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1. Introduction  

When considering short-term prediction systems that operate in real-time and in an 
“intelligent” technology-based environment, the effectiveness depends, mostly, on 
predicting traffic information in a timely manner (Smith & Oswald, 2003). This implies that 
regardless of the traffic conditions met in real-time, a prediction system should not only be 
able to generate accurate single step ahead predictions of traffic flow, but also to operate on 
an iterative basis to produce reliable multiple steps ahead predictions in cases of data 
collection failures. 
The bulk of research in short-term traffic flow prediction has concentrated on data-driven 
time-series models that construct the underlying rules of complex traffic datasets rather than 
working based on pre-determined mathematical rules; these models can be parametric - 
such as ARIMA models - or non-parametric (a review of the literature, methodologies and 
approaches used can be found in Vlahogianni et al., 2004). Among non-parametric 
approaches, neural networks and especially Multi-layer Feed-forward Perceptrons (MFLPs) 
have been shown to be most effective in forecasting traffic flow variables because of their 
propensity to account for a large range of traffic conditions and generate more accurate 
predictions than classical statistical forecasting algorithms (Smith & Oswald, 2003, 
Vlahogianni et al. 2004, Vlahogianni et al., 2005, Wang et al., 2006). Multi-layer Feed-
forward Perceptrons (MFLPs) have memoryless neurons while input activation is a function 
only of the current input state and not of the past input-output relations and are very 
popular and widely used in time series traffic forecasting partly because of their ability to 
capture non-linear behavior in the data structures they model, regardless of their complexity 
(Hornik et al., 1989). They are usually trained under a pattern-based consideration; 
computations aim at distinguishing clusters that have different statistical properties (mean 
and variance).  
However, the static operation of MLFP contradicts the temporal evolution of traffic flow. 
Short-term traffic flow prediction is significantly affected by the temporal evolution of traffic 
variables (Abdulhai et al., 2002, Stathopoulos & Karlaftis, 2003). The core research in traffic 
flow over the years has investigated a wide variety of nonlinear phenomena such as phase 
transitions (Kerner & Rehborn 1996), hysteretic effects (Hall et al. 1992, Zhang 1999), 
localized spatio-temporal behavior (Kerner 2002) and others. These phenomena - mainly 
observed in freeway bottlenecks – are difficult to predict and replicate in a simulation 
environment based on classical traffic flow theory (Kerner 2004). Moreover, recent efforts in 
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studying the temporal evolution of traffic flow in signalized arterials have indicated that 
traffic volume patterns - a sequence of volume states that define the time window for 
prediction – exhibit significant temporal variability and demonstrated that short-term traffic 
flow has variable deterministic and nonlinear characteristics that can be related to the 
prevailing traffic flow conditions (Vlahogianni et al. 2006a, 2008).  
Although traffic flow theory has formulated improved theoretical bases in order to account 
for such phenomena - for example the three-phase traffic flow theory (Kerner 2004) - these 
effects are not taken into consideration in the process of short-term predictions using data-
driven algorithms. Moreover, as indicated in most intelligent transportation system 
architectures, the dynamic nature of prediction algorithms are imperative to confront 
probable malfunctions in the data collection system or excesses in computational time 
(Smith & Oswald 2003, Vlahogianni et al. 2006b).  
Iterative predictions provide the means to generate information on traffic’s anticipated state 
with acceptable accuracy for a significant time horizon in cases of system failure. The 
present paper focuses on providing a comparative study between local and global iterative 
prediction techniques applied to traffic volume and occupancy time-series. The remainder 
of the paper is structured as follows: The concept of iterative predictions along with the 
basic notions of the proposed local and global prediction techniques in traffic flow 
prediction is presented in the following section. Next, the characteristics of the 
implementation area as well as the results of the comparative study are summarized. 
Finally, the paper ends with some concluding remarks. 

2. Iterative predictions of traffic flow 

Most predictions systems are dependent on data transmission. This suggests that 
continuous flow of volume and occupancy data is necessary to operate efficiently. However, 
it is common for most real-time traffic data collection systems to experience failures 
(Stathopoulos & Karlaftis 2003). For this, a real-time prediction system should be able to 
generate predictions for multiple steps ahead to ensure its operation in cases of data 
collection failures. The multiple steps ahead prediction problem can be formulated based on 
two conceptual approaches: 

• Direct approach: Given a time-series of a variable - for example volume V(t),V(t-1), …, a 
model is constructed to produce the state of a variable at V(t+h) steps ahead, where h >1. 

• Iterative or recursive approach: Given a time-series of a variable a single step ahead model 

is constructed to produce a prediction ˆ ( )V t  at time t that is then fed backwards to the 

network and is used as new input data in order to produce the next step ˆ ( 1)V t +  

prediction at t+1: 

 { }ˆ ˆ( 1) ( ), ( ), ( 1)...V t V t V t V t+ = −  (1) 

The direct approach to prediction has been implemented using neural networks in 
Vlahogianni et al. (2005). The reliability of direct prediction models is suspect because the 
model is forced to predict further ahead (Sauer 1993). This is the main argument in using 
iterative models in multiple steps ahead prediction. On the other hand, iterative predictions 
have the disadvantage of using the predicted value as input that is probably corrupted. 
Literature in short-term prediction of chaotic time-series indicates that the iterative approach 
to multiple steps ahead prediction is more accurate than direct one (Casdagli 1992). 

www.intechopen.com



Local and Global Iterative Algorithms for Real-Time Short-term Traffic Flow Prediction   

 

31 

Iterative approaches to neural network modeling have previously been applied to traffic 
flow predictions and results indicate that predictability decreases when the model uses 
previous predictions as inputs in the process of short-term predictions (Zhang 2000). This 
can be probably attributed to the fact that short-term traffic flow dynamics are not smooth 
and could not be captured by the simple structures of MLFP implemented so far 
(Vlahogianni et al. 2005). Two distinct categories of prediction techniques are further 
investigated; the local linear prediction techniques and the global neural networks. The next 
sub-sections provide the basics of the above techniques. 

2.1 Local Weighted Linear model 

The locally weighted linear (LWL) model finds similar local dynamics and produces a good 
estimate of the future state of a system, while neural networks are global approaches that 
attempt to build a single complex model for the entire range of behaviors identified in the 
time series. LWL belongs to the category of memory-based local prediction models. Locality 
in prediction is achieved by utilizing only the nearby states of the variable to be predicted. 
In brief, taken the case of predicting the next state of traffic volume V(t+τ) where τ is the 
embedding delay that matches the prediction step, the algorithm searches the k nearest 

neighbors of V(t) i.e. the k nearest states V(t’) (t’<t) that minimize EV(t) - V(t’)E, where E·E a 

metric (for example Euclidean) (Casdagli 1992). The local linear predictor results by fitting a 
linear polynomial to the pairs of V(t’), V(t’+τ); the contribution of each of the k nearest 

neighbors is weighted by a weighting function (kernel) 
d
hK e

−
=  -d is the distance of a 

neighbor from the reference state and h is the distance of the reference state and its furthest 
neighbor, among the k nearest neighbors considered (Kononov 2007). 

2.2 Temporal neural networks 

The global iterative model to be used as an alternative theoretical approach to the proposed 
prediction framework is the temporal structures of neural networks. These networks are an 
extension of the static MLFPs that engage a memory mechanism to reconstruct the time-
series under prediction in the m-dimensional Phase Space. The memory can be limited to the 
input layer or can extend to the entire neural networks - for example the hidden layer - and 
aims at creating a State-Space reconstruction process and converts the time series data of 

volume and occupancy in vectors; for example { }( 1),...,t t t mV V Vτ τ− − −=
f

, where τ is the time 

delay of and m is the dimension the reconstructed volume in the State-Space. Networks that 
encompass tap delay memory structures only to the input layer of the form y(n) = [y(n), …, 

y(n-m+1)]T are known as time-delayed neural networks (TDNN), whereas networks that 
incorporate more complex memory mechanisms – for example a Gamma memory (de Vries 
& Principe 1992) – are known as time-lagged neural networks (TLNN). 
The training of TLNN for iterative predictions feeds back the prediction at time t+1 and 
utilizes it as an input for the generation of next prediction step t +2. For global models, this 
simple method is plagued by the accumulation of errors and the model can quickly diverge 
from the desired behavior (Principe et al. 2000). For this reason the training in the specific 
iterative neural network model is conducted via the temporal back-propagation algorithm 
known as Back-propagation to time (BPTT) (Webros 1990). BPTT are trajectory learning 
algorithms that create virtual networks by unfolding in time the original topologies on 
which back-propagation training is applied; the main objective is to improve the weights so 
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as to minimize the total error over the whole time interval (Webros 1990). More specifically, 
all weights are duplicated spatially for an arbitrary number of time steps τ; as such, each 
node that sends activation to the next has τ number of copies as well. For a training cycle n, 
the weight update is given by the following equation (Haykin 1999): 

 ( 1) ( ) ( ) ( )ji ji j in n n nηδ+ = +w w x   (2) 

where, ( 1)ji n +w  and ( )ji nw  are the weights of the i-th synapse of the neuron j at training 

cycle n+1 and n respectively, η is the learning rate, ( )i nx  (i=1,2,…n) is the input vector and 

( )j nδ  is given by: 

 
( ) ( ( )),   neuron in the output layer

( ) ( ( )) ( ) ,  neuron in the hidden layer
j j

j
j r rj

r

e n n j
n n n j

φ υ
δ φ υ Τ

∈Α

′⎧⎪= ⎨ ′
⎪⎩

∑Δ w  (3) 

where, ej(n) is the network’s error, φ is the nonlinear activation function. Moreover, if A is a 
set of all neurons whose inputs are fed by the j neuron in the hidden layer is a forward 

manner, then 
1

( ) ( )
m

j ji i j
i

n n bυ
=

= +∑w x  is the induced local field of neuron r that belongs to the 

A and [ ]( ) ( ), ( 1),..., ( )
T

r r r rn n n n mδ δ δΤ = + +Δ  is the local gradient vector. 

Regardless of being static or dynamic, neural networks suffer from a usually manual trial-
and-error process of optimization mainly with respect to their structure (number of hidden 
units) and learning parameters. On the other hand, automation in the optimization process 
of a neural network is most critical in complex neural structures. Recently, genetic 
algorithms have gained significant interest as they can be integrated to the neural network 
training to search for the optimal architecture without outside interference, thus eliminating 
the tedious trial and error work of manually finding an optimal network. Genetic algorithms 
are based on three distinct operations: selection, cross-over and mutation (Mitchell 1998); 
these operations run sequentially in order for a fitness criterion (in the specific case the 
minimization of the cross-validation error) to converge. 

3. Implementation and results 

The specific iterative prediction approach is implemented using 90-seconds volume and 
occupancy data collected along a signalized arterial in the centre of Athens (Greece) (Fig 1). 
Previous research on the area has demonstrated that traffic flow in the specific area - defined 
by the joint consideration of volume and occupancy – has a variable deterministic and 
nonlinear temporal evolution (Vlahogianni et al. 2008). The subsequent reconstruction of the 
series of volume and occupancy in the Phase-space using the mutual information criterion 
(Fraser & Swinney 1986) and the false nearest algorithm (Kennel et al. 1992) indicate that 
both volume and occupancy can be determined by a vector with time delay that equals to 1 
and dimension that equals to 5.  
Based on the above results, the recursive prediction techniques are set to have a look-back 
temporal window of 1-hour to retrieve and evaluate the traffic flow patterns. Moreover, for 
the recursive TDNN training, the neural network is set to be unfolded in an m=5 
dimensional space in order to produce predictions. The depth of the Gamma of the TLNN 
was also calibrated to reflect the above reconstruction. Apart from the memory mechanism, 
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Fig. 1. Representation of the set of arterial links under study. 

the difference between TDNN and TLNN implemented is that the second network extends 
the memory mechanism to the hidden layer too, in order to provide a fully non-stationary 
environment for the temporal processing of volume and occupancy series. The specifications 
regarding data separation as well as the genetic algorithm optimization are depicted on 
Table 1. 
 

Parameters Specifications 

Datasets: TR–CV–TE * 60%-20%-20% 

Levels 1 hidden layer 

Optimization Genetic algorithm 

Back-propagation Genetic algorithm 

Chromosome [5,25] ,  [0.01 - 0.1],  [0.5 - 0.9]h γ μ∈ ∈ ∈ ** 

Fitness function Mean square error (cross-validation set) 

Selection Roulette 

Cross-over Two point (p=0.9) 

Mutation Probability p=0.09 

 * Training - Cross-validation - Testing 
 ** h: neurons in hidden layer, γ: learning rate, μ: momentum 

Table 1. Data and neural network specifications for iterative short-term volume and 
occupancy prediction. 

The results of the comparative study are summarized in Table 2. As can be observed the 
TLNN performs significantly better - with regards to the mean relative percent error of 
prediction - than the local weighted linear model under the iterative prediction framework 
in both volume and occupancy. When compared to the iterative predictions of a TDNN, it is 
observed that TDNN performs comparable to the TLNN. However, as the same does not 
apply to the case of occupancy; further statistical investigation is conducted to the series of 
volume and occupancy in order to explain the behavior of the models regarding occupancy 
predictions. Results from a simple LM ARCH (Eagle 1982) that tests the null hypothesis of 
no ARCH effect lying in the data series of volume and occupancy shows that occupancy 
exhibits higher time-varying volatility than volume that is difficult to be captured. 
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Mean Relative Percent Error (%)
Iterative Models

Volume Occupancy 

LWL 21 30 

TDNN 14 26 

TLNN 13 22 

Table 2. Prediction Results (Mean Relative Percent Error) of the comparative study. 

Fig 2 and Fig 3 depict the relationship of the actual and the predicted values of volume and 
occupancy equally. A systematic error is observed in the predictions of volume using the 
local prediction model. Moreover, there seems to be a difficulty in predicting high volume 
values as observed in Fig. 2. As for the occupancy predictions, there seem to be much more 
scattered that the ones of volume; R2 values are lower than the ones of volume.  
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Fig. 2. Actual versus predicted values of traffic volume for the three iterative prediction 
techniques evaluated. 
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Fig. 3. Actual versus predicted values of occupancy for the three iterative prediction 
techniques evaluated. 

In order to investigate the performance of the iterative models during the formation of 
congested conditions, two distinct time periods are selected for further studying the time 
series of the actual and predicted volume and occupancy with regards to different 
methodologies. These two periods depict the onset of the morning (Figure 4) and the 
afternoon peak (Fig. 5).  
As can be observed, although iterative TLNN exhibited improved mean relative accuracy 
when compared to the iterative TDNN, both models seem to capture the temporal evolution 
of the two traffic variables under study. In the case of afternoon peak where the series of 
volume exhibit a oscillating behavior – in contrast to the trend observed in volume and 
occupancy during the onset of the morning peak, both neural network models either over-
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estimate of under-estimate the anticipated values of traffic volume. As for the LWL model, 
predictions as depicted in the time series of the actual versus the predictive values of traffic 
volume and occupancy can be considered as unsuccessful.  
 

 
 

 

Fig. 4. Time-series of actual and predicted (dashed line) values of traffic volume (vh/90sec) 
for the onset of the morning peak. 
 

 
 

 

Fig. 5. Time-series of actual and predicted (dashed line) values of traffic volume (vh/90sec) 
for the onset of the afternoon peak. 
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4. Conclusions 

Modern intelligent transportation systems require prediction algorithms that are adaptable 
and self-optimized in terms of the prevailing traffic flow conditions. Neural networks have 
been for long considered a prominent approach short-term prediction of traffic variables. 
The present paper extends past research by focusing on purely temporal structures of neural 
networks that provide iteratively short-term traffic flow predictions. A comparative study is 
conducted between local prediction techniques and neural networks with respect to the 
predictive accuracy. Results indicate that the global neural networks techniques outperform 
the local predictors, both when considering the mean behavior of the models and their 
behavior in critical traffic flow conditions, such as the onset of the morning and afternoon 
peak in signalized arterials. The optimal accuracy is attained by the TLNN that is the most 
complex temporal neural network among those tested.  
From a conceptual standpoint, the TLNN implemented is fully compatible with the complex 
non-stationary features of traffic flow. From a methodological standpoint a central 
consideration should be kept in mind; as the aim is mainly at the real-time implementation, 
the extensive computational time to train and optimize such networks should be considered. 
It is evident that a retraining strategy is needed in order for the neural structures to 
incorporate and learn newly observed traffic flow events. Although the last is not required 
during the entire real-time operation of the model, research should be focus on the manner 
the accuracy of iterative predictions decreases over time, as well as the formulation of a 
mathematical or empirical criterion to evaluate the time neural networks should be 
retrained.  
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