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1. Introduction 

Robot manipulators, in general, are required to have the same number of actuators as the 
number of joints to obtain full control. In the case of under-actuated robots, this condition is 
not satisfied which make the behavior of that class of robots very difficult to be predicted. 
Under-actuated robots can be a better design choice for robots in space and other industrial 
applications, their advantages over fully actuated robots led to many studies to predict their 
behavior (Yu et al., 1998; Berkemeier & Fearing, 1999; Spong, 1995; Ono et al., 2001; 
Nakanishi et al., 2000; Funda et al., 1996; Luca et al., 2000; Luca & Oriolo, 2002; Arai & Tachi, 
1991; Mukherjee & Chen, 1993;Yu et al., 1993;Bergerman et al., 1995; Mahindrakar et al., 
2006; Muscato, 2006; Begovich et al., 2002). As a first advantage, a light-weight and low 
power consumption manipulator can be made. This feature is required in low cost 
automation and space robots. Second, they can easily overcome actuator failure due to 
unexpected accident. The under-actuated manipulator could be the model of the direct drive 
manipulator that has some failed joints; such fault-tolerant behavior is highly desirable for 
robots in remote or hazardous environments (Yu et al., 1998). Other interesting applications 
include the Acrobot (Berkemeier & Fearing, 1999; Spong, 1995), the gymnast robots (Ono et 
al., 2001), the brachiating robots (Nakanishi et al., 2000), and surgical robots (Funda et al., 
1996).  
The mathematical complexity and wide variety of applications have kept under-actuated 
robots an area of open research. (Luca et al., 2000; Luca & Oriolo, 2002) have investigated the 
behavior of a 2R manipulator moving in a horizontal plane with a single actuator at the first 
joint, neglecting joint friction which is not easy to achieve in real world as it involves high 
manufacturing cost. Trying to overcome that problem, some researchers have implemented 
additional equipments such as breaks at the passive joint (Arai & Tachi, 1991; Mukherjee & 
Chen, 1993; Yu et al., 1993; Bergerman et al., 1995). In this case, the brake can generate 
torque that means after all that kind of systems is considered some kind of actuator. So, it 
will be difficult to consider that robot as an under-actuated manipulator.  
Motivated by this problem, (Yu et al., 1998) have investigated the dynamic characteristics of 
a two-link manipulator in view of global motion including joint friction by proposing a 
mathematical model; they have found that the manipulator can be positioned if the friction 
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acts on the passive joint. In this case, any additional equipment such as brakes is not needed 
in positioning all the joints to desired position. Their results were verified using numerical 
simulation. Later on, (Mahindrakar et al., 2006) have presented a mathematical model for a 
two-link under-actuated manipulator wherein the motion of the system was confined to a 
horizontal plane; their proposed dynamic model takes into account the frictional forces 
acting on the joints. Results obtained were also verified through numerical simulation.  
Many attempts to solve the problem have been found in the literature. Yet, solutions 

proposed are still lack of generality and systematization. To overcome this problem, 

artificial intelligence was introduced for prediction and making robot systems able to 

attribute more intelligence and high degree of autonomy.   

Appling fuzzy logic to under-actuated robots (as an artificial intelligence method), there 
were few studies in recent past (Muscato, 2006; Begovich et al., 2002).  
Although the results presented were promising, these results cannot be generalized to other 

systems, because they only came from practical considerations. Besides, despite the fact that 

unlike most learning control algorithms, multiple trials are not necessary for the robot to 

learn the desired trajectory. A major drawback was that Fuzzy Logic based approaches only 

remembers the most recent data points introduced (Graca & Gu, 1993). Gleaning the 

learning abilities of genetic algorithms GA (as another method of artificial intelligence) to 

solve the problem was an alternative. Blending of GA with fuzzy rules, in order to capture 

the hidden nonlinearities of the system will be useful in developing any learning techniques. 

(Lee & Zak, 2002) have presented the design criterion of a GA based neural fuzzy controller 

for an anti-break system. As it has been seen, each of the previously mentioned techniques 

has their own drawbacks. To overcome this problem researchers have recommended neural 

networks so that it would remember the trajectories as it traversed them (Graca & Gu, 1993).  

Artificial neural networks (ANNs) have been widely used for their extreme flexibility due to 

its learning ability and the capability of non-linear function approximation. Their ability to 

learn by example makes them very flexible and powerful. ANNs while implemented on 

computers are not programmed to perform specific tasks. Instead, they are trained with 

respect to data sets until they learn the patterns presented to them. Once they are trained, 

new patterns may be presented to them for prediction or classification (Kalogirou, 2001; 

Hasan et al., 2006). Therefore, ANNs have been intensively used for solving regression and 

classification problems in many fields. A number of realistic approaches have been 

proposed and justified for applications to robotic systems (Balakrishnan et al., 2000; Kim et 

al., 2002; Köker, 2005; Hasan et al., 2007; Al-Assadi et al., 2007; Siqueira & Terra, 2009). 

 In real world application, no physical property such as the friction coefficient can be exactly 

derived. Besides, there are always kinematics uncertainties presence in the real world such 

as ill-defined linkage parameters and backlashes in gear trains (Hasan et al., 2009; Hasan et 

al., 2010). In this paper, and to overcome whichever uncertainty presented in the real world, 

data were recorded experimentally from sensors fixed on each joint for a horizontal two-link 

under-actuated robot.  

The developed learning algorithm is based on weight adaptation of the network, by 
minimizing the tracking error after each iteration process. This scheme does not require any 
prior knowledge of the dynamic model of the system being controlled. The basic idea of this 
concept is the use of the ANNs to learn the characteristics of the robot system rather than to 
specify an explicit robot system model, so, every uncertainty in the system will be counted 
for. Experimental trajectory tracking has shown the ability of the proposed approach to 
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overcome the disadvantages of using some schemes like the Fuzzy Learning for example 
that only remembers the most recent data sets introduced, as the literature has shown.  

2. Equations of motion with friction effect  

As Figure 1 show, the space coordinate of the manipulator is parameterized by q .  
 

 

Fig. 1. Schematic diagram of the robot used 

The coordinate iq , 1,2i =  are the joint angles. The Euler–Lagrange equation of motion is 

(Mahindrakar et al., 2006): 

 ( ) ( , ) ,M q q h q q τ
•• •
+ =  (1) 

Where q
•

and q
••

 are the generalized velocities and accelerations respectively. ( )M q is the 

inertia matrix, which is symmetric and positive definite. The centripetal and Coriolis terms 

are collected in the vector ( , )h q q
•

. The vector h  contains terms purely quadratic in the 

velocities; gravity terms are absent since it assumed that the manipulator moves in a 
horizontal plane.  
Define the following constants: 

X

Y

r1

r2

q2

q1

Link 1

Link 2

m1,m2 = Link masses

L1,L2  = Link lengths

I1,I2    = Link moments of inertia

r1, r2   = Center of masses

Actuator
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2 2
1 1 1 2 1 1 ,c m r m l I= + +   2

2 2 2 2 ,c m r I= +    3 2 1 2 .c m l r=  

The equations of motion accounting for the Coulomb plus viscous friction at the joints become: 

 11 12 1 1 11 2 1 1
( ) ,m q m q h SGN q F b qτ

•• •• • •
+ + = − −  (2) 

 21 22 2 2 21 2 2 2
( ) ,m q m q h SGN q F b q

•• •• • •
+ + = − −  (3) 

Where, 

11 1 2 3 22 ,m c c c Cosq= + +  12 2 3 2 ,m c c Cosq= +  

21 12 ,m m=  22 2 ,m c=  

2

1 3 21 2 2
(2 ) ,h c q q q Sinq

• • •
= − +  

2

2 3 21
.h c q Sinq

•
=  

The , , 1,2i i i
F b q i

•
=  represent the Coulomb and viscous friction forces respectively. The set-

valued signum function is defined as: 

 

{1} 0,

( ) { 1} 0,

[ 1,1] 0.

if x

SGN x if x

if x

⎧
>⎪

⎪ − <⎨
⎪ − =⎪
⎩

 (4) 

The above shown function suffers from the fact that the solution does not give a clear 
indication on how to select an appropriate solution from the several possible solutions for a 
particular arm configuration. 

3. Experiment procedure 

In this section, the real time implementation of the experimentally collecting data procedure 
is discussed. Different methods for collecting data have been found in the literature. Using a 
pre-specified model, using a trajectory planning method or using a simulation program for 
this purpose are examples for some of these methods. However, there are always kinematics 
uncertainties presences in the real world such as ill-defined linkage parameters, links 
flexibility and backlashes in gear train, in this approach, data were recorded directly from 
sensors fixed on each joint, so every uncertainty in the dynamics of the system will be 
counted for. 
The manipulator used is shown in Figure 2, which is actuated only at the first joint. The 
actuator used is a DC motor connected to the first link through a gearbox with a reduction 
ratio of 100:1, while the second joint is passive.  
Each of the joints have an encoder attached to it, in order to measure the rotation angle and 
there are torque sensors between the motor output shaft and the robot joint to measure the 
torque being supplied by the motor.  Joints encoders are connected to a computer equipped 
with MATLAB software through a data acquisition card. The robot arms were made of an 
aluminum square section beam to ensure a resisting to bending lightweight arm. Length of 
arms are l1 = 40 cm and l2 = 30 cm respectively. The control circuit is made up of computer  
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Fig. 2. The robot system used showing the computer, the data acquisition card and the robot 
arms 

with the MATLAB software connected to the robot through a data acquisition card that 
acquires the motion data of the two links. Input signal is generated by the MATLAB 
software and transferred to the motor using the electrical board, and the robot response is 
recorded using the MATLAB software. 
A Sinusoidal excitation signal was applied to the actuator causing different torque to the 
joints and the dynamic coupling effect was moving the passive joint correspondently. As a 
standard signal generated by the MATLAB, Sinusoidal excitation signal, was chosen in 
order to cause a robot motion that covers the whole working cell rather than being a 
specified signal to perform a pre-defined trajectory. 
When the excitation signal is given, the motion of the active joint and the corresponding 
response of the passive joint that can be seen in Figures 3 and 4 respectively were recorded 
in order to be used in the training process of the ANN. 

4. The adaptive learning algorithm 

The fundamental idea underlying the design of the network is that the information entering 
the input layer is mapped as an internal representation in the units of the hidden layer and 
the outputs are generated by this internal representation rather than by the input vector. 
Given that there are enough hidden neurons, input vectors can always be encoded in a form 
so that the appropriate output vector can be generated from any input vector. 
Figure 5 shows the network used. The output of the units in layer A are multiplied by 
appropriate weights Wij and these are fed as inputs to the hidden layer. Hence if Oi are the 
output of units in layer A, then the total input to the hidden layer, i.e., layer B is: 
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Fig. 3. Trajectory of the active joint when the excitation signal was applied 
 

 

Fig. 4. Corresponding trajectory of the passive joint 
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Fig. 5. The topology of the ANN used 

 B i ij
i

Sum O W=∑  (5) 

And the output Oj of a unit in layer B is: 

 ( )j BO f sum=  (6) 

Where f is a non-linear activation function, it is a common practice to choose the sigmoid 
function given by: - 

 
1

( )
1 j

j O
f O

e
−=

+
 (7) 

As a nonlinear activation function.  
However, any input-output function that possesses a bounded derivative can be used in 
place of the sigmoid function. 
If there is a fixed, finite set of input-output pairs, the total error in the performance of the 
network with a particular set of weights can be computed by comparing the actual and the 
desired output vectors for each presentation of an input vector.  
Error at any output unit eK in the layer C can be calculated by: - 

 K K Ke d O= −  (8) 

Where dK is the desired output for that unit in layer C and OK is the actual output produced 

by the network .the total error E at the output can be calculated by: - 

A

Input Layer

C

Output Layer

B

Hidden Layer

Torque

Time

Angular Displacement

First Joint
Angular Displacement

Second Joint

Wij 

W
jk
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 21
( )

2
K K

K

E d O= −∑  (9) 

Learning comprises changing weights so as to minimize the error function.  
To minimize E by the gradient descent method. It is necessary to compute the partial 
derivative of E with respect to each weight in the network. Equations (5) and (6) describe the 
forward pass through the network where units in each layer have there states determined 
by the inputs they received from units of lower layer. 
The backward pass through the network that involves “ back propagation “ of weight error 
derivatives from the output layer back to the input layer is more complicated. For the 
sigmoid activation function given in equation (7), the so-called delta-rule for iterative 
convergence towards a solution maybe stated in general as:  
 

 JK K JW OηδΔ =  (10) 

Where η is the learning rate parameter, and the error δK at an output layer unit K is given by: - 

 (1 )( )K K K K KO O d Oδ = − −  (11) 

And the error δJ at a hidden layer unit is given by: - 

 (1 )J J J K JK
K

O O Wδ δ= − ∑  (12) 

Using the generalize delta rule to adjust weights leading to the hidden units is back 

propagating the error-adjustment, which allows for adjustment of weights leading to the 

hidden layer neurons in addition to the usual adjustments to the weights leading to the 

output layer neurons. 

A back propagation network trains with two step procedure, the activity from the input 

pattern flows forward through the network and the error signal flows backwards to adjust 

the weights using the following equations: - 

 IJ IJ J IW W Oηδ= +  (13) 

 JK JK K JW W Oηδ= +  (14) 

Until for each input vector the output vector produced by the network is the same as (or 
sufficiently close to) the desired output vector (Kalogirou, 2001; Hasan et al., 2006). Number 
of hidden neurons and the learning factor are determined by trial and error. 

5. Results  

A supervised feed forward ANN was designed using C programming language to learn the 
system behavior over its workspace. The network consists of input, output and one hidden 
layer, the input vector for the network consists of the angular displacement, the torque 
applied at the active joint (first joint) and the time interval, while the output vector was the 
angular position of the passive joint (second joint). As can be seen in Figure 5, every neuron 
in the network is fully connected with each other, sigmoid transfer function was used to be 
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the activation function, and generalized backpropagation delta learning rule (GDR) 
algorithm was used in the training process. All control datasets values had been scaled 
individually so that the overall difference in the dataset was maximized. 
Training data were divided into 50 input–output sets, which covered the entire work cell of 
the manipulator. To build the control knowledge, a training process was carried out using 
the experimentally obtained data. The network was trained by presenting several target 
points that the network had to learn, number of neurons in the hidden layer was set to 25 
with a constant learning factor of 0.9 by trial and error. Figure 6 shows the building 
knowledge process for the system. 
To verify the success of the algorithm, the predicted values of the passive joint were 
compared to the experimentally collected data. The average absolute error was 4.9% after 
100,000 Iterations. Figure 7 graphically shows the trajectory tracking of the passive joint, 
Results obtained show that the design network is capable of learning and predicting the 
position of the passive joint successfully. 

6. Conclusions and recommendations for further research 

In this paper, the Artificial Neural Network technique was applied to the problem of 
positioning an under-actuated robot manipulator. The position of the passive joint of under-
actuated 2R manipulator is now learned through training a network based only on 
observation of the input–output relationship. 
The proposed technique does not require any prior knowledge of the system model, the 
basic idea of this concept is the use of the ANN to learn the characteristics of the robot 
system rather than to specify explicit robot system model. Any modification in the physical 
set-up of the robot such as the addition of a new tool would only require training for a new 
trajectory without the need for any major system software modification, which is a 
significant advantage of using neural network approach. 
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Fig. 6. Building knowledge curve of the system 
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Fig. 7. Predicted trajectory tracking of the passive joint 

Results obtained have shown the ability of the network to predict the trajectory of the 
passive joint, that is positioned by the dynamic coupling of the active joint, overcoming the 
disadvantages of using some schemes like the Fuzzy Learning for example that only 
remembers the most recent data sets introduced. 
Backpropagation algorithm was used as a learning algorithm with sigmoid transfer function 
as an activation function in all neurons, For further research, we recommend that a different 
learning algorithm, different activation function and/or different number of hidden layers 
to be used in order to achieve, if possible, a better response in terms of precision and 
iteration. 
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