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1. Introduction 

It is difficult to answer how many elastic waves exist in anisotropic solids. The traditional 
viewpoint believes that there are only two bulk elastic waves in solids, one is the dilation 
wave discovered by Poisson in 1892, and the other the shear wave discovered by Stokes in 
1899. The existence of the P-wave and the S-wave was also verified by the classical elastic 
theory. However, with the discovery of some new phenomena of elastic waves in 
anisotropic solids, it is found that the limitations of classical elastic theory have become 
obvious. Furthermore, the current concepts and theories of elastic waves can not answer 
several basic questions of elastic wave propagation in anisotropic solids. For example, how 
many elastic waves are there? How many wave types are there? What is the space pattern of 
elastic waves? As we know, the Christoffel’s equation, which is often used to describe 
anisotropic elastic waves in the classical elastic theory, can not indicate the space pattern 
and the complete picture of elastic wave propagation in anisotropic solids, but only show 
the difference of propagation in the different directions along an axis or a section (Vavrycuk, 
2005). The reason for this is that the classical elastic wave equations, expressed by 
displacements can not distinguish the different elastic sub-waves (except for isotropic 
solids), because the elasticity and anisotropy of solids are synthesized in an elastic matrix. 
Similarly, for the electromagnetic fields, except for the Helmholtz’s equation of 
electromagnetic waves in isotropic media, the laws of propagation of electromagnetic waves 
in anisotropic media are also not clear to us. From the Maxwell’s equation, the explicit 
equations of electromagnetic waves in anisotropic media could not be obtained because the 
dielectric permittivity matrix and magnetic permeability matrix were all included in these 
equations, so that only local behaviour of electromagnetic waves, for example, in a certain 
plane or along a certain direction, can be studied (Yakhno et al., 2006).  
The theory of linear piezoelectricity is based on a quasi-static approximation (Tiersten et al., 
1962). In this theory, although the mechanical equations are dynamic, the electromagnetic 
equations are static and the electric field and the magnetic field are not coupled. Therefore it 
does not describe the wave behaviour of electromagnetic fields. Electromagnetic waves 
generated by mechanical fields (Mindlin, 1972) need to be studied in the calculation of 
radiated electromagnetic power from a vibrating piezoelectric device (Lee et al., 1990), and are 
also relevant in acoustic delay lines (Palfreeman, 1965) and wireless acoustic wave sensors 
(Sedov et al., 1986), where acoustic waves produce electromagnetic waves or vise versa. When 
electromagnetic waves are involved, the complete set of Maxwell equation needs to be used, 
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coupled to the mechanical equations of motion. Such a fully dynamic theory is called 
piezoelectromagnetism by some researchers (Lee, 1991). Piezoelectromagnetic SH waves were 
studied by Li (Li, 1996) using scalar and vector potentials, which results in a relatively 
complicated mathematical model of four equations. Two of these equations are coupled, and 
the other two are one-way coupled. In addition, a gauge condition needs to be imposed. A 
different formulation was given by Yang and Guo (Yang et al., 2006), which leads to two 
uncoupled equations. Piezoelectromagnetic SH waves over the surface of a circular cylinder of 
polarized ceramics were analyzed. Although many works have been done for the 
piezoelectromagnetic waves in piezoelectric solids, the explicit uncoupled equations of 
piezoelectromagnetic waves in the anisotropic media could not be obtained because of the 
limitations of classical theory. In this chapter, the idea of eigen theory presented by author 
(Guo, 1999; 2000; 2001; 2002; 2005; 2007; 2009; 2009; 2010; 2010; 2010) is used to deal with both 
the Maxwell’s electromagnetic equation and the Newton’s motion equation. By this method, 
the classical Maxwell’s equation and Newton’s equation under the geometric presentation can 
be transformed into the eigen Maxwell’s equation and Newton’s equation under the physical 
presentation. The former is in the form of vector and the latter is in the form of scalar. As a 
result, a set of uncoupled modal equations of electromagnetic waves and elastic waves are 
obtained, each of which shows the existence of electromagnetic and elastic sub-waves, 
meanwhile the propagation velocity, propagation direction, polarization direction and space 
pattern of these sub-waves can be completely determined by the modal equations.  
In section 2, the elastic waves in anisotropic solids were studied under six dimensional eigen 
spaces. It was found that the equations of elastic waves can be uncoupled into the modal 
equations, which represent the various types of elastic sub-waves respectively. In section 3, the 
Maxwell’s equations are studied based on the eigen spaces of the physical presentation, and 
the modal electromagnetic wave equations in anisotropic media are deduced. In section 4, the 
quasi-static theory of waves in piezoelectric solids (mechanical equations of motion, coupled to 
the equations of static electric field, or Maxwell’s equations, coupled to the mechanical 
equations of equilibrium) are studied based on the eigen spaces of the physical presentation. 
The complete sets of uncoupled elastic or electromagnetic dynamic equations for piezoelectric 
solids are deduced. In section 5, the Maxwell’s equations, coupled to the mechanical equations 
of motion, are studied based on the eigen spaces of the physical presentation. The complete 
sets of uncoupled fully dynamic equations for piezoelectromagnetic waves in anisotropic 
media are deduced, in which the equations of electromagnetic waves and elastic ones are both 
of order 4. The discussions are given in section 6. 

2. Elastic waves in anisotropic solids 

2.1 Concepts of eigen spaces 

The eigen value problem of elastic mechanics can be written as 

  1,2, ,6i i i iλ= = ACϕ ϕ    (1) 

where C is a standarded matrix of elastic coefficients, iλ  is eigen elasticity, and is 

invariables of coordinates, iϕ  is the corresponding eigen vector, and satisfies the 

orthogonality condition of basic vectors. 

 Τ=C ΦΛΦ  (2) 
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where 1 2 6, , ,λ λ λ= ⎡ ⎤⎣ ⎦AdiagΛ , { }1 2 6, , ,= AΦ ϕ ϕ ϕ is the modal matrix of elastic solids, it is 

orthogonal and positive definite one, satisfies T I=Φ Φ . 
The eigen spaces of anisotropic elastic solids consist of independent eigen vectors, it has the 
structure as follows 

 * *
1 1[ ] [ ]m mW W W= ⊕ ⊕Aϕ ϕ  (3) 

where the possible overlapping roots are considered, and ( )6m ≤  is used to represent the 

number of independent eigen spaces. Projecting the stress vector σ  and strain vector ε  on 

the eigen spaces, we get 

 * * * *
1 1 m mσ σ= + +Aσ ϕ ϕ  (4) 

 * * * *
1 1 m mε ε= + +Aε ϕ ϕ  (5) 

where *
iσ  and *

iε are modal stress and modal strain, which are stress and strain under the 

eigen spaces respectively, and are different from the traditional ones in the physical meaning. 

Eqs.(4) and (5) are also regarded as a result of the sum of finite number of normal modes. 
The modal stress and modal strain satisfy the normal Hook’s law 

 * * 1,2, ,i i i i mσ λ ε= = A  (6) 

2.2 Modal elastic wave equations 
When neglecting body force, the dynamics equation and displacement equation of elastic 
solids are the following respectively 

 ik k iuσ ρ′ = $$  (7) 

 
1

( )
2

ij i j j iu uε ′ ′= +  (8) 

From Eqs.(7) and (8), we can get the following equation 

 2ik kj jk ki ijσ σ ρε′ ′+ = $$  (9) 

Because of the symmetry on ( ),i j in Eq.(9) we can rewrite it in the form of matrix. 

 Δ ttρΔ=σ ε  (10) 

where 

 
( )

( )
( )

11 31 21

22 32 21

33 32 31

23 23 22 33 21 31

13 13 12 11 33 32

12 12 13 23 22 11

0 0 0

0 0 0

0 0 0

0

0

0

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥= ∂ ∂ ∂ + ∂ ∂ ∂⎢ ⎥
⎢ ⎥
∂ ∂ ∂ ∂ + ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂ ∂ + ∂⎣ ⎦

Δ  (11) 
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It is seen that Δ is a symmetrical differential operator matrix, and 2 /ij ji i jx x∂ = ∂ = ∂ ∂ ∂ , 

2 /tt t tΔ = ∂ ∂ ∂ . 

It is proved by author that the elastic dynamics equation (10) under the geometrical spaces 
of three dimension can be converted into the modal equations under the eigen spaces of six 
dimension 

 * * * 1,2, ,i i i tt i i mλ ε ρΔ εΔ = = A  (12) 

and 

 Δ* T* * 1,2, ,i i i i mΔ = = Aϕ ϕ  (13) 

where *Δ i is called as the stress operator. From Eq.(12), we have 

 * * *
2

1Δ , 1,2, ,i i tt i
i

ε ε= ∇ = Ai m
v

 (14) 

The calculation shows that the stress operators are the same as Laplace’s operator (either 
two dimensions or three dimensions) for isotropic solids, and for most of anisotropic solids. 
In the modal equations of elastic waves, the speeds of propagation of elastic waves are the 
following 

 , 1,2, ,i
iv i m

λ
ρ

= = A  (15) 

Eqs.(14) and (15) show that the number of elastic waves in anisotropic solids is equal to that 
of eigen spaces of anisotropic solids, and the speeds of propagation of elastic waves are 
related to the eigen elasticity of anisotropic solids. 

2.3 Elastic waves in isotropic solids 

There are two independent eigen spaces in isotropic solids 

 (1) (5)
1 1 2 2 6[ ] [ , , ]W W W= ⊕ Aϕ ϕ ϕ  (16) 

where 

 
1 2

3

3 2
[1,1,1,0,0,0] , [0,1, 1,0,0,0]

3 2

6
[2, 1, 1,0,0,0] ,      ( 4,5,6)

6

T T

T
i i iξ

⎫
= = − ⎪⎪

⎬
⎪= − − = = ⎪⎭

ϕ ϕ

ϕ ϕ
 (17) 

where iξ is a vector of order 6, in which i th element is 1 and others are 0. 
The eigen elasticity and eigen operator of isotropic solids are the following 

 
( )1 2

* 2 * 2
1 2

3 2 , 2 ,

1 1
, ,

3 2
III III

λ λ μ λ μ ⎫= + =
⎪
⎬

Δ = ∇ Δ = ∇ ⎪
⎭

 (18) 
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where λ and μ are Lame constants, 2
III∇ is Laplace’s operator of three dimention. Thus, there 

exist two independent elastic waves in isotropic solids, which can be described by the 

following equations 

 2 * *
III 1 1( 2 ) ( , ) ( , )x t x tλ μ ε ρε+ ∇ = $$  (19) 

 2 * *
III 2 2( , ) ( , )x t x tμ ε ρε∇ = $$  (20) 

It will be seen as follows that Eqs.(19) and (20) represent the dilation wave and shear wave 
respectively. 
Using Eq. (5), the modal strain of order 1 of isotropic solids is  

 * T*
1 1 11 22 33

3
( )

3
ε ε ε ε= ⋅ = + +ϕ ε  (21) 

Eq. (21) represents the relative change of the volume of elastic solids. So Eq. (19) shows the 
motion of pure longitudinal wave. 
Also from Eq. (5), the modal strain of order 2 of isotropic solids is 

                                                  * * * *
2 2 1 1ε ε= −ϕ ε ϕ   (22) 

By the orthogonality condition of eigenvectors, we have 

                     

* * * T * * 1/2
2 1 1 1 1

2 2 2 1/2
1 2 2 3 3 1

[( ) ( )]

1
    { [( ) ( ) ( ) ]}

3

ε ε ε

ε ε ε ε ε ε

= − ⋅ −

= − + − + −

ε ϕ ε ϕ
 (23) 

Eq. (23) represents the pure shear strain on elastic solids. So Eq. (20) shows the motion of 
pure transverse wave. 

2.4 Elastic waves in anisotropic solids 
2.4.1 Cubic solids 

There are three independent eigen spaces in a cubic solids 

                              (1) (2) (3)
1 1 2 2 3 3 4 5 6[ ] [ , ] [ , , ]W W W W= ⊕ ⊕ϕ ϕ ϕ ϕ ϕ ϕ  (24) 

where 1 2 6, , ,Aϕ ϕ ϕ  are the same as in Eq. (17). 

The eigenelasticity and eigenoperator of cubic solids are 

 
1 11 12 2 11 12 3 44

* 2 * 2 * *
1 2 3

2 , , ,

1 1
, , ,

3 2
III III III

c c c c cλ λ λ

Δ Δ Δ

= + = − = ⎫
⎪
⎬

= ∇ = ∇ = ∇ ⎪⎭

 (25) 

Thus, there exist three independent elastic waves in cubic solids, which can be described by 
following equations 

                                       * * *( , ) ( , ) 1,2,3i i i ix t x t iλ ε ρεΔ = =$$  (26) 
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where 

                                              *
1 11 22 33

3
( )

3
ε ε ε ε= + +  (27) 

                                 * 2 2 1/2
2 22 33 11 22 33

1 1
[ ( ) (2 ) ]
2 6

ε ε ε ε ε ε= − + − −  (28) 

                                             * 2 2 2
3 32 31 12

1
( )

2
ε ε ε ε= − −  (29) 

It is seen that there exist three elastic waves in cubic solids, one of which is the quasi-
dilation wave, and two others are the quasi-shear waves. 

2.4.2 Hexagonal solids 

There are four independent eigen spaces in a hexagonal (transversely isotropic) solids 

 (1) (1) (2) (2)
1 1 2 2 3 3 6 4 4 5[ ] [ ] [ , ] [ , ]W W W W W= ⊕ ⊕ ⊕ϕ ϕ ϕ ϕ ϕ ϕ  (30) 

where 

          

1,2 11 12 T13
1,2

2 2
31,2 11 12 13

T
3

[1,1, ,0,0,0]
( ) 2

2
[1, 1,0,0,0,0] , 4,5,6

2
i i

c cc

cc c c

i

λ

λ

− − ⎫
= × ⎪

− − + ⎪
⎬
⎪

= − = = ⎪
⎭

,    ξ

ϕ

ϕ ϕ

 (31) 

The eigenelasticity and eigenoperator of hexagonal solids are 

                           

( )
( )

2
211 12 33 11 12 33

1,2 13

3 11 12 4 44

2
* *13
1,2 2 2

1,2 11 12 13

* 2 * 2
3 4 12

2 ,
2 2

, ,

,
2

2 1
, 2 ,

3 2

III

II III

c c c c c c
c

c c c

c

c c c

λ

λ λ

Δ
λ

Δ Δ

⎫+ + + +⎛ ⎞ ⎪= ± +⎜ ⎟ ⎪⎝ ⎠
⎪

= − = ⎪⎪
⎬

= ∇ ⎪
⎪− − +
⎪
⎪= ∇ = ∇ + ∂ ⎪⎭

 (32) 

Thus there exist four independent elastic waves in hexagonal solids, which can be described 
by following equations 

 * * *( , ) ( , ) 1,2,3 ,4i i i ix t x t iλ ε ρεΔ = =$$   (33) 

where  

               1,2 11 12* 13
1,2 11 22 33

2 2
131,2 11 12 13

[ ( ) ]
( ) 2

c cc

cc c c

λ
ε ε ε ε

λ

− −
= × + +

− − +
 (34) 
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                                              ( )2* 2
3 11 22 12

1

2
ε ε ε ε= − +  (35) 

 * 2 2
4 32 31

1
( )

2
ε ε ε= +  (36) 

It is seen that there exist four elastic waves in hexagonal solids, two of which are the quasi-
dilation wave, and two others are the quasi-shear waves. 

3. Electromagnetic waves in anisotropic solids 

3.1 Eigen spaces of electromagnetic solids 
In anisotropic electromagnetic solids, the dielectric permittivity and magnetic permeability 
are tensors instead of scalars. The constitutive relations are expressed as follows 

 = ⋅D e E  (37) 

 = ⋅B Hμ  (38) 

where the dielectric permittivity matrix e  and the magnetic permeability matrix μ  are 

usually symmetric ones, and the elements of the matrixes have a close relationship with the 
selection of reference coordinate. Suppose that if the reference coordinates is selected along 
principal axis of electrically or magnetically anisotropic solids, the elements at non-diagonal 
of these matrixes turn to be zero. Therefore, Eqs. (37),(38) are called the constitutive 
equations of electromagnetic solids under the geometric presentation. Now we intend to get 
rid of effects of geometric coordinate on the constitutive equations, and establish a set of 
coordinate-independent constitutive equations of electromagnetic media under physical 
presentation. For this purpose, we solve the following problems of eigen-value of matrixes 

 
( ) 0η− =e I φ

   (39) 

 
( )γ−μ ϑ = 0I

 (40) 

where ( )1,2,3I Iη =  and ( )1,2,3I Iγ =  are respectively eigen dielectric permittivity and 

eigen magnetic permeability, which are constants of coordinate-independent. ( )1,2,3I I =φ  

and ( )1,2,3I I =ϑ  are respectively eigen electric vector and eigen magnetic vector, which 

show the electrically principal direction and magnetically principal direction of anisotropic 

solids, and are all coordinate-dependent. We call these vectors as eigen spaces. Thus, the 

matrix of dielectric permittivity and magnetic permeability can be spectrally decomposed as 

follows 

 =e ΤΨΓΨ  (41) 

 
Τ=μ ΘΠΘ  (42) 

where [ ]1 2 3, ,diag η η η=Γ  and [ ]1 2 3, ,diag γ γ γ=Π  are the matrix of eigen dielectric 

permittivity and eigen magnetic permeability, respectively. { }1 2 3, ,=Ψ φ φ φ  and 
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{ }1 2 3, ,=Θ ϑ ϑ ϑ  are respectively the modal matrix of electric media and magnetic media, 

which are both orthogonal and positive definite matrixes, and satisfy, T = IΨ Ψ , T = IΘ Θ . 
Projecting the electromagnetic physical qualities of geometric presentation, such as the 
electric field intensity vector E, magnetic field intensity vector H, magnetic flux density 
vector B and electric displacement vector D into eigen spaces of physical presentation, we get 

 
Τ= ⋅*

D DΨ             
Τ= ⋅*

E EΨ  (43) 

 
Τ= ⋅*

B BΘ             
Τ= ⋅*

H HΘ   (44) 
Rewriting Eqs.(43) and (44) in the form of scalar, we have  

 
*
I ID Τ= ⋅ I = 1- nDφ

    
*
I IE Τ= ⋅ I = 1- nEφ

 (45) 

 *
I IB Τ= ⋅ I = 1 - nBϑ     *

I IH Τ= ⋅ I = 1 - nHϑ  (46) 

where ( )3n ≤ are number of electromagnetic independent subspaces. These are the 

electromagnetic physical qualities under the physical presentation. 
Substituting Eqs. (43) and (44) into Eqs. (37) and (38) respectively, and using Eqs.(45) and 
(46) yield  

 * *
I I ID Eη= I = 1 - n  (47) 

 * *
I I IB Hγ= I = 1 - n  (48) 

The above equations are just the modal constitutive equations of electromagnetic media in 
the form of scalar. 

3.2 Matrix expression of Maxwell’s equation 
The classical Maxwell’s equations in passive region can be written as 

 ,IJK K J Ie H D= $  (49) 

 ,IJK K J Ie E B= − $  (50) 

Now we rewrite above equations in the form of matrix as follows 

 
1 1

2 2

3 3

0

0

0

z y

z x t

y x

H D

H D

H D

−∂ ∂⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪∂ −∂ = ∇⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥−∂ ∂ ⎩ ⎭ ⎩ ⎭⎣ ⎦

 (51) 

or  

 [ ]{ } { }c tH DΔ = ∇  (52) 

 
1 1

2 2

3 3

0

0

0

z y

z x t

y x

E B

E B

E B

−∂ ∂⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪∂ −∂ = −∇⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥−∂ ∂ ⎩ ⎭ ⎩ ⎭⎣ ⎦

 (53) 
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Or 

   [ ]{ } { }d tE BΔ = −∇  (54) 

where [ ]dΔ  and [ ]cΔ  are respectively defined as the matrix of electric operators and  

magnetic operators, and [ ] [ ]d cΔ = Δ . 
Substituting Eqs.(37) and (38) into Eqs. (52) and (54), we have 

 
[ ]{ } [ ]{ }c tH e EΔ = ∇

 (55) 

 
[ ]{ } [ ]{ }d tE HμΔ = −∇

 (56) 

Substituting Eq. (55) into (56) or Eq. (56) into (55) yield 

 
[ ]{ } [ ][ ]{ }2

tH e Hμ= −∇M
 (57) 

 [ ]{ } [ ][ ]{ }2
tE e Eμ= −∇M  (58) 

where [ ] [ ][ ]d c= Δ ΔM  is defined as the matrix of electromagnetic operators as follows 

 [ ]
( )

( )
( )

2 2

2 2

2 2

z y xy xz

yx x z yz

zx zy x y

⎡ ⎤− ∂ + ∂ ∂ ∂
⎢ ⎥
⎢ ⎥= ∂ − ∂ + ∂ ∂
⎢ ⎥
⎢ ⎥∂ ∂ − ∂ + ∂⎣ ⎦

M  (59) 

3.2.1 Electrically anisotropic solids 

In anisotropic dielectrics, the dielectric permittivity is a tensor, while the magnetic 
permeability is a scalar. So Eqs. (57) and (58) can be written as follows 

 
[ ]{ } [ ]{ }2

0tH e Hμ= −∇M
 (60) 

 [ ]{ } [ ]{ }2
0tE e Eμ= −∇M  (61) 

Substituting Eqs. (43), (44) and (47) into Eqs. (60) and (61), we have 

 { } [ ]{ }* * 2 *
0tH Hμ Γ⎡ ⎤ = −∇⎣ ⎦M  (62) 

 { } [ ]{ }* * 2 *
0tE Eμ Γ⎡ ⎤ = −∇⎣ ⎦M  (63) 

where [ ] [ ][ ]T*⎡ ⎤ = Ψ Ψ⎣ ⎦M M  is defined as the eigen matrix of electromagnetic operators under 

the eigen spaces, is a diagonal matrix. Thus Eqs. (62) and (63) can be uncoupled in the form 

of scalar. 

 
* * 2 *

0 0 1I I I t IH H I nμ η+ ∇ = = −M
 (64) 
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* * 2 *

0 0 1I I I t IE E I nμ η+ ∇ = = −M
 (65) 

Eqs.(64) and (65) are the modal equations of electromagnetic waves in anisotropic 

dielectrics. 

3.2.2 Magnetically anisotropic solids 

In anisotropic magnetics, the magnetic permeability is a tensor, while the dielectric  

permittivity is a scalar. So Eqs. (57) and (58) can be written as follows 

 [ ]{ } [ ]{ }2
0tH e Hμ= −∇M  (66) 

 [ ]{ } [ ]{ }2
0tE e Eμ= −∇M  (67) 

Substituting Eqs. (43), (44) and (48) into Eqs. (66) and (67), we have 

 { } [ ]{ }* * 2 *
0tH e HΠ⎡ ⎤ = −∇⎣ ⎦M  (68) 

 { } [ ]{ }* * 2 *
0tE e EΠ⎡ ⎤ = −∇⎣ ⎦M  (69) 

where [ ] [ ][ ]T*⎡ ⎤ = Θ Θ⎣ ⎦M M  is defined as the eigen matrix of electromagnetic operators under 

the eigen spaces, is a diagonal matrix. Thus Eqs. (68) and (69)can be uncoupled in the form 

of scalar. 

 * * 2 *
0 0 1I I I t IH e H I nγ+ ∇ = = −M  (70) 

 * * 2 *
0 0 1I I I t IE e E I nγ+ ∇ = = −M  (71) 

Eqs.(70) and (71) are the modal equations of electromagnetic waves in anisotropic 

magnetics. 

3.3 Electromagnetic waves in anisotropic solids 

In this section, we discuss the propagation behaviour of electromagnetic waves only in 

anisotropic dielectrics. 

3.3.1 Isotropic crystal 

The matrix of dielectric permittivity of isotropic dielectrics is following 

 

e

e

e

11

11

11

0 0⎡ ⎤
⎢ ⎥= 0 0⎢ ⎥
⎢ ⎥0 0⎣ ⎦

e  (72) 

The eigen-values and eigen-vectors are respectively shown as below 

 [ ]11 11 11, ,diag e e e=Γ  (73) 
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1 0 0

0 1 0

0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ  (74) 

We can see from the above equations that there is only one eigen-space in isotropic crystal, 
which is a triple-degenerate one, and the space structure is following  

 
( ) [ ]3

1 1 2 3, ,W φ φ φ=W
 (75) 

The basic vector of one dimension in a triple-degenerate subspace is 

 { }*
1

3
1,1,1

3

T=φ  (76) 

The eigen-qualities and eigen-operators of isotropic crystal are respectively shown as below 

 ( )*
1 1 2 3

1

3
E E E E= + +  (77) 

 ( )* 2 2 2
1

1

3
x y z

⎡ ⎤= − ∂ + ∂ + ∂⎣ ⎦M  (78) 

Thus the equations of electromagnetic waves in isotropic crystal can be written as 

 ( )( ) ( )2 2 2 2
1 2 3 0 11 1 2 3x y z tE E E e E E Eμ∂ + ∂ + ∂ + + = ∂ + +  (79) 

or 

 ( )2 2 2 2
1 0 11 1x y z tE e Eμ∂ + ∂ + ∂ = ∂  (80) 

 ( )2 2 2 2
2 0 11 2x y z tE e Eμ∂ + ∂ + ∂ = ∂  (81) 

 ( )2 2 2 2
3 0 11 3x y z tE e Eμ∂ + ∂ + ∂ = ∂   (82) 

The velocity of the electromagnetic wave is  

 
0 11

1
c

eμ
=  (83) 

Eq. (79) is just the Helmholtz’s equation of electromagnetic wave. 

3.3.2 Uniaxial crystal 

The matrix of dielectric permittivity of uniaxial dielectrics is following 

 

e

e

e

11

11

33

0 0⎡ ⎤
⎢ ⎥= 0 0⎢ ⎥
⎢ ⎥0 0⎣ ⎦

e  (84) 
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The eigen-values and eigen-vectors are respectively shown as below 

 [ ]11 11 33, ,diag e e e=Λ  (85) 

 

1 0 0

0 1 0

0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ  (86) 

We can see from the above equations that there are two eigen-spaces in uniaxial crystal, one 
of which is a double-degenerate space, and the space structure is following  

 
( ) [ ] [ ]2 1

1 1 2 2 3,W Wφ φ φ= ⊕W
 (87) 

The basic vectors in two subspaces are following 

 { }*
1

2
1,1,0

2

T=φ  (88) 

 { }*
2 0,0,1

T=φ  (89) 

The eigen electric strength qualities of uniaxial crystal are respectively shown as below 

 T

3

*
2 2E = ⋅ EE =φ  (90) 

 T * T *

1 21 2= −E EEφ φ  (91) 

Multiplying Eq.(91) with 2φ  , using T

2 1 0⋅ =φ φ  and ( )T 1 1,2i i i⋅ = =φ φ , we get 

 ( ) ( )T
T * T *

2 2

* 2 2
1 2 2 1 2E E E= − − = +E EE Eφ φ  (92) 

The eigen-operators of uniaxial crystal are respectively shown as below 

 ( )* 2 2 2 2
1 2 2x y z xy= − ∂ + ∂ + ∂ − ∂M  (93) 

 ( )* 2 2
2 x y= − ∂ + ∂M  (94) 

Therefore, the equations of electromagnetic waves in uniaxial crystal can be written as 
below 

 ( )2 2 2 2 2 2 2 2 2
1 2 0 11 1 22 2x y z xy tE E e E Eμ∂ + ∂ + ∂ − ∂ + = ∂ +  (95) 

 ( )2 2 2
3 0 33 3x y tE e Eμ∂ + ∂ = ∂   (96) 

 
The velocities of electromagnetic waves are respectively as follows 
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 ( )1

0 11

1
c

eμ
=   (97) 

 ( )2

0 33

1
c

eμ
=  (98) 

It is seen that there are two kinds of electromagnetic waves in uniaxial crystal. 

3.3.3 Biaxial crystal 
The matrix of dielectric permittivity of biaxial dielectrics is following 

 22

33

e

e

e

11 0 0⎡ ⎤
⎢ ⎥= 0 0⎢ ⎥
⎢ ⎥0 0⎣ ⎦

e  (99) 

The eigen-values and eigen-vectors are respectively shown as below 

 [ ]11 22 33, ,diag e e e=Λ  (100) 

 

1 0 0

0 1 0

0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ  (101) 

We can see from the above equations that there are three eigen-spaces in biaxial crystal, and 
the space structure is following 

 ( ) [ ] ( ) [ ] ( ) [ ]1 1 1

1 1 2 2 3 3W W Wφ φ φ= ⊕ ⊕W  (102) 

The eigen-qualities and eigen-operators of biaxial crystal are respectively shown as below 

 T

1

*
1 1E = ⋅ EE =φ  (103) 

 T

2

*
2 2E = ⋅ EE =φ   (104) 

 T

3

*
3 3E = ⋅ EE =φ  (105) 

 ( )* 2 2
1 z y= − ∂ + ∂M  (106) 

 ( )* 2 2
2 x z= − ∂ + ∂M  (107) 

 ( )* 2 2
3 x y= − ∂ + ∂M   (108) 

Therefore, the equations of electromagnetic waves in biaxial crystal can be written as below 

 ( )2 2 2
1 0 11 1z y tE e Eμ∂ + ∂ = ∂  (109) 
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 ( )2 2 2
2 0 22 2x z tE e Eμ∂ + ∂ = ∂  (110) 

 ( )2 2 2
3 0 33 3x y tE e Eμ∂ + ∂ = ∂  (111) 

The velocities of electromagnetic waves are respectively as follows 

 ( )1

0 11

1
c

eμ
=  (112) 

 ( )2

0 22

1
c

eμ
=  (113) 

 ( )3

0 33

1
c

eμ
=    (114) 

It is seen that there are three kinds of electromagnetic waves in biaxial crystal. 

3.3.4 Monoclinic crystal 

The matrix of dielectric permittivity of monoclinic dielectrics is following 

 
11 12

12 22

33

e e

e e

e

0⎡ ⎤
⎢ ⎥= 0⎢ ⎥
⎢ ⎥0 0⎣ ⎦

e   (115) 

The eigen-values and eigen-vectors are respectively shown as below 

 [ ]1 2 33, ,diag eη η=Γ  (116) 

 

( )

( )
[ ]

T

T

T

12 1 11

2 2
12

1 11 12

12 2 11

2 2
12

2 11 12

,1,0

1, ,0

0,0,1

e e

ee e

e e

ee e

η

η

η

η

1

2

3

⎧ ⎡ ⎤−⎪ = ⎢ ⎥
⎪ ⎣ ⎦− +
⎪
⎪ ⎡ ⎤−⎪ =⎨ ⎢ ⎥

⎣ ⎦⎪ − +
⎪
⎪ =
⎪
⎪⎩

φ

φ

φ

 (117) 

where 

 
( ) ( )

2

11 22 2
1,2 11 22 12

1

2 2

e e
e e eη

+ ⎡ ⎤= ± − +⎢ ⎥⎣ ⎦
, 3 33eη =  (118) 

We can see from the above equations that there are also three eigen-spaces in monoclinic 
crystal, and the space structure is following 
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 ( ) [ ] ( ) [ ] ( ) [ ]1 1 1

1 1 2 2 3 3W W Wφ φ φ= ⊕ ⊕W  (119) 

The eigen-qualities and eigen-operators of monoclinic crystal are respectively shown as below 

 
( )

( )T

1

*
1 1 1 11 12 22 2

1 11 12

1
E e e E

e e
η

η
= ⋅ ⎡ − + ⎤⎣ ⎦

− +
EE =φ  (120) 

 
( )

( )T

1

*
2 2 12 2 11 22 2

2 11 12

1
E e e E

e e
η

η
= ⋅ ⎡ + − ⎤⎣ ⎦

− +
EE =φ  (121) 

 T

3

*
3 3E = ⋅ EE =φ  (122) 

 
( )

( ) ( )
2

2
* 2 2 2 2 212 1 11 1 11
1 2 2

12 121 11 12

2z y x z xy

e e e

e ee e

η η
η

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥= − ∂ + ∂ + ∂ + ∂ − ∂⎜ ⎟ ⎜ ⎟
⎢ ⎥− + ⎝ ⎠ ⎝ ⎠⎣ ⎦

M  (123) 

 
( )

( ) ( )
2

2
* 2 2 2 2 212 2 11 2 11
2 2 2

12 122 11 12

2x z z y xy

e e e

e ee e

η η
η

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥= − ∂ + ∂ + ∂ + ∂ − ∂⎜ ⎟ ⎜ ⎟
⎢ ⎥− + ⎝ ⎠ ⎝ ⎠⎣ ⎦

M  (124) 

 ( )* 2 2
3 x y= − ∂ + ∂M  (125) 

Therefore, the equations of electromagnetic waves in monoclinic crystal can be written as below 

 ( ) ( )1 1

* 2
1 1 11 12 2 0 1 1 11 12 2te e E e e Eη μ η η⎡ − + ⎤ = ∂ ⎡ − + ⎤⎣ ⎦ ⎣ ⎦M E E  (126) 

 ( ) ( )1 1

* 2
2 12 2 11 2 0 2 12 2 11 2te e E e e Eη μ η η⎡ + − ⎤ = ∂ ⎡ + − ⎤⎣ ⎦ ⎣ ⎦M E E  (127) 

 ( )2 2 2
3 0 33 3x y tE e Eμ∂ + ∂ = ∂  (128) 

The velocities of electromagnetic waves are respectively as follows 

 ( )

( ) ( )

1

2

211 22
0 11 22 12

1

1

2 2

c

e e
e e eμ

=
⎧ ⎫+⎪ ⎪⎡ ⎤+ − +⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

 (129) 

 ( )

( ) ( )

2

2

211 22
0 11 22 12

1

1

2 2

c

e e
e e eμ

=
⎧ ⎫+⎪ ⎪⎡ ⎤− − +⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

 (130) 

 ( )3

0 33

1
c

eμ
=  (131) 
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It is seen that there are also three kinds of electromagnetic waves in monoclinic crystal. In 

comparison with the waves in biaxial crystal, the electromagnetic waves in monoclinic 

crystal have been distorted. 

4. Quasi-static waves in piezoelectric solids 

4.1 Modal constitutive equation of piezoelectric solids 

For a piezoelectric but nonmagnetizable dielectric body, the constitutive equations is the 

following 

 T= ⋅ − ⋅c h Eσ ε  (132) 

 = ⋅ + ⋅D h e Eε  (133) 

 = ⋅B Hμ  (134) 

where h is the piezoelectric matrix.  

Substituting Eqs. (5), (43) and (44) into Eqs. (132)-(134), respectively, and multiplying them 

with the transpose of modal matrix in the left, we have 

 TΤ Τ Τ= −* *
c h EΦ σ Φ Φε Φ Ψ  (135) 

 T T T= +* *
D h e EΨ Ψ Φε Ψ Ψ  (136) 

 T T *=B HΘ Θ μΘ  (137) 

 

Let T=G hΨ Φ , T T T=G hΦ Ψ , that is a coupled piezoelectric matrix, and using Eqs.(2), (41) 

and (42), we get 

 T= −* * *
G Eσ Λε  (138) 

 = +* * *
D G Eε Γ  (139) 

 * *=B HΠ  (140) 

 

Rewriting the above equations in the form of scalar, we have 

 * * * 1 - 1 -T
i i i iJ Jg E i m J nσ λε= − = =  (141) 

 * * * 1 - 1 -I I I Ij jD E g I n j mη ε= + = =  (142) 

 * * 1 -I I IB H I nγ= =  (143) 

 

Eqs.(138)-(140) are just the modal constitutive equations for anisotropic piezoelectric body, 

in which { } { }T

Ij I jg hφ ϕ= ⎡ ⎤⎣ ⎦ , { } { }TTT
iJ i Jg hϕ φ= ⎡ ⎤⎣ ⎦ , T

iJ Jig g= are the coupled piezoelectric 

coefficients.  
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4.2 Modal equation of elastic waves in piezoelectric solids 

When only acoustic waves are considered, we can use the of quasi-static electromagnetic 
approximation. In this case, the mechanical equations are dynamic, the electromagnetic 
equations are static and the electric field and the magnetic field are not coupled. 
The static electric field equations and dynamic equations are given as follows 

 * * 0 1I ID I n∇ = = −  (144) 

 * * * 1,2, ,i i tt i i mσ ρ εΔ = Δ = A   (145) 

where 

 [ ] [ ][ ]* T⎡ ⎤∇ = Ψ ∇ Ψ⎣ ⎦  (146) 

 [ ]
11 21 31

12 22 32

13 23 33

∂ ∂ ∂⎡ ⎤
⎢ ⎥∇ = ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦

 (147) 

Substituting Eq.(142) into Eq.(144), we have 

 * * * * 0I I I I Ij jE gη ε∇ +∇ =   (148) 

The above can also be rewritten as follows 

 * * * * 0 1 - 1 -Ji

J J J i

J

g
E J n i mε

η

⎛ ⎞
∇ +∇ = = =⎜ ⎟⎜ ⎟

⎝ ⎠
   (sum to i) (149) 

According to the principle of operator, Eq.(148) becomes 

 * * 1 - 1 -Jk

J k

J

g
E J n k mε

η

⎛ ⎞
= − = =⎜ ⎟⎜ ⎟

⎝ ⎠
  (150) 

In same way, Substituting Eq.(141) into Eq.(145), we have 

 * * * * * 1T
i i i i iJ J tt ig E i mλε ρ εΔ − Δ = ∇ = −   (151) 

Using Eq.(150), Eq.(151) becomes 

 * * * * * 1 1JkT
i i i i iJ ik i tt i

J

g
g i m J nλε δ ε ρ ε

η

⎛ ⎞
Δ + Δ = ∇ = − = −⎜ ⎟⎜ ⎟

⎝ ⎠
 (152) 

According to the principle of operator, Eq.(152) becomes 

 * * * 1 1JkT
iJ ik i i i tt i

J

g
g i m J nδ λ ε ρ ε

η

⎡ ⎤⎛ ⎞
⎢ ⎥+ Δ = ∇ = − = −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    (sum to J) (153) 
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They are the equations of elastic waves in quasi-static piezoelectricity, in which the 
propagation speed of elastic waves is the folloing 

 1

JkT
i iJ ik

J J

i

g
g

v i m

λ δ
η

ρ

⎛ ⎞
+ ⎜ ⎟⎜ ⎟

⎝ ⎠= = −
∑

 (154) 

4.3 Modal equation of electromagnetic waves in piezoelectric solids 

When electromagnetic waves are involved, the complete set of Maxwell equation needs to 
be used, coupled to the static mechanical equations as follows 

 * * 0 1,2, ,i i i mσΔ = = A  (155) 

 { } { }* * * * 1I I t I IE B I nϑΔ = −∇ = −  (156) 

 { } { }* * * * 1I I t I IH D I nφΔ = ∇ = −  (157) 

Substituting Eq. .(141)-(143) into Eq.(155)-(157), we have 

 { } { }* * * 1I I t I I IE H I nϑ γΔ = −∇ = −  (158) 

 { } { }( )* * * * 1I I t I I I Ij jH E g I nφ η εΔ = ∇ + = −  (159) 

 ( )* * * 0 1T
i i i iJ JλεΔ − = = −g E i m  (160) 

Transposing Eq.(158), and multiplying it with { }*IΔ , and also using Eq.(159), we have 

 { }{ } { } { } ( )* * * * *
T T

I I I tt I I I I I Ij jE E gϑ φ γ η εΔ Δ = −∇ +  (161) 

Let { } { }* * *
T

I I I= Δ ⋅ ΔL and { } { }T

I I Iξ ϑ φ= , Eq.(159) can be written as 

 * * * *
I I tt I I I I tt I I Ij jE E gξ γ η ξ γ ε+∇ = −∇L  (162) 

From Eq.(160), Using the principle of operator, and changing the index, we have 

 * * 1,2, ,6
T
jK

j K

j

g
E jε

λ

⎛ ⎞
⎜ ⎟= =⎜ ⎟
⎝ ⎠

A  (sum to K)  (163) 

Substituting Eq.(163) into Eq.(162), we get the equations of electric fields 

 * * * 0
T
jK

I I tt I I I Ij IK I

j

E g Eξ γ η δ
λ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+ ∇ + =

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
L

g
 (sum to j, K) (164) 
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In same way, we can get the equations of magnetic fields 

 * * * 0
T
jK

I I tt I I I Ij IK I

j

H g Hξ γ η δ
λ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+ ∇ + =

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
L

g
      (sum to j, K)  (165) 

Eqs.(164) and (165) are just the eigen equations of electromagnetic waves in piezoelectric 
solids, the speed of electromagnetic waves are the following 

 2 1
1I

T
jK

I I I Ij IK

j

c I n

gξ γ η δ
λ

= = −
⎡ ⎤⎛ ⎞
⎢ ⎥+ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

g
 (166) 

4.4 Eigen properties of polarized ceramics 

In this section, we discuss the propagation laws of piezoelectromagnetic waves in an 

polarrized ceramics poled in the 3x -direction. The material tensors in Eqs.(132)-(134) are 

represented by the following matrices under the compact notation 

 

11 12 13

12 11 13

13 13 13

44

44

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

c c c

c c c

c c c

c

c

c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

31

31

33

15

15

0 0

0 0

0 0

0 0

0 0

0 0 0

h

h

h

h

h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
11

11

33

0 0

0 0

0 0

e

e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
11

11

33

0 0

0 0

0 0

μ
μ

μ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (167) 

where ( )66 11 12

1

2
c c c= − . 

There are four independent mechanical eigenspaces as follows 

 (1) (1) (2) (2)
1 1 2 2 3 3 6 4 4 5[ ] [ ] [ , ] [ , ]mechW W W W W= ⊕ ⊕ ⊕ϕ ϕ ϕ ϕ ϕ ϕ  (168) 

where 

               

1,2 11 12 T13
1,2 2 2

131,2 11 12 13

T
3

[1,1, ,0,0,0]
( ) 2

2
[1, 1,0,0,0,0] , 4,5,6

2
i i

c cc

cc c c

i

λ

λ

− − ⎫
= × ⎪

− − + ⎪
⎬
⎪

= − = = ⎪
⎭

,      ξ

ϕ

ϕ ϕ

 (169) 

 

2

211 12 33 11 12 33
1,2 13

3 11 12 4 44

2
2 2

,

c c c c c c
c

c c c

λ

λ λ

⎫+ + + +⎛ ⎞ ⎪= ± + ⎪⎜ ⎟ ⎬⎝ ⎠
⎪

= − = ⎪⎭

  (170) 

Then, we have 

                                 *
1,2 1,2=ϕ ϕ , *

3

3
1, 1,0,0,0,1

3

T
= −⎡ ⎤⎣ ⎦ϕ , *

4

2
0,0,0,1,1,0

2

T
= ⎡ ⎤⎣ ⎦ϕ               (171) 
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There are two independent electric or magnetic eigenspaces as follows 

 ( ) [ ] ( ) [ ]2 1

1 1 2 2 3,eleW W W= ⊕φ φ φ  (172) 

 ( ) ( )2 1

1 1 2 2 3,magW W W= ⊕⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ϑ ϑ ϑ  (173) 

where 

                                           11 11 33, ,diag e e e= ⎡ ⎤⎣ ⎦Γ , 11 11 33, ,diag μ μ μ= ⎡ ⎤⎣ ⎦Π                               (174)  

 

1 0 0

0 1 0

0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ , 

1 0 0

0 1 0

0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Θ  (175) 

Then, we have 

                                     * *
1 1

2
1,1,0

2

T
= = ⎡ ⎤⎣ ⎦φ ϑ , * *

2 2 0,0,1
T

= = ⎡ ⎤⎣ ⎦φ ϑ  (176) 

It is seen that the electric subspaces are the same as magnetic ones for polarrized ceramics. 
Thus, the physical quantities, the coupled coefficients and the corresponding operators of 
polarrized ceramics are calculated as follows 

 *
1 ,2 1,2 11 22 1,2 33[ ]a bε ε ε ε= + + , ( )*

3 11 22 12

3

3
ε ε ε ε= − + , ( )*

4 32 31

2

2
ε ε ε= +  (177) 

 
( )

( ) ( )

* 2 2 2 2 2
1,2 1,2 1,2

* 2 2 * 2 2 2
3 4

2 1
3 2

,

, 2 2

x y z

x y x y z xy

a b ⎫Δ = ∂ + ∂ + ∂ ⎪
⎬

Δ = ∂ + ∂ Δ = ∂ + ∂ + ∂ + ∂ ⎪⎭

 (178) 

 ( )2

*
1 1

2

2
E = E +E , ( )2

*
1 1

2

2
H = H +H , 

3

*
2E = E , 

3

*
2H = H  (179)                          

 ( )* 2 2 2 2
1

1
2 2

2
x y z xy= − ∂ + ∂ + ∂ − ∂M , ( )* 2 2

2 x y= − ∂ + ∂M  (180) 

and             

1 1,2I Iξ = =  

( ) ( )
11 21 31 41 15

12 1 31 1 33 22 2 31 2 33 32 42

0, 0, 0,

2 , 2 , 0, 0

g g g g h

g a h b h g a h b h g g

= = = =

= + = + = =
   

( ) ( )
11 12 13 14 15

21 1 31 1 33 22 2 31 2 33 23 24

0, 0, 0,

2 , 2 , 0, 0

T T T T

T T T T

g g g g h

g a h b h g a h b h g g

= = = =

= + = + = =
 

where 

13
1,2 2 2

1,2 11 12 13( ) 2

c
a

c c cλ
=

− − +
, 1,2 11 12

1,2

13

c c
b

c

λ − −
= . 
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4.5 Elastic waves in polarized ceramics 
There are four equations of elastic waves in polarized ceramics, in which the propagation 
speed of elastic waves is the folloing, respectively 

 2 1
1v

λ
ρ

=  (181) 

 

( ) ( )2 22 2
1 31 1 33 2 31 2 33

2
2 11 33
2

2 2a h b h a h b h

e e
v

λ

ρ

+ +
+ +

=   (182) 

 2 11 12
3

c c
v

ρ
−

=   (183) 

 

2
15

44
2 11
4

h
c

e
v

ρ

+
=  (184) 

It is seen that two of elastic waves are the quasi-dilation wave, and two others are the quasi-
shear waves, and only two waves were affected by the piezoelectric coefficients, which 
speeds up the propagation of second and fourth waves. 

4.6 Electromagnetic waves in polarized ceramics 
There are two equations of electromagnetic waves in polarized ceramics, in which the 
propagation speed of electromagnetic waves is the folloing, respectively  

 
( )

2
1 22 2

1 31 1 33 15
11 11

2 44

1

2
c

a h b h h
e

c
μ

λ

=
⎡ ⎤+
⎢ ⎥+ +
⎢ ⎥⎣ ⎦

 (185) 

 
( )

2
2 22

2 31 2 33
22 22

2

1

2
c

a h b h
eμ

λ

=
⎡ ⎤+
⎢ ⎥+
⎢ ⎥⎣ ⎦

  (186) 

It is seen that two electromagnetic waves are all affected by the piezoelectric coefficients, 
which slow down the propagation of electromagnetic waves. 

5. Fully dynamic waves in piezoelectric solids 

When fully dynamic waves are considered, the complete set of Maxwell equation needs to 
be used, coupled to the mechanical equations of motion as follows 

 * * * 1,2, ,i i tt i i mσ ρ εΔ = ∇ = A  (187) 

 { } { }* * * * 1I I t I IE B I nϑΔ = −∇ = −  (188) 
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 { } { }* * * * 1I I t I IH D I nφΔ = ∇ = −  (189) 

Substituting Eqs. (141)-(143) into Eqs. (187)- (189), respectively, we have 

 ( )* * * *
i i i tt iλε ρ εΔ − = ∇T

iJ Jg E   (sum to J)  (190) 

 { } { }* * * 1I I t I I IE H I nϑ γΔ = −∇ = −   (191) 

 { } { }( )* * * * 1I I t I I I Ij jH E g I nφ η εΔ = ∇ + = −  (192) 

Transposing Eq.(191), and multiplying it with { }*IΔ , and using Eq.(192), we have 

 ( )* * * 1 1I tt I I I I tt I I Ij jE g I n j mξ γ η ξ γ ε+∇ = −∇ = − = −L   (sum to j) (193) 

where { }{ }* * *
T

I I I= Δ ΔL and { } { }* *
T

I I Iξ ϑ φ= . Eq.(190) can be written as follows 

 ( )* * * * 1 1j j tt j jλ ρ εΔ − ∇ = Δ = − = −T

jI Ig E I n j m     (sum to I) (194) 

where ( )*
I tt I I Iξ γ η+∇L  and ( )*

j j ttλ ρΔ − ∇  are the electromagnetic dynamic operator and 

mechanical dynamic operator, respectively. In order to investigate the mutual effects 

between mechanical subspaces and electromagnetic subspaces, multiplying Eq.(191) with 

the mechanical dynamic operator and Eq.(192) with the electromagnetic dynamic operator, 

and substituting Eq. (194) into Eq. (193) and Eq. (193) into Eq. (194), we have 

 ( )( ) ( ) ( )* ** * *j jT
j j tt I tt I I I I tt I I Ij j jK KE gλ ρ ξ γ η ξ γΔ − ∇ +∇ = −∇ ΔL g E   (sum to K) (195) 

 ( )( ) ( ) ( )( )* ** * *I I

I tt I I I j j tt j j tt Iξ γ η λ ρ ε ξ γ ε+∇ Δ − ∇ = Δ −∇L T

jI I Ik kg g   (sum to k) (196) 

where ( )* j

IE  notes the I th modal electric field induced by j th mechanical subspace, and 
( )* I

jε  the j th modal strain field induced by I th electromagnetic subspace. Reorganizing 

Eqs.(195) and (196), we get 

( ) ( ) ( ) ( )* * ** * * * 0
j j jT

tttt I I I I tt I j I I j I Ij jK KI I j j I IE g E Eρ ξ γ η ρ ξ γ λη δ λ⎡ ⎤∇ +∇ −Δ + − Δ =⎣ ⎦L Lg  

   1 1= − = −I n j m     (sum to k) (197) 

( ) ( ) ( ) ( )* * ** * * * 0
I I IT

tttt I I I j tt I j I I j I Ij jK KI j j j I jgρ ξ γ η ε ρ ξ γ λη δ ε λ ε⎡ ⎤∇ +∇ −Δ + − Δ =⎣ ⎦L Lg     

 1 1= − = −I n j m     (sum to k) (198) 

In same way, we can obtain the modal magnetic field equations as follows 

( ) ( ) ( ) ( )* * ** * * * 0
j j j

tttt I I I I tt I j I I j I Ij I j j I Iρ η γ ξ ρ γ ξ λη δ λ⎡ ⎤∇ +∇ −Δ + − Δ =⎣ ⎦L LT

jK KIH g g H H  
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 1 1= − = −I n j m     (sum to k) (199) 

From the above results, we can see that when considering the mutual effects between 
mechanical subspaces and electromagnetic subspaces, the electromagnetic wave equations 
become four-order partial differential ones, meanwhile elastic wave equation still keep in 
the form of four-order partial differential ones. 

6. Conclusions 

In the first place, we analyzed here the elastic waves and electromagnetic waves in 

anisotropic solids. The calculation shows that the propagation of elastic waves in anisotropic 

solids consist of the incomplete dilation type and the incomplete shear type except for the 

pure longitudinal or pure transverse waves in isotropic solids. Several novel results for 

elastic waves were obtained, for example, there are two elastic waves in isotropic solids, 

which are the P-wave and the S-wave. There are three elastic waves in cubic solids, one of 

which is a quasi-P-waves and two are quasi-S-waves. There are four elastic waves in 

hexagonal (transversely isotropic) solids, half of which are quasi-P-waves and half of which 

are quasi-S-waves. There are five elastic waves in tetragonal solids, two of which are quasi-

P-waves and three of which are quasi-S-waves. There are no more than six elastic waves in 

orthotropic solids or in the more complicated anisotropic solids. For electromagnetic waves, 

the similar results were obtained: 1) the number of electromagnetic waves in anisotropic 

media is equal to that of eigen-spaces of anisotropic media; 2) the velocity of propagation of 

electromagnetic waves is dependent on the eigen-dielectric permittivity and eigen-magnetic 

permeability; 3) the direction of propagation of electromagnetic waves is related on the 

eigen electromagnetic operator in the corresponding eigen-space; 4) the direction of 

polarization of electromagnetic waves is relevant to the eigen-electromagnetic quantities in 

the corresponding eigen-space. In another word, there is only one kind of electromagnetic 

wave in isotropic crystal. There are two kinds of electromagnetic waves in uniaxial crystal. 

There are three kinds of electromagnetic waves in biaxial crystal and three kinds of distorted 

electromagnetic waves in monoclinic crystal. Secondly, the elastic waves and 

electromagnetic waves in piezoelectric solids both for static theory and for fully dynamic 

theory are analyzed here based on the eigen spaces of physical presentation. The results 

show that the number and propagation speed of elastic or electromagnetic waves in 

anisotropic piezoelectric solids are determined by both the subspaces of electromagnetically 

anisotropic media and ones of mechanically anisotropic media. For the piezoelectric 

material of class 6mm, it is seen that there exist four elastic waves, respectively, but only two 

waves were affected by the piezoelectric coefficients. There exist two electromagnetic waves, 

respectively, but the two waves were all affected by the piezoelectric coefficients. The fully 

dynamic theory of Maxwell’s equations, coupled to the mechanical equations of motion, are 

studied here. The complete set of uncoupled dynamic equations for piezoelectromagnetic 

waves in anisotropic media are deduced. For the piezoelectric material of class 6mm, it will 

be seen that there exist eight electromagnetic waves and also eight elastic waves, 

respectively. Furthermore, in fact of I jc v4 , except for the classical electromagnetic waves 

and elastic waves, we can obtain the new electromagnetic waves propagated in speed of 

elastic waves and new elastic waves propagated in speed of electromagnetic waves. 
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