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1. Introduction 

So far, the robotic applications has been dominated by proprietary based hardware and 
software devices developed for industrial applications with a large volume manufacturing, 
like the automotive and electronics industries. Then, the main goal of the automation 
technologies has been an optimized robot design for precise assembly tasks, resulting in 
complex systems with a reduced flexibility.  
Traditional robotic applications have a fixed configuration, with the advantages of high 

accuracy and a well studied kinematics. However, since recent years, the number of service 

robots in our daily life environments is increasing. There are many new applications, i.e. 

teleoperation, human-robot-collaborative works, etc. that require reconfigurable hardware 

and expansibility to accomplish new working modes in not-structured scenarios and not-

intensive manufacturing tasks. However, these systems must meet diverse user 

requirements and integrate different hardware and software systems developed for a 

particular proprietary platform. As a result, many different researchers have solved similar 

issues with non-interchangeable products, working from scratch each time, adapting the 

traditional industrial robots platform for the new applications. 

Today, a new robotic system is an integration of different processors and hardware 
platforms manufactured by different vendors, controlled by software modules developed 
using different programming languages and different communication protocols. In 
addition, as robotic manipulator is expected to accomplish more complex tasks, it needs the 
integration of multiple sensors working with different time bases and bandwidths (Gamez 
et al., 2009; Luo et al., 2002), and new capabilities are needed that traditional control 
technology of current industrial robots is not offering. In order to solve these problems 
different open robotics platforms have been presented. 

1.1 Open robotic platforms: an overview 

From the definition of an Open Systems (IEEE 1003.0), an Open (Robotic) Platform should 
"provide capabilities that enable properly implemented applications to run on a variety of 
platforms from multiple vendors interoperate with other system applications and present a 
consistent style of interaction with the user". This leads to the following properties: 
• Portability of the software, to reuse it in other platforms with minor changes. 
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• Reusability is an issue that should be addressed from the beginning of the development 
process, identifying common problems that could be solved with reusable solutions and 
shared within the robotics community. 

• Extensibility to change or add several component (of hardware or software) to the 
system from different vendors. 

• Adaptability/dynamic reconfigurability, providing mechanism of easy adaptation of its 
parameters according to the application requirements. 

• Interoperability refers to the ability to support interchange of information between 
robotic modules designed by different vendors, providing effective communication and 
working in a coordinated manner. In particular it relies on the network and 
communication protocols that must provide effective real-time communication among 
distributed components, independently of the system specific particularities. 

Diverse approaches have been proposed to achieve these capabilities. Some solutions use 
Matlab/Simulink and Real Time Workshop to generate control applications for robotic 
systems with a proprietary operating systems (Gamez et al., 2007), but with the 
disadvantage of a limited interoperability. Today, most of the research and robotic 
applications developed based on proprietary hardware used a layered software architecture. 
This approach typically includes a standard based middleware to provide integration, 
efficient communication, interoperability, abstraction of software components, also 
providing portability. At the top level different reusable software components are used. In 
the low level layer, the hardware is controlled by drivers developed to run on a proprietary 
RTOS. However, since last decade, developers have a growing interest on developing open 
source applications based on Linux RTOS. Thus, vendors are offering commercial-grade 
Linux operating systems (Saravanan et al., 2009; Gamez et al. 2009). 
Another approach based on hardware modularity can support integration of new 
components from various vendors. The corresponding software must provide a well 
defined interface to provide easily integration between interconnected devices, and the 
capabilities of extensibility and modification (Xuemei & Liangzhong, 2007). 
As the hardware is always vendor-dependent, the integration of different devices may be 
difficult due to incompatibility reasons. To overcome this problem, some hardware 
standards have been proposed, however this method is considered too restrictive to achieve 
reusability of existing hardware (Hong et al. 2001). 

1.2 Related research 

In recent years, an increasing number of initiatives have been presented: 

• OROCOS (Open Robot Control Software) project (OROCOS, 2010), is a European 
initiative for providing free software project to develop advanced robotics applications. 
The project supports different C++ libraries for creating control applications over 
different proprietary operating systems (e.g. Win32, Mac OS). Also includes the Real-
Time Toolkit (RTT) library for writing hard real-time control applications in C++ for 
Linux based systems, and tools from contributors to generate components using Real-
Time Workshop from Matlab/Simulink. To achieve reusability, the framework 
supports standard component interfaces and CORBA for interoperability between 
distributed components over a network. Some others not real-time projects have 
derived from OROCOS, like ORCA (ORCA, 2010) and SmartSOFT (Schlegel, 1999). 

• RT-Middleware (from Robot-Technology) (Ando et al., 2006; Chishiro et al. 2009) is a 
CORBA based software platform for robot system integration developed in Japan, with 

www.intechopen.com



Open Software Architecture for Advanced Control of Robotic Manipulators   

 

383 

the participation of the Japan Robot Association (JARA). One of the objectives of the 
project is to simplify the construction of customized robot combining selected RT-
components. In recent years, the Object Management Group (OMG) (OMG, 2008) 
started a standardization process for these RT-components to achieve interoperability, 
interconnectivity and integration of components from different manufacturers.  

• In Korea, the Open Platform for Robotic Services (OPRoS) (Park & Han, 2009) is another 
open software project promoted to unify different robots platforms. The framework 
includes standardized components, an integrated development environment (IDE) and 
a simulation and testing environment. OPRoS supports CORBA and the Universal Plug 
and Play (UPnP) (Ahn et al., 2006) standards for modular integration. The operational 
scheme employs a server-client model to interact with the robot system as a target 
robot, and external servers for heavy computation.  

• The Coupled Layered Architecture for Robotic Autonomy (CLARAty) (Nesnas et al., 
2003) was initiated in the NASA to provide a software framework to develop advanced 
robotic technologies for robotic platforms employed in other NASA programs. Unlike 
others architectures, CLARAty is a two-level architecture were the system 
decomposition allows for intelligent behavior at low levels while the structure of the 
different levels is maintained. In this scheme, the high level Decision Layer sends 
command to the Functional Layer and in a client-server model, and the Functional 
Layer provides different levels of abstractions to achieve adaptation of the reusable 
components to the hardware of different robots. Also, the Decision Layer provides a 
unified representation of activity plans based on a declarative model. 

• For the Mobile and Autonomous Robotics Integration Environment (MARIE), the main 
goal was to provide a common component-based middleware to reuse and interconnect 
different programming environments (Cote et al., 2006). The framework followed a one-
to-many interaction model between different components to coordinate the interaction 
within a virtual shared space, and allowing each component to use its own 
communication protocol. 

• MIRO (Utz et al., 2002) is a CORBA based middleware organized in three layers: a 
device layer provides object-oriented interface abstraction for the hardware, and a 
service layer provides CORBA interface services between the device layer and the top 
layer. This layer provides reusability and easy integration in an object oriented 
framework. 

• In recent years, several RT-Linux based open projects are developed: RTOC (Xu & Jia, 
2006) is a RT-Linux based architecture based upon the OSACA model (OSACA, 1996) 
that can be ported to not PC-based platforms. In its layered model, a database stores 
universal application modules for control, path planning, etc. Other Linux based 
platforms use ST-RTL to generate control applications from Simulink models 
(Ostrovrsnik et al., 2003). Xenomai (Xenomai, 2010) is another Linux-based Real Time 
operating system used to develop robot control systems using open source and 
standardized communications protocols (Sarker et al. 2006). 

The remainder of this paper is organized as follows. Firstly, a brief explanation of the 
necessity of these platforms is introduced in Section 2. Later, Section 3 describes the 
hardware structure. In this section the main characteristics of both hardware configurations 
are presented. In Sec. 4, the software structure is presented, while Sec. 5 presents 
experimental results which validate the performance of the proposed architecture. Finally, 
Discussions and Conclusions are presented in Section 6 and 7, respectively. 
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2. Why the necessity of these robotic platforms 

It has been long recognized that multisensor-based control is an important problem in 
robotics (Gamez et al. 2008), the need to take advantage of multiple sensors in controlling a 
system becomes increasingly important. On the other hand, to the purpose of getting an 
adequate interaction between the manipulator and its environment, force/position feedback 
control is necessary, above all, if the environment where the robot wants to interact is 
unknown or changing (Gamez et al., 2005). In general, given the classical hierarchical 
control structure of a robot microcomputer controller (Groover, 2008) (Fig. 1), the 
possibilities of control or the integration of new sensors into the setup, are not offered 
nowadays by the robot manufacturers. 

 

Fig. 1. Classical hierarchical control structure of a robot microcomputer controller. 

A representative example of implementation of a force/position controller could be the 
impedance controller (Hogan, 1985). The purpose is to ensure that the manipulator is able to 
operate in a non-ideally structured constrained environment while maintaining contact 
forces within suitable limits. A description of this system is sumarized in fig. 2: 
 

 

Fig. 2. Impedance controller structure. 

However, an intrinsic problem occurs when trying the application of this control algorithm, 
if only a wrist force sensor has been used, in a dynamic situation, where the manipulator is 
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moving in either free or constraint space, the interaction forces and moments at the contact 
point, and also the noncontact ones, are measured by this sensor (Gamez et al., 2004). 
Furthermore, the magnitude of these dynamics disturbances cannot be ignored when large 
accelerations and fast motions are considered (Khatib & Burdick, 1986), when the 
manipulator carries out tasks with heavy tools (Johansson & Robertsson, 2003), or when the 
environment is not perfectly known (not allowing the use of switching strategies that 
compensate for the free space phase).  
To solve this problem, the integration of different sensors such as a force/torque and a 
acceleration sensor could be use to solve this problem (Gamez et al., 2008; Kroger et al., 
2007); however, fusion of data from multiple sensors into a robust and consistent model 
meets some difficulties such as measurements with different time bases (Luo et al., 2002) or 
noise and incompleteness of sensor data (Larsson et al., 1996). Another problem could be to 
easily connect these sensors, which are from diverse manufacturers, to the hardware setup 
(Gamez et al. 2009). 
Thus, observing these problems, it can be guessed why a complex dynamic system, such as 
robotic manipulator, is demanding new and highly sophisticated capabilities that traditional 
control technology of current industrial robots is not offering (Wills et al., 2001). 

3. Hardware elements of the platform 

This section describes the hardware components that convert this platform in a non-
conventional one from an industrial point of view. Also, we will describe the necessity of 
these elements that were used to test and validate new control concepts for manipulators 
that interacts with an unknown environments. In this point, it is necessary to point out that 
two different hardware configurations, and thus two software structure, were carried out. In 
both cases, the experimental setup contained the following elements: an anthropomorphic 6-
DOF Stäubli RX60 industrial manipulator and a CS8 controller, a Phantom 6D Haptic 
Device, a vision system composed of two cameras, a 6-DOF ATI wrist force/torque sensor, a 
3-DOF capacitive accelerometer , a 3-DOF gyroscope, a special purpose end effector and the 
teach pendant, an acquisition board integrated in the robot controller, a workcell and a 
number PCs to mainly develop software and to collect data. 

3.1 Old hardware configuration 

Initially we designed a hardware scheme that had the structure shown in Figure 3 (Gamez 

et al., 2009). 

The kernel of this architecture is the CS8 controller PC. It is in charged of the high-level 

operations (execution of the path planner, trajectory generation, sercos communication, etc.), 

and also of reading external sensors such us the wrist force and torque sensor or the 

acceleration sensor. These elements were connected to the open PCI slot in the controller PC. 

With this structure, software modules for collecting data where mainly resident in this PC. 

The main advantage of using a PC-based standard interface is that it ensures that the 

extensibility and scalability are available. Therefore, the hardware and software components 

can be integrated or replaced easily. 

Due to proprietary reasons, the operating system running on this PC is VxWorks (Wind-

River, 2005), which allows easy integration of many commercially available add-on 

peripherals such as acquisition boards, ethernet boards, etc.. It also provides deterministic 
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context switching, timeliness, support for open standard. The external sensors used to 

model the environment, and thus to make the robot capable of interacting with it, are: a ATI 

wrist force/torque (f/t) sensor (MINI SI80-4) where the f/t strain gauge signals are 

conditioned using an intermediate module, called supply board, and later transmitted 

through a DAQ acquisition board which processes the strain gauge information and offers it 

through the PCI slot. A 3D accelerometer, which was attached to the end-effector of the 

manipulator and a 3D gyroscope of CFX Technology (an UCG-TX model). These two last 

sensors were also read by the same acquisition board. 

 

CS8 Controller

CPU Pentium

32 MB RAM

USB Board
I/O

Servo 
Controllers

(original 
units)

Ethernet

Host PC

DAQ (PCI)
Teach

Pendant

Force and 
acc. sensors

+
Vision Sensors

Haptic 
Device PC

External PC for
Computer Vision

Ethernet

 

Fig. 3. Hardware configuration for the old system. 

Regarding the vision system, the cameras are connected directly to a dedicated computer 
vision PC. Later, the image is processed and the required information -normally a vector 
with coordinates of positions and orientations- sent to the controller PC through ethernet. 
The haptic device is a PHANTOM 3/6DOF with six degrees of freedom in position and 
force feedback in three translational degrees of freedom. The 3.0/6 DOF has a range of 
motion approximating full arm movement pivoting at the shoulder. This device is connected 
to an extra PC via the parallel port (EPP) interface. The sample time of the haptic device is 
higher than the controller loop (1 Khz against 250 Hz.), and since there is no physical 
distance between them, the delay is one controller sample time at maximum. The 
bandwidth of all the mentioned sensors apart from the vision sensor is 250 Hz. This sample 
time has been chosen in order to synchronize the sensor readings with the robot control 
loop. The bandwidth of the vision sensor is smaller (around 30 Hz), because of the high 
computational effort required and the camera speed. Shortly, we are going to change these 
cameras to new ones with a bandwidth of 120 frames/sec. 
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3.2 New hardware configuration 

The main drawbacks that can be found in the former robotic system are: 

• The master PC, where a huge number of applications are running -sensor readings, 
control algorithm execution, robot movements- , is placed in the controller PC, so this 
structure is subject to a PC that in few years is antiquated and cannot be changed 
(without the manufacturer collaboration). 

• A great part of the code running in the controller is unknown -belongs to the 
manufacturer- and sometimes it occurs problems because of the inconsistency between 
the original code and the experimental one (as uncontrolled modifications of some 
common data). These problems are difficult to solve, again, without a close 
collaboration with the manufacturer. Also, while the experimental code is more 
complex and bigger, the inconsistencies are more probable. 

• The time synchronization is easier and more robust if we have an external master PC that 
configures and controls all the sensors, the control algorithms and the actuation system. 

To solve the problems that the first configuration presented, a new hardware and software 
structure is being developed. Similar to first one, the main difference can be found in where 
the main executions are carried out. Figure 4 shows a scheme of this new configuration. 
 

MASTER PC

UP TO DATE 
COMPUTER

Ethernet

DAQ (PCI)

CS8 
CONTROLLER

Force and 
acceleration

sensors

Haptic Device

Parallel
Port

IEEE 1394

Vision Sensors

 

Fig. 4. Hardware configuration for the new system. 

With respect to the old system, this new system introduces the following changes: 
• The operating system is based on LINUX with a real time framework called XENOMAI 

(Xenomai, 2010). 
• The vision sensors are read through a IEEE 1394 port placed in the master PC. From the 

experimental tests, it was checked that the computational effort required by a normal 
vision system processing does not bother to the rest of the tasks. 

• The haptic device is connected directly to the Master PC through a parallel port. 
• The external sensors, i.e. the wrist force sensor, the accelerometer, or other sensors, are 

connected to a Data Acquisition Board plugged into a PCI slot of the Master PC. 

4. Software structure 

In this section, we describe a component-based control software architecture developed in 
order to get a robust and easy-to-maintain experimental robotic platform. Two fundamental 
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goals were established for the architecture: first, it should standardize functions that are 
common across sensors and open robotic platforms; second, the architecture should enable 
design by composition. Since the most interesting configuration is the new one, we limit this 
section to its the description. Further information about the old software configuration can 
be found in (Gamez et al. 2010). 

4.1 Layer architecture and component definitions 
Although the software structure of the experimental setup contains basically two PCs: the 
master PC and the controller PC, it consists of a hierarchy of components that are divided 
into four main layers proposed originally by (Nilsson & Johansson, 1999): lowest layer, 
middle layer, high layer and end-user layer. Each layer contains different types of 
components, which are classified depending on their functionality (Fig. 5). This components 
are related, in the major cases, to a block or system of the hardware structure. The four 
layers are: 
1. Lowest layer: whose components correspond to those ones closer to the physical 

environment. Examples are the different sensor components or the joint control 
components. 

2. Middle layer: Components can use the information of the lowest layer and the high 
layer. Examples could be a virtual sensor component or a manipulator control 
component. 

3. High layer: Trajectory generator components. 
4. End-user layer: Task planner components. 

 

Fig. 5. Structure of the components developed for the platform. 
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The end-user layer describes the task to be carried out in terms of final positions, 

orientations and velocities of the robot end-effector. Different components have been 

developed and they are used depending if the task to be carried out is in open space, with 

constraint motion or with both. In addition, another component has been designed which is 

in charge of controlling the haptic device. The inputs to the components of this layer can be 

the reference position-orientation of the robot TCP, the desired contact forces exerted by the 

manipulator to the environment or even vision features. Currently, these inputs can only be 

defined off-line, not taking the most significant advantage of on-line programming, that is, 

the robot can be programmed in accordance with the actual position of equipment and 

pieces of these modules. 

The high-level layer is compound basically of two components with the functions of a path 

planner. This planner generates trajectory set points for the robot, according to motion 

command which it receives from task specification. The commands these components offer 

to their lower layer can be either the joints trajectory or the Cartesian trajectory of the robot 

end-effector. It is necessary to point out that both the original task planning and the original 

trajectory generator developed by Stäubli were not used in this platform due to proprietary 

reasons. For our applications, the components designed for the special-purpose planner 

calculate the joint coordinates from the Cartesian references solving the inverse kinematics 

on line (Gamez, 2006). In this sense, a second component has been developed to reduce the 

computational cost of the previous block if necessary. Specifically, it consists of the 

decomposition of the robot geometric structure into two subsystems: one for position and 

one for orientation. This option offers an analytic solution that simplifies the singularities 

problem. Furthermore, a number of restrictions have been imposed to prevent special 

singularities such as shoulder and wrist ones. Although the developed trajectory is not 

robust, the resultant workspace is acceptable for most of the practical cases. Currently, these 

components are used from the former configuration and, in the future, we expect to 

improve them using more sophisticated trajectory generators than can be found, for instant, 

in (Bruyninckx, 2001). 

For the middle-level layer, and from an engineering point of view, we note that tailoring the 
motion control requires control engineering competence while application support does not 
(Nilsson & Johansson, 1999). Although is therefore reasonable and appropriate to define two 

different sub-layers for these types of programming: application control layer, (movement 

constraints, tool mass, etc.) and control layer (to configure the control loop, tunes the gains, 

etc.), this level is built, on the one hand, using manipulator control components. On the 

other hand, other kind of components that are used in this layer are the virtual sensor 

components. These elements allowed the application of sensor fusion strategies in a 

structured way. Both components are designed with Simulink and the Real Time Toolboox 

of Matlab. 

Using the property that any Simulink control model is an interconnection of signals 
(reference commands, position feedback, velocity feedback, torque feedback, sensors 
feedback) and mathematical operations, a generic block has been designed with a 
predefined number of inputs and outputs. Inside each block, one can implement different 
control algorithms, or sensor fusion strategies, combining a high-performance language for 
technical computing with a fast prototyping of the robotic platform since all the inputs and 
outputs are readable and writable. 
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In the lowest layer dedicated to the sensor, each one is modeled by a component that 

contains basically two parts: one is for data structure building and the other is for sensory 

data sharing. One of the function of the sensor components is to process the information of a 

specific sensor and to provide a unified sensory data bank manager. The main advantage of 

this manager is that it can directly offer the calibrated sensor data. Furthermore, sensor data 

must be shared with every necessary function in the software architecture. Another 

important function of the sensor components, and on the rest of components, is to stamp a 

time when a set of measurements, or interaction, is obtained. It helps to obtain a history of 

the events. 

 

Fig. 6. Low level structure of the joint controllers. 

Regarding the joints control sub-layer, it uses a low level interface designed by Stäubli 

Robots (Pertin & Bonnet, 2004); in fact, this is the only software module that remains from 

the original Stäubli system. This level obeys the structure presented in Fig. 6 and its mission 

is to allow the low level control of each joint. Although three different components were 

defined in the previous software structure (given their possibility of control: torque, position 

and velocity controller), only a generic one is considered in this structure. This sub-layer is 

placed currently in the robot controller PC and we are working on how to define the 

component automatically -in terms of torque, position or velocity-, given the programming 

of manipulator control component. 

4.2 Middleware 

In our case, we have to different software contexts: this one placed at the controller PC and 
the second one running on the master PC. In the controller PC, where the component of the 
joints control sub-layer is running, to guarantee that the shared memory constraints are 
fulfilled, the system has to protect itself from invalid memory accesses that otherwise could 
compromise the system. 
In this case, to avoid this problem, between the component and the monitoring task, the 

tasks are synchronized following a structure "top to bottom" where the maximum priority is 

given to the joints control task. The operating system running on this PC was VxWorks 

(Wind-River, 2005). 

Another problem was to synchronize different components that are placed in a master PC 
with interconnections with external systems and a Real Time Linux operating system. The 
solution selected was to choose XENOMAI (Xenomai, 2010) with the RTNet (Real Time 
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Network) package. For our case, the synchronization scheme is not based on a master clock 
(as it was in the former configuration, where the it followed a "top to bottom" structure). 
Each component has its own clock, updating data with their respective bandwidth. 
Currently, we are implementing a middleware using concepts similar to those ones defined 
in OROCOS project (Bruyninckx, 2001). In a middle-long term, our intention is to obtain a 
user-friendly API that allows fast and easy prototyping. Figure 7 shows the block diagram 
of the hardware and software communications differentiating between the master PC and 
the controller PC. It can be guessed from this figure that each component communicates 
with other ones mainly through shared memory, or through Ethernet depending on where it 
is placed. 
 

 

Fig. 7. Block diagram of the hardware-software communications. 

5. Experimental validation 

Different experiments have been carried out to validate the performance of the proposed 
architecture, noting that these results are obtained from the old hardware configuration. 
They consisted in the application of a compliant motion controller where the environment 
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information was obtained fusing different sensors. In particular, for the case shown in this 
paper, the sensors used were a force/torque sensor, an accelerometer and the joint sensors. 
The objective of this integration was to develop a force observer capable of estimating, 
accurately and from the f/t sensor measurements -which reflect the contact forces, the 
inertial ones and the gravity forces- , the contact force exerted by a manipulator to its 
environment (Gamez et al., 2008). 
To carry out this test, some of the components that were described before in the previous 
section were used. 
 

 

 

Fig. 8. Force measurement from the wrist sensor ATI (upper-left), force observer output  
(upper-right), accelerometer output (lower-left) and real and measured position of the robot 
tip for y-axis (lower-right). 

The results obtained applying the force/position controller, where the information of the 
force observer is used, are presented in Fig. 8. The experiment consisted of a movement in 
the axis z of three phases: an initial movement in free space (from t =5s to t = 6.2s), a contact 
transition (from t =6.2s to t = 6.4s) and a movement in constrained space (from t =6.4s to t = 
9s). Apart from the force compensation shown in Fig. 8, it can be also compared how the 
observer eliminates the inertial effects and the noise introduced by the sensors. Note the 
time lag between the filtered signal and the original one. It was because the selection of the 
gains made the poles of observer to be quite near the unit-circle (Gamez, 2006). The force 
control loop applied was an impedance controller (Hogan, 1985). 
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6. Discussion 

The construction of the open robotic system developed in the framework of this work was 
necessary because, as it is well known, industrial manipulators do not offer, with an 
appropriate bandwidth, the possibility of integrating either advanced control algorithms or 
new sensors into the software-hardware architecture. This fact forced the research 
community to extend an industrial manipulator architecture in order to get a completely 
open one in both senses: hardware and software. 
The proposed platform was designed considering a multi-layer structure that simplified the 
integration of external functionality in several ways. The first one consisted of offering 
different interfaces where the user was capable of reading all the parameters and variables, 
besides modifying the commanded signals, with a considerable bandwidth. The second one 
pretended to avoid the limitation of the industrial robots where the current methodology is 
to control exclusively the position without considering high level strategies for task decision 
making, or without taking into account new sensors that could improve the environment 
modelling. 
Certainly, a pending aspect of this platform is the the man-machine interaction. New 
solutions in the area of software technology have to be included in order to create a more 
friendly-interface that permits to modify easily the requirements of the system, especially 
for the experiment generation. Perhaps, creating pseudo intelligent task interpreters, as a 
experimental interface, will play an important role. 
Furthermore, it has to be pointed out that the design solutions have been driven following a 
trade-off between mass products (paying attention to the cost) and standardization 
requirements (leading edge technology). 
On the other hand, the proposed architecture was based on consolidated open robotic 
platforms, specially on those ones developed in Lund University (Sweden) and Leuven 
University (Belgium). These platforms have been developed during several decades and 
have accumulated a great deal of experience, representing an excellent paradigm for initial 
developments. In addition, a narrow collaboration with the company of the manipulator 
robot has existed, what allowed access to internal functions and hardware what would be 
impossible in other conditions. 
To conclude this section, the development of this kind of platforms does not only prove to 

be useful for testing advance control algorithms, but also it is necessary to emphasize the 

necessity of building such systems since, from a robotic research point of view, and mainly, 

from a robotic manufacturers overview, it helps to increase the development speed opening 

up the systems for third party. 

7. Conclusions 

This work describes an experimental platform that allows the implementation of model-
based and sensor-based control algorithms in robotic manipulator. Particulary, this new 
system allows to easily integrate new sensors and advance control algorithms in an Stäubli 
industrial 6-dof robot using a component-based software methodology. 
Based on a component-based development approach, two possible configurations were 

described, explaining why the original structure was modified migrating to a new one 

where the Master PC was different to the controller PC. It is also explained how the fact of 

using this paradigm allowed an easy reconfiguration of the robotic platform, demonstrating 
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that the use of components -i. e. Sensor components- , that are independent of the context, 

allowed as well an important restructuration of the new robotic architecture. 

The resulting architecture has been designed, among other objectives, to allow different 
sensors to be easily switched and rewired depending on the new sensor fusion or control 
strategy that must be tested. Together with the component-based development approach, a 
software structure of layers has been proposed to facilitate the design, configuration and 
testing of new control algorithms and sensor fusion techniques. This structure allows 
systems of components, with standardized interfaces, to be connected while abstracting 
away implementation details of components. 
Eventually, a number of experiments were performed to validate the performance of the 
proposed architecture and its capacity of allowing a fast and easy implementation of 
advance control algorithms in non-structured environments. 

8. References 

Ahn, S. C., Lee, J.-W., Lim, K.-W., Ko, H., Kwon, Y.-M. & Kim, H.-G. (2006). Requirements to 
UPnP for Robot Middleware, Proc. of the 2006 IEEE/RSJ Int. Conf. on Intelligent 
Robots and Systems (IROS), Beijing, pp. 4716 -4721. 

Ando, N., Suehiro, T., Kitagaki, K. & Kotoku, T. (2006). RT (Robot Technology)-Component 
and its Standarization, SICE-ICASE International Joint Conference, 2006, pp. 2633-
2638. 

Bruyninckx, H. (2001). Open robot control software: the OROCOS project. Proc. of the 2001 
IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 2523–2528. 

Chishiro, H., Fujita, Y., Takeda, A., Kojima, Y., Funaoka, K., Kato, S. & Yamasaki, N. (2009). 
Extended RT-Component Framework for RT-Middleware, IEEE International 
Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing, 
2009 (ISORC), pp. 161-168. 

Cote, C., Brosseau, Y., Letourneau, D., Raievsky, C. & Michaud, F. (2006). Robotic Software 
Integration Using MARIE, International Journal of Advanced Robotic Systems, 2006, pp. 
055-060. 

Gamez, J., Robertsson, A., Gomez, J. & Johansson, R. (2004). Sensor fusion of force and 
acceleration for robot force control. Int. Conf. Intelligent Robots and Systems (IROS 
2004), 2004, pp. 3009–3014. 

Gamez, J., Robertsson, A., Gomez, J. & Johansson, R. (2005). Force and acceleration sensor 
fusion for compliant robot motion control. IEEE Int. Conf. on Robotics and 
Automation (ICRA2005), 2005, pp. 2709 - 2714. 

Gamez, J. Sensor Fusion of Force. (2006). Acceleration and Position for Compliant Robot 
Motion Control. Phd thesis, Jaen University, Spain, 2006. 

Gamez, J., Gomez, J. Nieto, L. & Sanchez Garcia, A. (2007). Design and validation of an open 
architecture for an industrial robot control, IEEE International Symposium on 
Industrial Electronics (IEEE ISIE 2007), 2007, pp. 2004–2009. 

Gamez, J., Robertsson, A., Gomez, J. & Johansson, R. Sensor fusion for compliant robot 
motion control. IEEE Trans. on Robotics, 2008, pp. 430–441. 

Gamez, J., Gomez, J., Sanchez, A. & Satorres, S. (2009). Robotic software architecture for 
multisensor fusion system. IEEE Trans. on Industrial Electronics, 2009, pp. 766–777. 

Groover, M. P. (2008). Automation, Production Systems and Computer-Integrated 
Manufacturing. Pearson Education, Upper Saddle River, New Jersey, USA, 2008. 

www.intechopen.com



Open Software Architecture for Advanced Control of Robotic Manipulators   

 

395 

Hogan, N. (1985). Impedance control: An approach to manipulation, parts 1-3. J. of Dynamic 
Systems, Measurement and Control. ASME, 1985, pp. 1–24. 

Hong, K. Kim, J. Huh, C., Choi, K. & Lee, S. (2001). A pc-based open robot control system: 
PC-ORC. IEEE International Symposium on Industrial Electronics, ISIE 2001. 2001, pp. 
1901 –1906. 

Johansson, R. & Robertsson, A. (2003). Robotic force control using observer-based strict 
positive real impedance control. IEEE Proc. Int. Conf. Robotics and Automation, 2003, 
pp. 3686–3691. 

Khatib, O. & Burdick, J. (1986). Motion and force control of robot manipulators. IEEE Int. 
Conf. Robotics and Automation, 1986, pp 1381– 1386. 

Kröger, T., Kubus, D. & Wahl, F. (2007). Force and acceleration sensor fusion for compliant 
manipulation control in 6 degrees of freedom. Advanced Robotics, 2007, pp. 1603–
1616. 

Larsson, U., Forsberg, J. & Wenersson, A. (1996). Mobile robot localization: integrating 
measurements from a time-of-flight laser. IEEE Trans. Industrial Electronics, 1996, 
pp. 422–431. 

Luo, R.,  Yih, C. & Su, K. (2002). Multisensor fusion and integration: approaches, 
applications, and future research directions. IEEE Sensors J.,2002, pp. 107–119. 

Nesnas, I., Wrigh, A., Bajracharya, M., Simmons, R. & Estlin, T. (2003). CLARAty and 
Challenges of Developing Interoperable Robotic Software, Proceedings of the 2003 
IEEE/RSJ. Intl. Conference on Intelligent Robots and Systems, 2003, pp. 2428 – 2435. 

Nilsson, K. & Johansson, R. (1999). Integrated architecture for industrial robot programming 
and control. J. Robotics and Autonomous Systems, 1999, pp. 205–226. 

OMG Robotic Technology Component Specification, formal/08-04-04 edition. Object 
Management Group, 2008. 

ORCA, http://orca-robotic.sourceforge.net/, 2010. 
OROCOS-Simulik, http://www.orocos.org/simulink/, 2010. 
OSACA, Open System Architecture for Controls within Automation Systems, ESPRIT III 

Project 6379/9115, 1996. 
Ostrovrsnik, R., Hace, A. & Terbuc, M. (2003). Use of open source software for hard real-

time experiments, IEEE International Conference on Industrial Technology, 2003, pp. 
1243 – 1246. 

Park, H. & Han, S. (2009). Development of an Open Software Platform for Robotics Services, 
ICCAS-SICE Int. Joint Conference, 2009, pp. 4773 – 4775. 

Pertin, F. & Bonnet des Tuves, J. (2004). Real time robot controller abstraction layer. Proc. Int. 
Symposium on Robots (ISR), Paris, France, March 2004. 

Saravanan, K., Thangavelu, A. & Rameshbabu, K. (2009). A middleware architectural 
framework for vehicular safety over vanet (InVANET). International Conference on 
Networks & Communications, 2009, pp. 277 – 282. 

Sarker, M., Kim, C., Cho, J. & You, B. (2006). Development of a Network-based Real-Time 
Robot Control System over IEEE 1394: Using Open Source Software Platform, IEEE 
International Conference on Mechatronics, 2006, pp. 563 – 568. 

Schlegel, C. & Worz, R. (1999). The Software Framework {SMARTSOFT} for implementing 
Sensorimotor Systems, Proc. IEEE Int. Conf. Intelligent Robots and Systems, 1999, pp 
1610-1616. 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

396 

Utz, H., Sablatnög, S., Enderle, S. & Kraetzschmar, G. (2002). MIRO - Middleware for mobile 
robot applications, IEEE Transactions on Robotics and Automation, 2002, pp. 493 – 497. 

Wills, L., Kannan, S., Sander, S., Guler, M., Heck, B., Prasad, J., Schrage, D. & Vachtsevanos, 
G. (2001). An Open Platform for Reconfigurable Control, IEEE Control Systems 
Magazine, 2001, pp. 49 – 64. 

Wind-River. VxWorks: Reference Manual. Wind River Systems, 2005. 
Wind-River Linux. http://www.windriver.com/products/linux/, 2010. 
Xenomai: Real-Time Framework for Linux. http://www.xenomai.org/, 2010. 
Xu, H. & Jia, P. (2006). RTOC: A RT-Linux Based Open Robot Controller, IEEE/RSJ 

International Conference on Intelligent Robots and Systems, 2006, pp. 1644 – 1649. 
Xuemei, L. & Liangzhong, J. (2007). Study on control system architecture of modular robot. 

Proc. of the 2007 IEEE Int. Conf. on Robotics and Biometrics, 2007, pp. 508 – 512. 

www.intechopen.com



Advanced Strategies for Robot Manipulators

Edited by S. Ehsan Shafiei

ISBN 978-953-307-099-5

Hard cover, 428 pages

Publisher Sciyo

Published online 12, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and

are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are

designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional

control methods cannot be efficient, and advanced control strategies with considering special constraints are

needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm

until now, there are still many novel aspects which have to be explored.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Juan Gomez Ortega, Javier Gamez Garcia, Luis M. Nieto Nieto and Alejandro Sanchez Garcia (2010).

Description of an Open Software Robotic Platform for Sensor Fusion Applications, Advanced Strategies for

Robot Manipulators, S. Ehsan Shafiei (Ed.), ISBN: 978-953-307-099-5, InTech, Available from:

http://www.intechopen.com/books/advanced-strategies-for-robot-manipulators/description-of-an-open-

software-robotic-platform-for-sensor-fusion-applications



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


