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1. Introduction 

The future wireless networks will provide data services at a high bit rate for a large number 

of users. Distributed antenna system (DAS), as a promising technique, has attracted 

worldwide research interests (Feng et al., 2010; 2009; Saleh et al., 1987; Ni & Li, 2004; Xiao et 

al., 2003; Zhuang et al., 2003; Hasegawa et al., 2003; Choi & Andrews, 2007; Roh & Paulraj, 

2002b;a). In DAS, the antenna elements are geographically separated from each other in the 

coverage area, and the optical fibers are employed to transfer information and signaling 

between the distributed antennas and the central processor where all signals are jointly 

processed. Recent tudies have identified the advantages of AS n terms of increased system 

capacity (Ni & Li, 004; Xiao et al., 2003; Zhuang et al., 2003; Hasegawa t al., 2003; Choi & 

Andrews, 2007) and acro diversity (Roh & Paulraj, 2002b;a) as well as coverage 

improvement (Saleh et al., 1987). 

Since the demand for high bit rate data service will be dominant in the downlink, many 

studies on DAS have focused on analyzing the system performance in the downlink. In a 

single cell environment, the downlink capacity of a DAS was investigated in virtue of 

traditional MIMO theory (Ni & Li, 2004; Xiao et al., 2003; Zhuang et al., 2003). However, 

these studies did not consider per distributed antenna power constraint, which is a more 

practical assumption than total transmit power constraint. Moreover, the advantage of a 

DAS should be characterized in a multi-cell environment. (Hasegawa et al., 2003) addressed 

the downlink performance of a code division multiple access (CDMA) DAS in a multi-cell 

environment using computer simulations, but it did not provide theoretical analysis. A 

recent work (Choi & Andrews, 2007) investigated the downlink capacity of a DAS with per 

distributed antenna power constraint in a multi-cell environment and derived an analytical 

expression. However, it was only applicable for single-antenna mobile terminals. 

In this chapter, without loss of generality, the DAS with random antenna layout (Zhuang et 

al., 2003) is investigated. We focus on characterizing the downlink capacity with the 

generalized assumptions: (a1) per distributed antenna power constraint, (a2) generalized 

mobile terminals equipped with multiple antennas, (a3) a multi-cell environment. Based on 

system scale-up, we derive a quite good approximation of the ergodic downlink capacity by 

adopting random matrix theory. We also propose an iterative method to calculate the 
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unknown parameter in the approximation. The approximation is illustrated to be quite 

accurate and the iterative method is verified to be quite efficient by Monte Carlo 

simulations. 

The rest of this chapter is organized as follows. The system model is described in the next 

section. Derivations of the ergodic downlink capacity are derived in Section 3. Simulation 

results are shown in Section 4. Finally, conclusions are given in Section 5. 

Notations: Lower case and upper case boldface symbols denote vectors and matrices, 

respectively. (.)T and (.)H denote the transpose and the transpose conjugate, respectively. 

CM×N represents the complex matrix space composed of all M × N matrices and CN denotes a 

complex Gaussian distribution. E(.) and Var(.) represent the expectation operator and 

variance operator, respectively. In is an identity matrix with the dimension equal to n. “⊗” 

denotes the Kronecker product. 

2. System model 

The architecture of a DAS with random antenna layout in a multi-cell environment is 
illustrated in Fig. 1, where a cell is covered by N uniformly-distributed antennas (DAs), and 
each cell is loaded with a single randomly-deployed mobile terminal1 (MT), which is 
equipped with M antenna elements (AEs). The optical fibers are employed to transfer 
information and signaling between the central processor and the DAs. 
We consider the 1-tier cellular structure (Choi & Andrews, 2007) with universal frequency 

reuse, where a given cell (indexed by i = 0) is surrounded by one continuous tier of six cells 

(indexed by i = 1 ~ 6) as shown in Fig. 1. 

Basically, the downlink of the considered DAS is a N ×M MIMO system with interference 

and noise. The received signal vector of the terminal in the 0th cell can be expressed as 

(Telatar, 1999) 

 

(0)
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(0) (0) ( ) ( )

1

( )   ( )   ( )

,i i

i

signal interference noise

=

= + +

= + +∑
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 (1) 

where H(i) ∈ CM×N, i = 0,1, ...,6, denotes the channel matrix between the DAs in the ith cell 

and the MT in the 0th cell, ( ) ( ) ( )( ) 1
1 2[ ,  , ,  ] , 0,1, ,6,i i ii N

Nx x x i×= ∈ =x A } A  is the transmitted signal 

vector of the DAs in the ith cell, n ∈ CM×1 denotes the white noise vector with distribution 

CN (0, 2
nσ IM). The per distributed antenna power constraint is considered, we have 

 
2

( ) ( ) ,  1 ~ ,  0 ~ 6,i i
n nx P n N i

⎡ ⎤ ≤ = =⎢ ⎥⎣ ⎦
E  (2) 

where ( )i
nP  denotes the power constraint of the nth DA in the ith cell. 

The composite fading channel matrix H(i), i = 0,1, …,6, encompasses not only small-scale 

fading but also large-scale fading (Roh & Paulraj, 2002b;a), which is modeled as 

                                                 
1 The system corresponds to the set of MTs using a particular orthogonal dimension, e.g., a time slot 
for time division multiple access. 
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Antenna Element Antenna Elements Central Processor

Distributed Antenna Mobile Terminal

 

Fig. 1. Illustration of a DAS in a multi-cell environment. 
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(3) 

where ( )i
wH  and L(i) reflect the small-scale channel fading and the large-scale channel  

fading between the DAs in the ith cell and the MT in the 0th cell, respectively. 
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( ){ | 1,2, , ;    1,2, , ;  0,1, ,6}i
mnh m M n N i= = =A A A  are independent and identically distributed 

(i.i.d.) circularly symmetric complex Gaussian variables with zero mean and unit variance, 

and ( ){ | 1,2, , ;  0,1, ,6}i
nl n N i= =A A  can be modeled as 

 
 

( ) ( ) ( ) ,  1 ~ ,  0 ~ 6,i i i
n n nl D S n N i

γ−
⎡ ⎤= = =⎣ ⎦  (4) 

where ( )i
nD  and ( )i

nS  are independent random variables representing the distance and the 

shadowing between the MT in the 0th cell and the nth DA in the ith cell, respectively, 

γ denotes the path loss exponent. ( )| 1,2,  ... , ;  0,1,{ ... ,6}i
nS n N i= =  are i.i.d. random 

variables with probability density function (PDF) 
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where σs is the shadowing standard deviation and ln10
10

λ = . 

Since the number of interfering source is sufficiently large and interfering sources are 
independent with each other, the interference plus noise is assumed to be a complex 
Gaussian random vector as follows: 
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The variance of N  is derived by the Central Limit Theorem as 
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                                                               2 .Mσ= I   (8) 

Therefore, (1) is rewritten as 

 (0) (0) (0) (0) .w= +y H L x N  (9) 

3. Downlink capacity characterization 

3.1 Problem formulation 

Since the small-scale fading always varies fast but the large-scale fading usually varies quite 

slowly, we can regard L(0) as a static parameter in calculating the downlink capacity. Thus, if 

the channel state information is only available at the receiver, the ergodic downlink capacity 

is calculated by taking expectation over the small-scale fading (0)
wH , which is expressed as 

(Telatar, 1999) 

 (0 )
(0) (0) (0) (0) (0)

2 2

1
log det( ( ) ( ) )

w

H
M w wC

σ
= +⎡ ⎤
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E I H L P H L , (10) 
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where (0) (0) (0)(0)
1 2diag{ , , ,  }NP P P P= A  is the transmit power matrix of the DAs in the 0th cell. 

Unfortunately, it is quite difficult to get a more compact expression of the ergodic downlink 

capacity. Therefore, we propose the operation of “system scale-up” to study a simplified 

method to calculate the capacity as accurately as possible. 

3.2 System scale-up 

The basic idea of system scale-up is illustrated in Fig. 2. Assuming the proportion between 
the initial system and the scaled-up system to be t (a positive integer), we can summarize 
the characteristics of system scale-up as follows: 

• Each DA with a single AE is scaled to a DA cluster with t AEs. 

• The number of AEs equipped on the MT is increased from M to Mt. 

• The system topology is not changed. 

• The variance of N is not changed. 

• The large-scale channel fading is changed from L(i) to L(i)t, we have 

 ( ) ( ) .i t i
t= ⊗L L I  (11) 

The small-scale fading is changed from ( )i M N
wH ×∈}  to ( )i t Mt Nt

wH ×∈} , 0,1, ,6i = A , let 

( ) , 1 , 1 ,  0,1, ,6i t t t
mn m M n N i×∈ ≤ ≤ ≤ ≤ =H } A , we have 
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( )i t
wH  is also a matrix with i.i.d. zero-mean unit-variance circularly symmetric complex 

Gaussian entries, which is the same as ( )i
wH . 

• The total power consumption is not changed. In detail, the transmit power of each DA 
in the initial system will be equally shared by the t AEs within a DA cluster in the 
scaled-up system. We can express the new transmit power matrix as 

 (0) (0) (0)(0)
1 2

1
diag{ , ,... ., }t tNP P P P

t
= ⊗ I  (13) 

It is well known that the channel capacity of a MIMO system can be well approximated by a 
linear function of the minimum number of transmit and receive antennas (Telatar, 1999) as 
follows: 

 ( , ) ,min a b A≈ ×}  (14) 

where C is the capacity of a MIMO channel with a transmit antennas and b receive antennas, 

A is a corresponding fixed parameter determined by the total transmit power constraint. If 

the number of transmit antennas and receive antennas increase from a to ta, from b to tb, 

respectively, the channel capacity is derived as 

 ˆ ( , ) .min ta tb A t≈ × ≈} }  (15) 
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Fig. 2. Illustration of system scale-up. 
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Since the considered DAS is a special MIMO system, we directly hold that the system 
capacity scales linearly in the process of system scale-up, which can be partial testified by 
the following Theorem. 
Theorem 1: 

If the proportion between the initial system and the scaled-up system is t, an upper bound 
for the downlink capacity of the scaled-up system can be expressed as 
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⎝ ⎠
∑  (16) 

Proof: 
Based on (10), the capacity of the scaled-up system can be derived as 
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According to Hadamard Inequation, we have 
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Directly put E inside log2, according to Jenson Inequation, we have 
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Then, from (11), (12) and (13), we can further derive 
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Thus, 
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From Theorem 1, we have 

 0 .upper
tC t C= ×  (23) 

It is observed that the upper bound of the system capacity scales linearly in the process of 
system scale-up. 
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3.3 Calculation of the downlink capacity 

Based on the foregoing argument, we derive an approximation of the downlink ergodic 
capacity as 

 (0)
(0) (0) (0)

2 2
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Mt t t tC
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where (0)
tH  is the channel matrix of the scaled-up system 
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We rewrite (24) as 
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Theorem 2: 

The ergodic downlink capacity described in (10) can be accurately approximated as 
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where W is the solution of the following equation 
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Proof: 

Let : [0, ) [0, )tv M N× → {  be the variance profile function of matrix H, which is given by 

11
( , ) ( ( , )),   [ , );  [ , ),t j ji i

v x y t Var i j x y
t t t t

−−
= ⋅ ∈ ∈H  

where H(i, j) is the entry of matrix H with index (i, j). We can further find that as t → ∞, 

vt(x,y) converges uniformly to a limiting bounded function v(x,y), which is given by 
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 (0) (0)2( , ) [ ] ,    [0, );  1, ).} [n nv x y l P x M y n n= ∈ ∈ −  (30) 

Therefore, the constraints of Theorem 2.53 in (Tulino & Verdu, 2004) are satisfied, we can 

derive the Shannon transform (Tulino & Verdu, 2004) of the asymptotic spectrum of HHH as 
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with (.,.)HΓHH  and (.,.)HΥHH  satisfying the following equations 
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where X and Y represent independent random variables, which are uniform on [0,M) and 

[0,N), respectively, ν  is a parameter in Shannon transform. Given ν , based on (30), we 

 can observe that ( , )H x νΓHH  is constant on x ∈ [0,M) and ( , )H y νΥHH  is constant on  

y ∈ [n — 1,n). Thus, we define 
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From (32) and (33), we have 
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Moreover, from (36) and (37), W can be calculated by solving the following equation 
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The unknown parameter W in Theorem 2 can be easily derived via an iterative method as 
presented in Table 1. The efficiency of the iterative algorithm will be demonstrated in 
Section 4. 
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Table 1. The iterative method to calculate W. 

4. Simulation results 

In this section, Monte Carlo simulations are used to verify the validity of our analysis. The 

radius of a cell is assumed to be 1000m. The path loss exponent is set to be 4, the shadowing 

standard deviation is set to be 4 according to field measurement for microcell environment 

(Goldsmith & Greenstein, 1993), and the noise power 2
nσ  is set to be -107dBm. The per 

distributed antenna power constraint takes value from -30dBm to 30dBm. 
Without loss of generality, four different simulation setups are considered as follows: 

• Case 1: N = M = 4, with randomly-selected system topology as shown in Fig. 3-A; 

• Case 2: N = M = 4, with randomly-selected system topology as shown in Fig. 3-B; 

• Case 3: N = M = 8, with randomly-selected system topology as shown in Fig. 3-C; 

• Case 4: N = M = 8, with randomly-selected system topology as shown in Fig. 3-D; 
Both analysis and simulation results of the ergodic downlink capacity for the four cases are 
presented in Fig. 4. It is observed that the two kinds of results are quite accordant with each 
other, which implies the high accuracy of the approximation in Theorem 2. 

The total error covariance (Δ in Table 1) of the iterative method to calculate W is illustrated 

in Fig. 5. We can observe that 40 iteration steps are enough to make Δ be less than 1.0 × 10−6. 
In summary, we can conclude that the approximation is accurate and the iterative method is 
efficient. 

5. Conclusions 

In this chapter, the problem of characterizing the downlink capacity of a DAS with random 
antenna layout is addressed with the generalized assumptions: (a1) per distributed antenna 
power constraint, (a2) generalized mobile terminals equipped with multiple antennas, (a3) a 
multi-cell environment. Based on system scale-up, we derive a good approximation of the 
ergodic downlink capacity by adopting random matrix theory. We also propose an iterative 
method to calculate the unknown parameter in the approximation. The approximation is 
illustrated to be quite accurate and the iterative method is verified to be quite efficient by 
Monte Carlo simulations. 
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Fig. 3. Randomly-selected system topologies for simulations. 
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Fig. 4. Ergodic downlink capacity. 
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Fig. 5. Convergence performance of the iterative method. 
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