations and velocities of the robot end-effector. Different components have been

developed and they are used depending if the task to be carried out is in open space, with

constraint motion or with both. In addition, another component has been designed which is

in charge of controlling the haptic device. The inputs to the components of this layer can be

the reference position-orientation of the robot TCP, the desired contact forces exerted by the

manipulator to the environment or even vision features. Currently, these inputs can only be

defined off-line, not taking the most significant advantage of on-line programming, that is,

the robot can be programmed in accordance with the actual position of equipment and

pieces of these modules.

The high-level layer is compound basically of two components with the functions of a path

planner. This planner generates trajectory set points for the robot, according to motion

command which it receives from task specification. The commands these components offer

to their lower layer can be either the joints trajectory or the Cartesian trajectory of the robot

end-effector. It is necessary to point out that both the original task planning and the original

trajectory generator developed by Stäubli were not used in this platform due to proprietary

reasons. For our applications, the components designed for the special-purpose planner

calculate the joint coordinates from the Cartesian references solving the inverse kinematics

on line (Gamez, 2006). In this sense, a second component has been developed to reduce the

computational cost of the previous block if necessary. Specifically, it consists of the

decomposition of the robot geometric structure into two subsystems: one for position and

one for orientation. This option offers an analytic solution that simplifies the singularities

problem. Furthermore, a number of restrictions have been imposed to prevent special

singularities such as shoulder and wrist ones. Although the developed trajectory is not

robust, the resultant workspace is acceptable for most of the practical cases. Currently, these

components are used from the former configuration and, in the future, we expect to

improve them using more sophisticated trajectory generators than can be found, for instant,

in (Bruyninckx, 2001).

For the middle-level layer, and from an engineering point of view, we note that tailoring the
motion control requires control engineering competence while application support does not
(Nilsson & Johansson, 1999). Although is therefore reasonable and appropriate to define two

different sub-layers for these types of programming: application control layer, (movement

constraints, tool mass, etc.) and control layer (to configure the control loop, tunes the gains,

etc.), this level is built, on the one hand, using manipulator control components. On the

other hand, other kind of components that are used in this layer are the virtual sensor

components. These elements allowed the application of sensor fusion strategies in a

structured way. Both components are designed with Simulink and the Real Time Toolboox

of Matlab.

Using the property that any Simulink control model is an interconnection of signals
(reference commands, position feedback, velocity feedback, torque feedback, sensors
feedback) and mathematical operations, a generic block has been designed with a
predefined number of inputs and outputs. Inside each block, one can implement different
control algorithms, or sensor fusion strategies, combining a high-performance language for
technical computing with a fast prototyping of the robotic platform since all the inputs and
outputs are readable and writable.

www.intechopen.com

 Advanced Strategies for Robot Manipulators

390

In the lowest layer dedicated to the sensor, each one is modeled by a component that

contains basically two parts: one is for data structure building and the other is for sensory

data sharing. One of the function of the sensor components is to process the information of a

specific sensor and to provide a unified sensory data bank manager. The main advantage of

this manager is that it can directly offer the calibrated sensor data. Furthermore, sensor data

must be shared with every necessary function in the software architecture. Another

important function of the sensor components, and on the rest of components, is to stamp a

time when a set of measurements, or interaction, is obtained. It helps to obtain a history of

the events.

Fig. 6. Low level structure of the joint controllers.

Regarding the joints control sub-layer, it uses a low level interface designed by Stäubli

Robots (Pertin & Bonnet, 2004); in fact, this is the only software module that remains from

the original Stäubli system. This level obeys the structure presented in Fig. 6 and its mission

is to allow the low level control of each joint. Although three different components were

defined in the previous software structure (given their possibility of control: torque, position

and velocity controller), only a generic one is considered in this structure. This sub-layer is

placed currently in the robot controller PC and we are working on how to define the

component automatically -in terms of torque, position or velocity-, given the programming

of manipulator control component.

4.2 Middleware

In our case, we have to different software contexts: this one placed at the controller PC and
the second one running on the master PC. In the controller PC, where the component of the
joints control sub-layer is running, to guarantee that the shared memory constraints are
fulfilled, the system has to protect itself from invalid memory accesses that otherwise could
compromise the system.
In this case, to avoid this problem, between the component and the monitoring task, the

tasks are synchronized following a structure "top to bottom" where the maximum priority is

given to the joints control task. The operating system running on this PC was VxWorks

(Wind-River, 2005).

Another problem was to synchronize different components that are placed in a master PC
with interconnections with external systems and a Real Time Linux operating system. The
solution selected was to choose XENOMAI (Xenomai, 2010) with the RTNet (Real Time

www.intechopen.com

Open Software Architecture for Advanced Control of Robotic Manipulators

391

Network) package. For our case, the synchronization scheme is not based on a master clock
(as it was in the former configuration, where the it followed a "top to bottom" structure).
Each component has its own clock, updating data with their respective bandwidth.
Currently, we are implementing a middleware using concepts similar to those ones defined
in OROCOS project (Bruyninckx, 2001). In a middle-long term, our intention is to obtain a
user-friendly API that allows fast and easy prototyping. Figure 7 shows the block diagram
of the hardware and software communications differentiating between the master PC and
the controller PC. It can be guessed from this figure that each component communicates
with other ones mainly through shared memory, or through Ethernet depending on where it
is placed.

Fig. 7. Block diagram of the hardware-software communications.

5. Experimental validation

Different experiments have been carried out to validate the performance of the proposed
architecture, noting that these results are obtained from the old hardware configuration.
They consisted in the application of a compliant motion controller where the environment

www.intechopen.com

 Advanced Strategies for Robot Manipulators

392

information was obtained fusing different sensors. In particular, for the case shown in this
paper, the sensors used were a force/torque sensor, an accelerometer and the joint sensors.
The objective of this integration was to develop a force observer capable of estimating,
accurately and from the f/t sensor measurements -which reflect the contact forces, the
inertial ones and the gravity forces- , the contact force exerted by a manipulator to its
environment (Gamez et al., 2008).
To carry out this test, some of the components that were described before in the previous
section were used.

Fig. 8. Force measurement from the wrist sensor ATI (upper-left), force observer output
(upper-right), accelerometer output (lower-left) and real and measured position of the robot
tip for y-axis (lower-right).

The results obtained applying the force/position controller, where the information of the
force observer is used, are presented in Fig. 8. The experiment consisted of a movement in
the axis z of three phases: an initial movement in free space (from t =5s to t = 6.2s), a contact
transition (from t =6.2s to t = 6.4s) and a movement in constrained space (from t =6.4s to t =
9s). Apart from the force compensation shown in Fig. 8, it can be also compared how the
observer eliminates the inertial effects and the noise introduced by the sensors. Note the
time lag between the filtered signal and the original one. It was because the selection of the
gains made the poles of observer to be quite near the unit-circle (Gamez, 2006). The force
control loop applied was an impedance controller (Hogan, 1985).

www.intechopen.com

Open Software Architecture for Advanced Control of Robotic Manipulators

393

6. Discussion

The construction of the open robotic system developed in the framework of this work was
necessary because, as it is well known, industrial manipulators do not offer, with an
appropriate bandwidth, the possibility of integrating either advanced control algorithms or
new sensors into the software-hardware architecture. This fact forced the research
community to extend an industrial manipulator architecture in order to get a completely
open one in both senses: hardware and software.
The proposed platform was designed considering a multi-layer structure that simplified the
integration of external functionality in several ways. The first one consisted of offering
different interfaces where the user was capable of reading all the parameters and variables,
besides modifying the commanded signals, with a considerable bandwidth. The second one
pretended to avoid the limitation of the industrial robots where the current methodology is
to control exclusively the position without considering high level strategies for task decision
making, or without taking into account new sensors that could improve the environment
modelling.
Certainly, a pending aspect of this platform is the the man-machine interaction. New
solutions in the area of software technology have to be included in order to create a more
friendly-interface that permits to modify easily the requirements of the system, especially
for the experiment generation. Perhaps, creating pseudo intelligent task interpreters, as a
experimental interface, will play an important role.
Furthermore, it has to be pointed out that the design solutions have been driven following a
trade-off between mass products (paying attention to the cost) and standardization
requirements (leading edge technology).
On the other hand, the proposed architecture was based on consolidated open robotic
platforms, specially on those ones developed in Lund University (Sweden) and Leuven
University (Belgium). These platforms have been developed during several decades and
have accumulated a great deal of experience, representing an excellent paradigm for initial
developments. In addition, a narrow collaboration with the company of the manipulator
robot has existed, what allowed access to internal functions and hardware what would be
impossible in other conditions.
To conclude this section, the development of this kind of platforms does not only prove to

be useful for testing advance control algorithms, but also it is necessary to emphasize the

necessity of building such systems since, from a robotic research point of view, and mainly,

from a robotic manufacturers overview, it helps to increase the development speed opening

up the systems for third party.

7. Conclusions

This work describes an experimental platform that allows the implementation of model-
based and sensor-based control algorithms in robotic manipulator. Particulary, this new
system allows to easily integrate new sensors and advance control algorithms in an Stäubli
industrial 6-dof robot using a component-based software methodology.
Based on a component-based development approach, two possible configurations were

described, explaining why the original structure was modified migrating to a new one

where the Master PC was different to the controller PC. It is also explained how the fact of

using this paradigm allowed an easy reconfiguration of the robotic platform, demonstrating

www.intechopen.com

 Advanced Strategies for Robot Manipulators

394

that the use of components -i. e. Sensor components- , that are independent of the context,

allowed as well an important restructuration of the new robotic architecture.

The resulting architecture has been designed, among other objectives, to allow different
sensors to be easily switched and rewired depending on the new sensor fusion or control
strategy that must be tested. Together with the component-based development approach, a
software structure of layers has been proposed to facilitate the design, configuration and
testing of new control algorithms and sensor fusion techniques. This structure allows
systems of components, with standardized interfaces, to be connected while abstracting
away implementation details of components.
Eventually, a number of experiments were performed to validate the performance of the
proposed architecture and its capacity of allowing a fast and easy implementation of
advance control algorithms in non-structured environments.

8. References

Ahn, S. C., Lee, J.-W., Lim, K.-W., Ko, H., Kwon, Y.-M. & Kim, H.-G. (2006). Requirements to
UPnP for Robot Middleware, Proc. of the 2006 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), Beijing, pp. 4716 -4721.

Ando, N., Suehiro, T., Kitagaki, K. & Kotoku, T. (2006). RT (Robot Technology)-Component
and its Standarization, SICE-ICASE International Joint Conference, 2006, pp. 2633-
2638.

Bruyninckx, H. (2001). Open robot control software: the OROCOS project. Proc. of the 2001
IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 2523–2528.

Chishiro, H., Fujita, Y., Takeda, A., Kojima, Y., Funaoka, K., Kato, S. & Yamasaki, N. (2009).
Extended RT-Component Framework for RT-Middleware, IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing,
2009 (ISORC), pp. 161-168.

Cote, C., Brosseau, Y., Letourneau, D., Raievsky, C. & Michaud, F. (2006). Robotic Software
Integration Using MARIE, International Journal of Advanced Robotic Systems, 2006, pp.
055-060.

Gamez, J., Robertsson, A., Gomez, J. & Johansson, R. (2004). Sensor fusion of force and
acceleration for robot force control. Int. Conf. Intelligent Robots and Systems (IROS
2004), 2004, pp. 3009–3014.

Gamez, J., Robertsson, A., Gomez, J. & Johansson, R. (2005). Force and acceleration sensor
fusion for compliant robot motion control. IEEE Int. Conf. on Robotics and
Automation (ICRA2005), 2005, pp. 2709 - 2714.

Gamez, J. Sensor Fusion of Force. (2006). Acceleration and Position for Compliant Robot
Motion Control. Phd thesis, Jaen University, Spain, 2006.

Gamez, J., Gomez, J. Nieto, L. & Sanchez Garcia, A. (2007). Design and validation of an open
architecture for an industrial robot control, IEEE International Symposium on
Industrial Electronics (IEEE ISIE 2007), 2007, pp. 2004–2009.

Gamez, J., Robertsson, A., Gomez, J. & Johansson, R. Sensor fusion for compliant robot
motion control. IEEE Trans. on Robotics, 2008, pp. 430–441.

Gamez, J., Gomez, J., Sanchez, A. & Satorres, S. (2009). Robotic software architecture for
multisensor fusion system. IEEE Trans. on Industrial Electronics, 2009, pp. 766–777.

Groover, M. P. (2008). Automation, Production Systems and Computer-Integrated
Manufacturing. Pearson Education, Upper Saddle River, New Jersey, USA, 2008.

www.intechopen.com

Open Software Architecture for Advanced Control of Robotic Manipulators

395

Hogan, N. (1985). Impedance control: An approach to manipulation, parts 1-3. J. of Dynamic
Systems, Measurement and Control. ASME, 1985, pp. 1–24.

Hong, K. Kim, J. Huh, C., Choi, K. & Lee, S. (2001). A pc-based open robot control system:
PC-ORC. IEEE International Symposium on Industrial Electronics, ISIE 2001. 2001, pp.
1901 –1906.

Johansson, R. & Robertsson, A. (2003). Robotic force control using observer-based strict
positive real impedance control. IEEE Proc. Int. Conf. Robotics and Automation, 2003,
pp. 3686–3691.

Khatib, O. & Burdick, J. (1986). Motion and force control of robot manipulators. IEEE Int.
Conf. Robotics and Automation, 1986, pp 1381– 1386.

Kröger, T., Kubus, D. & Wahl, F. (2007). Force and acceleration sensor fusion for compliant
manipulation control in 6 degrees of freedom. Advanced Robotics, 2007, pp. 1603–
1616.

Larsson, U., Forsberg, J. & Wenersson, A. (1996). Mobile robot localization: integrating
measurements from a time-of-flight laser. IEEE Trans. Industrial Electronics, 1996,
pp. 422–431.

Luo, R., Yih, C. & Su, K. (2002). Multisensor fusion and integration: approaches,
applications, and future research directions. IEEE Sensors J.,2002, pp. 107–119.

Nesnas, I., Wrigh, A., Bajracharya, M., Simmons, R. & Estlin, T. (2003). CLARAty and
Challenges of Developing Interoperable Robotic Software, Proceedings of the 2003
IEEE/RSJ. Intl. Conference on Intelligent Robots and Systems, 2003, pp. 2428 – 2435.

Nilsson, K. & Johansson, R. (1999). Integrated architecture for industrial robot programming
and control. J. Robotics and Autonomous Systems, 1999, pp. 205–226.

OMG Robotic Technology Component Specification, formal/08-04-04 edition. Object
Management Group, 2008.

ORCA, http://orca-robotic.sourceforge.net/, 2010.
OROCOS-Simulik, http://www.orocos.org/simulink/, 2010.
OSACA, Open System Architecture for Controls within Automation Systems, ESPRIT III

Project 6379/9115, 1996.
Ostrovrsnik, R., Hace, A. & Terbuc, M. (2003). Use of open source software for hard real-

time experiments, IEEE International Conference on Industrial Technology, 2003, pp.
1243 – 1246.

Park, H. & Han, S. (2009). Development of an Open Software Platform for Robotics Services,
ICCAS-SICE Int. Joint Conference, 2009, pp. 4773 – 4775.

Pertin, F. & Bonnet des Tuves, J. (2004). Real time robot controller abstraction layer. Proc. Int.
Symposium on Robots (ISR), Paris, France, March 2004.

Saravanan, K., Thangavelu, A. & Rameshbabu, K. (2009). A middleware architectural
framework for vehicular safety over vanet (InVANET). International Conference on
Networks & Communications, 2009, pp. 277 – 282.

Sarker, M., Kim, C., Cho, J. & You, B. (2006). Development of a Network-based Real-Time
Robot Control System over IEEE 1394: Using Open Source Software Platform, IEEE
International Conference on Mechatronics, 2006, pp. 563 – 568.

Schlegel, C. & Worz, R. (1999). The Software Framework {SMARTSOFT} for implementing
Sensorimotor Systems, Proc. IEEE Int. Conf. Intelligent Robots and Systems, 1999, pp
1610-1616.

www.intechopen.com

 Advanced Strategies for Robot Manipulators

396

Utz, H., Sablatnög, S., Enderle, S. & Kraetzschmar, G. (2002). MIRO - Middleware for mobile
robot applications, IEEE Transactions on Robotics and Automation, 2002, pp. 493 – 497.

Wills, L., Kannan, S., Sander, S., Guler, M., Heck, B., Prasad, J., Schrage, D. & Vachtsevanos,
G. (2001). An Open Platform for Reconfigurable Control, IEEE Control Systems
Magazine, 2001, pp. 49 – 64.

Wind-River. VxWorks: Reference Manual. Wind River Systems, 2005.
Wind-River Linux. http://www.windriver.com/products/linux/, 2010.
Xenomai: Real-Time Framework for Linux. http://www.xenomai.org/, 2010.
Xu, H. & Jia, P. (2006). RTOC: A RT-Linux Based Open Robot Controller, IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2006, pp. 1644 – 1649.
Xuemei, L. & Liangzhong, J. (2007). Study on control system architecture of modular robot.

Proc. of the 2007 IEEE Int. Conf. on Robotics and Biometrics, 2007, pp. 508 – 512.

www.intechopen.com

Advanced Strategies for Robot Manipulators

Edited by S. Ehsan Shafiei

ISBN 978-953-307-099-5

Hard cover, 428 pages

Publisher Sciyo

Published online 12, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and

are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are

designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional

control methods cannot be efficient, and advanced control strategies with considering special constraints are

needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm

until now, there are still many novel aspects which have to be explored.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Juan Gomez Ortega, Javier Gamez Garcia, Luis M. Nieto Nieto and Alejandro Sanchez Garcia (2010).

Description of an Open Software Robotic Platform for Sensor Fusion Applications, Advanced Strategies for

Robot Manipulators, S. Ehsan Shafiei (Ed.), ISBN: 978-953-307-099-5, InTech, Available from:

http://www.intechopen.com/books/advanced-strategies-for-robot-manipulators/description-of-an-open-

software-robotic-platform-for-sensor-fusion-applications

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

