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1. Fundamental Theory of Finite Element 

There are many mechanics and field problems in the domain of engineering technology, 
such as the analyses of stress-strain field, displacement field, temperature field in the heat 
conduction, flow field in the hydrodynamics, electromagnetic field in the electromagnetism, 
etc, which can be considered as the problems to solve the basic differential equations with a 
certain boundary conditions. Although the basic equations and boundary conditions have 
been established, very few simple questions can be solved to obtain the analytical solution. 
For the questions with complex mathematical equations or irregular physical boundary, it is 
insurmountably difficult to solve the mathematical problems by analytical method. There 
are usually two ways to solve such problems: one is the analytic method, another is the 
numerical method. After introducing the simplifying assumptions, the analytic method can 
be used to get the approximate solution. But this approach is not always feasible to the 
actual problems, so the incorrect or wrong answers will always be led to. To meet the needs 
of the complex project problems, the numerical solution can be adopted to finish a variety of 
effective numerical calculation. At present, numerical solution methods in engineering 
practical applications commonly include the limited element method, finite difference 
method, the boundary element method, weighted residual method, etc. With the rapid 
development and extensive application of computer, the finite element method, a relatively 
new and very effective numerical method, has gradually been used to solve the complex 
engineering problems. 

 
1.1 Finite Element Method, FEM 
Finite Element Method (FEM) is an integrated product of many disciplines, including 
mechanics, mathematical physics, computational methods, computer technology, and so on. 
The three research methods, theoretical analysis, scientific experiments and scientific 
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computing, have been applied to study the nature problems. Because of the limitations of 
scientific theory and experiments, the scientific computing becomes one of the most 
important research tools. As one of ways to carry out the scientific computing, the 
finite-element method can almost analyze any complex engineering structure so as to obtain 
various mechanical properties in most engineering fields. 
The analyses of various mechanical problems can be concluded to the following two forms：
the analytical method and the numeric method. If a problem given, the answers can be got 
by some derivation, which is called the analytical method. Due to the complexity of the 
actual structure, it is difficult to analytically solve the majority of scientific researches and 
engineering problems except for a few very simple questions. Therefore, the numerical 
methods, such as the finite element method, finite difference method, boundary element 
method, have become the irreplaceable and widely used methods. Rrapidly developed in 
the mid-20th century, the finite-element method can flexibly analyze and solve various 
complex problems for the precise mathematical logic, clear physical concept and wide 
utilization. By adopting the matrix, the finite-element method can conveniently make 
computer programs to express the basic formula, which makes it vitality. 
The essence of the finite-element method is that a complex continuum is divided into a 
limited number of simple cell body, which transforms the infinite freedom degrees to the 
limited freedom degree, and the (partial) differential equation to the algebraic equations of 
finite number of parameters. While analyzing the problems of engineering structure with 
the finite-element method, after the discretization of an ideal discrete body, it is one of main 
discussing contents of the finite-element theory how to ensure the convergence and stability 
of numerical solution. The convergence of numerical solution is related to the element 
division and shape. During the solving process, as the basic variable, the displacement is 
usually solved through the virtual displacement or minimum potential energy principle.  
The finite-element method is initially applied in the fields of engineering science and 
technology. As a mathematical and physical method, the finite-element method is used to 
simulate and solve the problems of engineering mechanics, thermology, electromagnetism 
and other physical subjects. Moreover, as a numerical analytical method with theoretical 
foundation and extensive applicable effect, it can solve the problems can’t be dealt with by 
the analytic method. Especially for the complex issues of the irregular boundary conditions 
or structural shapes, the finite-element method is an effective modern analytical tool. In 
recent years, the application and development of the finite-element method in the field of 
bio-mechanics show as follows: 

 
1.1.1 Generation of the Finite-element method 
The basic ideas of the finite-element method are usually regarded to begin in the 20th 
century. In fact, as early as the 3rd century AD, it is the basic expression when Hui Liu, a 
Chinese mathematician, suggested the method to solve the circumference length by the 
segmentation unit. According to the thought solving the internal force of structural frame in 
the classical mechanics, the structural frame is treated as the finite pole elements connected 
at the junction points in the displacement method, in which each pole element is firstly 
studied and then finally comprehensively analyze the combination of pole elements. The 
basic idea of finite-element method is early discretization and later integration. 
In 1942, Hrenikoff first proposed the framework method solving mechanical problems, 
which is only limited to construct the discrete model with the plot series of structure. In 1943, 

Courant [1] published a paper to solve the reverse problem by using the polynomial 
function in the triangular region, in which the flexure function is originally assumed as a 
simple linear function on each element in a collection of triangular element collection. It is 
the first time to deal with the continuum problem by the finite element method. 
In 1950’, due to the rapid development of aviation industry, more accurate design and 
calculation needed be used in the aircraft structure. In 1955, the professor JH Argyris in the 
University of Stuttgart, Germany, published a set of papers about energy principles and 
matrix, which laid the theoretical basis of the finite element method. In 1956, Turner, Clough, 
Martin, Top, etc, extended the displacement method to the plane problems of elasticity, and 
use it in the aircraft structural analysis and design. By systematically study the stiffness 
expression of discrete bar, beam, triangular elements, the correct answers are be obtained for 
the plane stress problems. Thus their work began the new phase to solve complex elasticity 
problems using computers. 
In 1960, Clough firstly proposed and used the name of "finite element method" while 
dealing with the section elastic problems, which made people better understand the 
characteristics and effectiveness of this approach. Since then, a large number of scholars and 
experts begun to use the discrete approach to deal with the complex issues of structural 
analysis, fluid analysis, thermal conductivity, electromagnetism, etc. From 1963 to 1964, 
Besseling, Pian T.H. and other researchers proved that the finite-element method is actually 
one of means of Rayleigh - Ritz method in the elasticity variational principles, which in 
theory lays a mathematical foundation for the finite-element method. Compared with the 
variational principle, the finite-element method is more flexible, adaptable and precise. The 
results also greatly promoted the research and development of variational principle, and a 
series of new finite-element models have been emerged based on the variational principle, 
such as the mixed finite element, non-conforming element, generalized conforming element, 
etc. In 1967, Zienkiewicz and Cheung published the first book on the finite-element analysis. 
After the 1970’, the finite-element method entered into high-speed period with the 
development of computer technology and software technology. At that time, the in-depth 
research was carried out on the finite element method, including the theories in the fields of 
mathematics and mechanics, principles of element division, the selection of shape functions, 
numerical methods, error analysis, convergence, stability, computer software development, 
nonlinear problems, large deformation problems, etc. In 1972, Oden published his first book 
dealing with non-linear continuum. In the process of development of finite-element method, 
chinese scientists have also made the outstanding contributions, for example the generalized 
variational principle proposed by Changhai Hu, the relationship between Lagrange 
multiplier method and generalized variational principles first studied by Weichang Qian, 
the accuracy and convergence of finite element method made by Kang Feng, the 
complementary energy principle by Lingxi Qian, and so on. 
With the continuous development and improvement, the finite-element method has become 
a mature discipline, has been extended to other research fields, and become a powerful tool 
to solve practical problems for the science and technology researchers. 

 
1.1.2 Basic Theory of the Finite-element method 
The finite-element method is a general numerical one dealing with continuum problems. 
The basic idea of finite-element method is to split up, and then accumulate zero into the 
whole, which is artificially divided a continuum into finite elements. That is, a structure is 
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computing, have been applied to study the nature problems. Because of the limitations of 
scientific theory and experiments, the scientific computing becomes one of the most 
important research tools. As one of ways to carry out the scientific computing, the 
finite-element method can almost analyze any complex engineering structure so as to obtain 
various mechanical properties in most engineering fields. 
The analyses of various mechanical problems can be concluded to the following two forms：
the analytical method and the numeric method. If a problem given, the answers can be got 
by some derivation, which is called the analytical method. Due to the complexity of the 
actual structure, it is difficult to analytically solve the majority of scientific researches and 
engineering problems except for a few very simple questions. Therefore, the numerical 
methods, such as the finite element method, finite difference method, boundary element 
method, have become the irreplaceable and widely used methods. Rrapidly developed in 
the mid-20th century, the finite-element method can flexibly analyze and solve various 
complex problems for the precise mathematical logic, clear physical concept and wide 
utilization. By adopting the matrix, the finite-element method can conveniently make 
computer programs to express the basic formula, which makes it vitality. 
The essence of the finite-element method is that a complex continuum is divided into a 
limited number of simple cell body, which transforms the infinite freedom degrees to the 
limited freedom degree, and the (partial) differential equation to the algebraic equations of 
finite number of parameters. While analyzing the problems of engineering structure with 
the finite-element method, after the discretization of an ideal discrete body, it is one of main 
discussing contents of the finite-element theory how to ensure the convergence and stability 
of numerical solution. The convergence of numerical solution is related to the element 
division and shape. During the solving process, as the basic variable, the displacement is 
usually solved through the virtual displacement or minimum potential energy principle.  
The finite-element method is initially applied in the fields of engineering science and 
technology. As a mathematical and physical method, the finite-element method is used to 
simulate and solve the problems of engineering mechanics, thermology, electromagnetism 
and other physical subjects. Moreover, as a numerical analytical method with theoretical 
foundation and extensive applicable effect, it can solve the problems can’t be dealt with by 
the analytic method. Especially for the complex issues of the irregular boundary conditions 
or structural shapes, the finite-element method is an effective modern analytical tool. In 
recent years, the application and development of the finite-element method in the field of 
bio-mechanics show as follows: 

 
1.1.1 Generation of the Finite-element method 
The basic ideas of the finite-element method are usually regarded to begin in the 20th 
century. In fact, as early as the 3rd century AD, it is the basic expression when Hui Liu, a 
Chinese mathematician, suggested the method to solve the circumference length by the 
segmentation unit. According to the thought solving the internal force of structural frame in 
the classical mechanics, the structural frame is treated as the finite pole elements connected 
at the junction points in the displacement method, in which each pole element is firstly 
studied and then finally comprehensively analyze the combination of pole elements. The 
basic idea of finite-element method is early discretization and later integration. 
In 1942, Hrenikoff first proposed the framework method solving mechanical problems, 
which is only limited to construct the discrete model with the plot series of structure. In 1943, 

Courant [1] published a paper to solve the reverse problem by using the polynomial 
function in the triangular region, in which the flexure function is originally assumed as a 
simple linear function on each element in a collection of triangular element collection. It is 
the first time to deal with the continuum problem by the finite element method. 
In 1950’, due to the rapid development of aviation industry, more accurate design and 
calculation needed be used in the aircraft structure. In 1955, the professor JH Argyris in the 
University of Stuttgart, Germany, published a set of papers about energy principles and 
matrix, which laid the theoretical basis of the finite element method. In 1956, Turner, Clough, 
Martin, Top, etc, extended the displacement method to the plane problems of elasticity, and 
use it in the aircraft structural analysis and design. By systematically study the stiffness 
expression of discrete bar, beam, triangular elements, the correct answers are be obtained for 
the plane stress problems. Thus their work began the new phase to solve complex elasticity 
problems using computers. 
In 1960, Clough firstly proposed and used the name of "finite element method" while 
dealing with the section elastic problems, which made people better understand the 
characteristics and effectiveness of this approach. Since then, a large number of scholars and 
experts begun to use the discrete approach to deal with the complex issues of structural 
analysis, fluid analysis, thermal conductivity, electromagnetism, etc. From 1963 to 1964, 
Besseling, Pian T.H. and other researchers proved that the finite-element method is actually 
one of means of Rayleigh - Ritz method in the elasticity variational principles, which in 
theory lays a mathematical foundation for the finite-element method. Compared with the 
variational principle, the finite-element method is more flexible, adaptable and precise. The 
results also greatly promoted the research and development of variational principle, and a 
series of new finite-element models have been emerged based on the variational principle, 
such as the mixed finite element, non-conforming element, generalized conforming element, 
etc. In 1967, Zienkiewicz and Cheung published the first book on the finite-element analysis. 
After the 1970’, the finite-element method entered into high-speed period with the 
development of computer technology and software technology. At that time, the in-depth 
research was carried out on the finite element method, including the theories in the fields of 
mathematics and mechanics, principles of element division, the selection of shape functions, 
numerical methods, error analysis, convergence, stability, computer software development, 
nonlinear problems, large deformation problems, etc. In 1972, Oden published his first book 
dealing with non-linear continuum. In the process of development of finite-element method, 
chinese scientists have also made the outstanding contributions, for example the generalized 
variational principle proposed by Changhai Hu, the relationship between Lagrange 
multiplier method and generalized variational principles first studied by Weichang Qian, 
the accuracy and convergence of finite element method made by Kang Feng, the 
complementary energy principle by Lingxi Qian, and so on. 
With the continuous development and improvement, the finite-element method has become 
a mature discipline, has been extended to other research fields, and become a powerful tool 
to solve practical problems for the science and technology researchers. 

 
1.1.2 Basic Theory of the Finite-element method 
The finite-element method is a general numerical one dealing with continuum problems. 
The basic idea of finite-element method is to split up, and then accumulate zero into the 
whole, which is artificially divided a continuum into finite elements. That is, a structure is 
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regarded as an integral made up of elements joined by the number of nodes. After the 
element analyses, the assembled elements is overall analyzed to represent the original 
structure. From the view of mathematical point, the finite element method is one that turns a 
partial differential equation into an algebraic equation, and then solved by computer. Using 
a matrix algorithm, the results can be quickly calculated through the computer. 
The basic theory of finite element method is firstly to discretize the continuous 
computational region into a finite number of unit integration linked together by a certain 
forms. As the unit can be combined by different connected ways and the unit itself can have 
different shapes, it can be simulated to solving small region of different geometric shapes, 
then the units (small area) are carried out on the mechanical analysis, and finally is the 
overall analysis. That is the basic idea which breaks up the whole into parts and collect parts 
for the whole. Another important feature of the finite-element method is to express 
piecewise the unknown field function in the sub-domains by using the hypothetical 
approximate function in each unit. The approximate function is usually expressed by 
unknown field function or the data and difference of derivative on each node. Thus, the 
unknown field function or derivative in each node become the new unknown amounts (the 
degrees of freedom) while analyzing the problems using the finite-element analysis. So that 
the issues of continuous unlimited freedom become those of the discrete limited freedom. 
After solving these unknown variables, the approximation of field function in each element 
can be calculated by interpolation, and then the approximate solution can be obtained in the 
entire solution region. With the increasing unit numbers (decreasing unit size), or with the 
rising element freedom degree and improved accuracy of interpolation function, the 
solutions approximation is continuously improved. As long as each unit meets the 
convergence requirements, the approximate solution will eventually converge to the exact 
solutions. 

 
1.1.3 The characteristics of finite-element method 
(1) The adaptability for complex geometry components 
As the finite element method of cell division can be one-dimensional, two-dimensional, 
three-dimensional in space, and can have different shapes, such as two-dimensional 
elements can be triangular, quadrilateral, 3D element can be tetrahedral, five-sided, six 
sided, etc. At the same time, the modules can also have different connection forms. 
Therefore, any complex structure or construction in the practical application can all be 
separated into a collection made up of finite of modules. 
(2) The adaptability for a variety of configuration problems 
The finite element method has been developed from the first pole structure to the current 
plastic, viscoelastic-plastic and power issues of problems, which can be used to solve 
various complex non-linear problems in the fluid mechanics, thermodynamics, 
electromagnetism, aerodynamics. 
(3) The reliability of theoretical basis 
The theory of finite element method is based on variational and energy-conservation 
principles, which have been reliably proven in mathematics and physics. As soon as the 
mathematical model is appropriately set up and the algorithm of finite element equation is 
stable convergence, the solution obtained are authentic. 
(4) The credibility of accuracy 
As long as the research question itself is solvable, the accuracy of finite element method will 

be continually increased as the cell number increases in the same conditions, then the 
approximate solutions will keep close to the exact ones. 
(5) The efficiency of calculation 
As each step of the finite-element analysis can be expressed in matrix form, the final 
solutions come down to solve the standard matrix algebra problem, which particularly 
suitable for computer programming calculations by turning a number of complex 
differential, partial differential equations into solving algebraic equations. 

 
1.2 The analysis process of finite-element method 
1.2.1 The discretization of structure 
The first step of a finite element analysis is to decentralize the structure, that is, to divide the 
entire structure into a finite element based on different accuracy requirements, performance 
requirements and other factors. The positions between elements or element and boundary 
are connected by nodes. 
During the discretization, we must pay more attention on the following three points: the 
choice of element types, including element shape, node number, and node number of 
freedom, a certain regularity of element partition, in order to compute the network of 
automatic generation, and then conducive to encrypt the network. And the same element 
should be composed of the same material. 

 
1.2.2 The element analysis 
The element analysis regards each discretized element as a research object. The relationship 
between node displacement and the nodal force includes the following two aspects: 
(1) Determine the displacement mode of element  
For the displacement finite-element method, the displacement model of element is to 
calculate the displacement at any point with the node displacement of element, in which the 
element displacement can be expressed as a function of node displacement. It directly affects 
the accuracy, efficiency and reliability of finite element analysis whether or not a reasonable 
assumption of displacement function. 
(2) Analyze the element characteristics 
After establishing the displacement function of element, according to the relationship 
among stress, strain and displacement, the relationship between the element rod end force 
and displacement of rod end and then the element stiffness matrix are obtained by using the 
virtual displacement and minimum potential energy principles. Here the load on the 
element must be equivalent to the node load. Thus the element analysis is in fact the process 
to set up the element stiffness and equivalent nodal load matrixes. 

 
1.2.3 The overall analysis 
After determining the stiffness equation of each element, you can set the various units of a 
whole structure, the node balance equations of entire structure are established, that is the 
overall stiffness equation, through analyzing the whole structure gathered by each element. 
After the introduction of structural boundary conditions, the equations are solved to reach 
the node displacement, and then the internal force and deformation of each element. 
1.3 Steps to solve the finite element method 
When any continuum are solved with the finite element method, the solution continuous 
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The first step of a finite element analysis is to decentralize the structure, that is, to divide the 
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between node displacement and the nodal force includes the following two aspects: 
(1) Determine the displacement mode of element  
For the displacement finite-element method, the displacement model of element is to 
calculate the displacement at any point with the node displacement of element, in which the 
element displacement can be expressed as a function of node displacement. It directly affects 
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assumption of displacement function. 
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After establishing the displacement function of element, according to the relationship 
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and displacement of rod end and then the element stiffness matrix are obtained by using the 
virtual displacement and minimum potential energy principles. Here the load on the 
element must be equivalent to the node load. Thus the element analysis is in fact the process 
to set up the element stiffness and equivalent nodal load matrixes. 

 
1.2.3 The overall analysis 
After determining the stiffness equation of each element, you can set the various units of a 
whole structure, the node balance equations of entire structure are established, that is the 
overall stiffness equation, through analyzing the whole structure gathered by each element. 
After the introduction of structural boundary conditions, the equations are solved to reach 
the node displacement, and then the internal force and deformation of each element. 
1.3 Steps to solve the finite element method 
When any continuum are solved with the finite element method, the solution continuous 
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area should be divided into a finite number of elements, and a finite number of nodes are 
specified in each element. Generally, the adjacent elements can be considered to constitute a 
group of element by in the nodes, and then form the collection which is used to simulate or 
approximate the solving region. At the same time, the node data are selected in the field 
function, such as the node displacement regarded as the basic unknown quantity. By the 
block approximation to each element, a simple function (called interpolation function) can 
approximately express the assuming the displacement distribution. Using the variational 
principle or other methods, a set of algebraic equations can be obtained in which the nodal 
displacements is regarded as the unknowns by establishing the mechanical properties 
relationship between force and displacement of element nodes. Thereby the node 
displacement components can be solved. The approximate function in the element is usually 
expressed by the unknown field function or each node data of field functions and their 
interpolation function. Thus, in the finite element analysis, the unknown field function or 
derivative values of each node in the element becomes a new unknown quantity (ie degrees 
of freedom). Then a continuous problem of infinite freedom degrees becomes the discreted 
problem of limited freedom degrees. Upon solving these unknowns, the approximation of 
field function in each element can be calculated by interpolation function, and the 
approximate solution in the overall solving domain can be obtained. Obviously, if the 
element meet the convergence demands of problem, the approximate level of solution will 
be improved with the shrinking element size, increasing element numbers in the solving 
region, rising element freedom degree or improving accuracy of interpolation function, and 
finally the approximate solution will eventually converge to exact solutions. 
While solving the mechanics problems by using the finite element method, the basic 
unknowns mustn’t be given with the node displacement but the node force. Therefore, for 
the different taken basic unknown quantity, there are the so-called displacement, 
hybridization and mixing method, in which the displacement method is the most common. 
The ANSYS, well-known large-scale commercial software, adopts the finite element 
displacement method [2,3]. 

 
1.4 The basic steps of the finite element method [4] 
(1) Discretization of objects and selected element type 
The core of the finite element method is discretization. For each specific issue, the specific 
content of discretization is how to choose the appropriate element type to determine 
element size, number, layout and sequential manner of nodes. Element size is small enough 
to ensure the accuracy of calculation, and element size is large enough to reduce the 
computation workload. In theory, the finer elements, the more nodes can be arranged, and 
more accurate the results are. Today, the computer's capacity and speed are not the 
principal contradiction. However, it shows that the grid encrypt is not effective for 
improving the calculation accuracy after the numbers of nodes and elements reach a certain 
value. The general principle divided into elements: the element nodes should be those of 
intersection, turning, support and sectional mutations points in the structure. 
(2) The analysis of element 
The element analysis is to solve the relationship between the nodal displacement of basic 
unknown quantity and the corresponding nodal forces. For the element, the Nodal forces 
are the external forces on the elements through the nodes, which determines not only the 
displacement of this node, but also the effects of other nodes in this element. After 

determining the element displacement, the stress and strain of elements can be easily 
obtained by the geometric and physical equations. In general, the stiffness matrix can 
express the element properties, and then the relationship between the element nodal force 
and displacement can be determined. 
(3) The overall analysis 
The overall analyses include the combination of whole stiffness matrix and the 
establishment of balance equations. The whole stiffness matrix is made up of the element 
stiffness matrix, and each item contains all corresponding information of relevant elements 
of nodes. 
(4) The introduction of support conditions and total load of nodes 
The support conditions are constraint ones. Suspended structures without constraint can’t 
support the loads. The total loads of nodes include ones acted on nodes and the non-node 
ones of equivalent transplant. The node load vectors are consistent with node force vectors 
of overall stiffness equations. After changing the node force vector of overall stiffness 
equations to the node load vectors, the node balance equations are established and the nodal 
displacements as unknowns. 
(5) The nodal displacement by solving the finite-element equations 
All unknown nodal displacements can be solved for solving algebraic equations with the 
finite-element software. 
(6) Return to the results of element calculation 
The element strain can be solved by the nodal displacements, and the element stress can be 
reversed through the physical equations. 

 
1.5 The finite-element method is the synthesis of a variety of methods [4] 
At first, the finite element method is a kind of model one. The model is a kind of simplified 
description on a simplified understanding of the objects' for a particular purpose. By 
studying the prototype model, it reveals the morphology, characteristics and nature of 
objects. An important feature of the finite element method is to express the unknown 
function to be calculated in the overall solution domain by using the approximate function 
supposed in each element. Then there is an approximation problem between approximate 
and real solutions. Obviously, the approximation degree of solution is higher with the 
increasing element numbers, that is the shrinking element size, or with the rising element 
freedom degree, that is the improved interpolation function. Secondly, the finite-element 
method is the result about the integrated application of the analysis and comprehensive 
methods. The first part work of finite-element method is to discretize the study object into 
many simple shapes and easy description. According to the special circumstances, the object 
can be discreted to the two-dimensional or three-dimensional finite element collections, in 
which the discreted elements have simple and regular geometry easy to calculate. For the 
two-dimensional elements, there are normally triangular or rectangular. For 
three-dimensional elements, there are commonly tetrahedral or parallelepiped. For the same 
shape of element, there are different nodes, so many different kinds of elements. According 
to various analysis object and purpose, the elements selected are different.  
 
1.6 The application of finite-element method in bio-mechanics 
It has made great achievements that the finite-element method is applied the life science to 
carry out the quantitative research. In particular, its great superiority is demonstrated in the 
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research on human biomechanics. After a long evolution of human labor, the human 
skeleton has almost formed a perfect mechanical structure. However, the mechanics 
experiment is almost impossible to directly develop while the mechanical structure of 
human body is studied. At that time, it is an effective means that the finite element 
numerically simulates the mechanical experiments. 
In 1960’s, the finite element method was initially applied in the cardiovascular system study 
on mechanical problems. From the 1970's, the orthopedic biomechanics research began to be 
initially applied to spine. After 80 years, the applicable range is gradually extended to 
craniofacial bone, mandible bone, femur[5], teeth[6], joint[7, 8], cervical [9], lumbar [10] and 
its subsidiary structure in the bio-mechanics fields. 
(1) Improvement and optimization design of equipment  
The finite element analysis can improve the mechanical properties of medical devices and 
optimize the design of equipment. The mechanical properties of medical equipment often 
determine the effectiveness of the clinical application. Therefore it is more important to 
evaluate the mechanical properties of appraisal instrument. In addition to the experimental 
methods, the simulative experiment to the mechanical equipment with the finite-element 
method has the advantages of short time, cost less, handling complex conditions, 
comprehensive mechanical properties and good repetitiveness, etc. In addition, the 
finite-element method can also optimize the design, guide the design and improvement of 
medical devices, and obtain better clinical effects. 
(2) The mechanical simulation experiment by finite element model  
The powerful modeling capabilities and interface tool if the finite element software can 
distinctly build the models of three-dimensional human bone, muscle, blood vessels and 
other organs, and be able to give their biomechanical properties. In the simulated 
experiments, the model simulation to experimental conditions and mechanical tests to 
simulate the stretching, bending, torsion, anti-fatigue can solve the deformation, stress, 
strain distribution, the internal energy change and the ultimate destruction situation on 
different experimental conditions [11]. 
(3) Nowadays, the finite element method has been widely used in the country, and has 
made a lot of successes. Particularly, there are more certain guidances in the clinical 
application. In bio-mechanics the finite-element application, there are a large number of 
spaces to research the shape and structure of finite element model. 

 
2. Mechanical Analysis of cranial cavity deformation 

2.1 Mechanical Analysis of deformation of the skull as a whole 
There are two aspects of effects on external forces on the objects. One can make objects 
produce the acceleration, another is make objects deform. In discussing the external force 
effect, the objects are assumed to be a rigid body not compressed. But in fact, all objects will 
deform under loading, but different with the degrees. Here, we will mechanically analyze 
the overall deformation of cranial cavity under the external force. 
(1) Two basic assumptions 
To simplify the analysis of deformation of human skull, we assume: 
1) Uniformly-continuous materials 
The human skull is presumed to be everywhere uniform, and the sclerotin is no gap in bone 
of cranial cavity. 

2) The isotropy 
The human skull is supposed to have the same mechanical properties in all directions. The 
thickness and curvature of human skull vary here and there. The external and internal 
boards are all compact bones, in which external board is thicker than internal board but the 
radian of external board is smaller than that of the internal board. The diploe is the 
cancellous bone between the external board and the internal board, which consists of the 
marrow and diploe vein. The parietal bone is the transversely isotropic material8, namely, it 
has the mechanical property of rotational symmetry in any axially vertical planes of skull 9. 
The tensile and compressive abilities of compact bone are strong. The important mechanical 
characteristics of cancellous bone are viscoelasticity10, which is generally considered as the 
construction of semi-closed honeycomb composed of bone trabecula reticulation. The main 
composition of cerebral duramater, a thick and tough bilayer membrane, is collagenous 
fiber11, which is viscoelastic material12. And the thickness of duramater is obviously 
variable with the changing ICP13. The mechanical performance of skull is isotropic along 
tangential direction on the skull surface14, in which the performance of compact bone in the 
external board is basically the same as that in the internal board15, thus both cancellous bone 
and duramater can be regarded as isotropic materials16. And the elastic modulus of fresh 
duramater is variable with delay time17. And there are a number of sutures in the cranial 
cavity. But while a partial skull is studied on the local deformation, we can regard each 
partial skull as quasi-homogeneous and quasi-isotropic. In addition, the sutures of cranial 
cavity are also the continuous integration with ages. 
(2) Two concepts 
(1) stress ( ) 

Stress is the internal force per unit area. The calculation unit is 2kg/cm  or 2kg/mm . 
2) Transverse deformation coefficient 
When the objects are under tension, not only the length is drawn out from l  to 1l , but 

also the width is reduced from b  to 1b . This shows that there are the horizontal 
compressive stresses in the objects. Similarly, while the object is compressed, not only its 
length shortens but its width increases. It indicates that the horizontal tensile stress 
distributes in the objects. 
The horizontal absolute deformation is noted as 1bbb  , and the transverse strain is 

bb0 . 

In mechanics of materials, the transverse strain 0  is proportional to the longitudinal 
strain   of the same material within the scope of the Hooke theorems’ application. The 

ratio of its absolute value  0  is a constant.   is known as the coefficient of 

lateral deformation, or Poisson ratio. The Poisson ratio of any objects can be detected by the 
experiment. 
While vertically compressed, the objects simultaneously have a horizontal tension. 
Therefore, when the head attacked in opposite directions force, the entire human skull will 
take place the longitudinal compression and transverse tension with the same direction of 
force. Then the longitudinal compressive stress and the horizontal tensile stress will be 
generated in the scelrotin. Thus, the stress of arbitrary section along radial direction in shell 
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is just equal to the tangential pulling force along direction perpendicular to the normal 
vertical when ICP is raised. 

 
2.2 The finite-element analysis of strains by ignoring the viscoelasticity of cranial 
cavity 
The geometric shape of human skull is irregular and variable with the position, age, gender 
and individual. So the cranial cavity system is very complex. Moreover, the cranial cavity is 
a kind of viscoelactic solid with large elastic modulus, and the brain tissue is also a 
viscoelastic fluid with great bulk modulus. It is now almost impossible to accurately analyze 
the brain system. Only by some simplification and assumptions, the complex issues can be 
made. Considering the special structure of cranial cavity composed of skull, duramater, 
encephalic substance, etc, here we simplify the model of cranial cavity as a regular geometry 
spheroid of about 200mm external diameter, which is an hollow equal-thickness thin-wall 
shell. 
The craniospinal cavity may be considered as a balloon. For the purpose of our analysis, we 
adopted the model of hollow sphere. We presented the development and validation of a 3D 
finite-element model intended to better understand the deformation mechanisms of human 
skull corresponding to the ICP change. The skull is a layered sphere constructed in a 
specially designed form with a Tabula externa, Tabula interna, and a porous Diploe 
sandwiched in between. Based on the established knowledge of cranial cavity importantly 
composed of skull and dura mater (Fig2.1), a thin-walled structure was simulated by the 
composite shell elements of the finite-element software [18]. The thickness of skull is 6mm, 
that of duramater is 0.4mm, that of external compact bone is 2.0mm, that of cancellous bone 
is 2.8mm, and that of internal compact bone is 1.2mm. 
 

 
Fig. 2.1 Sketch of layered sphere. The thin-walled structure of cranial cavity is mainly 
composed of Tabula externa, Diploe, Tabula interna and dura mater. 
 
Above all, we should prove the theoretical feasibility of the strain-electrometric method to 
monitor ICP. We simplify the theoretical calculation by ignoring the viscoelasticity of 
cancellous bone and dura mater. And then we make the analysis of the actual deformation 
of cranial cavity by considering the viscoelasticity of human skull-dura mater system with 
the finite-element software. At the same time, we can determine how the viscoelasticity of 
human skull and dura mater influences the strains of human skull respectively by ignoring 
and considering the viscoelasticity of human skull and dura mater. 
 
2.2.1 The stress and strain analysis of discretized elements of cranial cavity 
In order to obtain the numerical solution of the skull strain, the continuous solution region 
of cranial cavity divided into a finite number of elements, and a group element collection 

glued on the adjacent node points. Then the large number of cohesive collection can be 
simulated the overall cranial cavity to carry out the strain analysis in the solving region. 
Based on the block approximation ideas, a simple interpolation function can approximately 
express the distribution law of displacement in each element. The node data of the selected 
field function, the relationship between the nodal force and displacement is established, and 
the algebraic equations of regarding the nodal displacements as unknowns can be formed, 
thus the nodal displacement components can be solved. Then the field function in the 
element collection can be determined by using the interpolation function. If the elements 
meet the convergence requirements, with the element numbers increase in the solving 
region with the shrinking element size, and the approximate solution will converge to exact 
solutions [12].  
The solving steps for the strains of cranial cavity with the ICP changes are shown in Fig2.2. 
The specific numerical solution process is: 
1) The discretized cranial cavity 
The three-dimensional hollow sphere of cranial cavity is divided into a finite number of 
elements. By setting the nodes in the element body, an element collection can replace the 
structure of cranial cavity after the parameters of adjacent elements has a certain continuity. 
2) The selection of displacement mode 
To make the nodal displacement express the displacement, strain and stress of element body, 
the displacement distribution in the elements are assumed to be the polynomial 
interpolation function of coordinates. The items of polynomial number are equal to the 
freedom degrees number of elements, that is, the number of independent displacement of 
element node. The orders of polynomial contain the constant term and linear terms. 
According to the selected displacement mode, the nodal displacement is derived to express 
the displacement relationship of any point in the elements. Its matrix form is: 
 

     eNf   (2.1) 
 
Where:  f - The displacement array of any point within the element; 

 N - The shape function matrix, its elements is a function of location coordinates; 

 e - The nodal displacement array of element. 
The block approximation is adopted to solve the displacement of cranial cavity in the entire 
solving region, and an approximate displacement function is selected in an element, where 
need only consider the continuity of displacement between elements, not the boundary 
conditions of displacement. Considering the special material properties of the middle 
cancellous and duramater, the approximate displacement function can adopt the piecewise 
function. 
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Fig. 2.2 Block diagram of numerical solution steps of cranial cavity with the finite-element 
method 
 
3) Analyze the mechanical properties of elements, and derive the element stiffness matrix 
a. Using the following strain equations, the relationship of element strain (2.2) is expressed 
by the nodal displacements derived from the displacement equation (2.1): 
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     eB    (2.2)               

 

Where：[B]——The strain matrix of elements； 
  ——The strain array at any points within the elements. 

b. The constitutive equation reflecting the physical characteristics of material is 
     D , so the stress relationship of stress can be expressed with the nodal 
displacements derived from the strain formula (2.2): 
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Where:   - The stress array of any points in the elements; 

 D - The elastic matrix related to the element material. 
c. Using the variational principle, the relationship between force and displacement of the 
element nodes is established: 
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 eCF - Concentration force of nodes. 
4) Collecting all relationship between force and displacement, and establish the relationship 
between force and displacement of cranial cavity 
According to the displacement equal principle of the public nodes in all adjacent elements, 
the relationship between force and displacement of overall cranial cavity collected from the 
element stiffness matrix: 
     KF   (2.5) 

Where:  F - Load array; 

 K - The overall stiffness matrix; 

  - The nodal displacement array of the entire cranial cavity. 
5) Solve the nodal displacement 
After the formula (2.1) ~ (2.5) eliminating the stiffness displacement of geometric boundary 
conditions, the nodal displacement can be solved from the gathered relationship groups 
between force and displacement. 
6) By classifying the nodal displacement solved from the formula (2.2) and (2.3), the strain 
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Fig. 2.2 Block diagram of numerical solution steps of cranial cavity with the finite-element 
method 
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and stress in each element can be calculated. 
In this paper, the studied cranial cavity is a hollow three-dimensional sphere, its external 
radius mm 100R , the curvature of hollow shell is 0.01 rad/mm , the thickness of 
shell wall is 6mm, so the element body of hollow spherical can be treated as the regular 
hexahedron. The following is the stress and strain analyses in the three-dimensional 
elements in the cranial space. The 8-node hexahedral element (Fig1.3) is used to be the 
master element. The origin is set up as the local coordinate system (  ,, ) in the element. 
Trough the transformation between rectangular coordinates and local coordinates, the space 
8-node isoparametric centroid element can be obtained. The relationship of coordinate 
transformation is: 

 
Fig. 2.3 The space 8-node isoparametric centroid element  
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Then the displacement function of element is: 
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Where: ix 、 iy 、 iz  and iu 、 iv 、 iw  are respectively the coordinate values and actual 
displacement of nodes.  

The element displacement function with matrix is expressed as: 
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Where:  i - Nodal displacement array,   Tiiii wvu  8,,2,1 i ; 

 e - The nodal displacement array of entire element, 
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821   ; 

iN - The uniform shape function of 8 nodes, which can be expressed as: 
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Where: i 、 i 、 i  is the coordinates of node i  in the local coordinate system   ,, . 
The derivative of composite function to local coordinates is: 
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The strain relationship of space elements is: 
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and stress in each element can be calculated. 
In this paper, the studied cranial cavity is a hollow three-dimensional sphere, its external 
radius mm 100R , the curvature of hollow shell is 0.01 rad/mm , the thickness of 
shell wall is 6mm, so the element body of hollow spherical can be treated as the regular 
hexahedron. The following is the stress and strain analyses in the three-dimensional 
elements in the cranial space. The 8-node hexahedral element (Fig1.3) is used to be the 
master element. The origin is set up as the local coordinate system (  ,, ) in the element. 
Trough the transformation between rectangular coordinates and local coordinates, the space 
8-node isoparametric centroid element can be obtained. The relationship of coordinate 
transformation is: 

 
Fig. 2.3 The space 8-node isoparametric centroid element  
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Then the displacement function of element is: 
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Where: ix 、 iy 、 iz  and iu 、 iv 、 iw  are respectively the coordinate values and actual 
displacement of nodes.  

The element displacement function with matrix is expressed as: 
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The strain relationship of space elements is: 
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The strain matrix  B  of space element: 
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The shape function was derivative to be: 
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The matrix  J  is the three-dimensional Yake ratio matrix of coordinate transformation:  
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The stress-strain relationship of space elements is: 

         eBDD    (2.15) 

The elasticity matrix  D  is: 
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The element stiffness matrix from the principle of virtual work is: 
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Where: 
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The equivalent nodal forces acting on the space element nodes are: 

      eee kF   (2.19) 
Because the internal pressure in the cranial cavity is surface force, the equivalent load for the 
pressure acting on the element nodes is: 
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The relationship between force and displacement in the entire cranial cavity is: 
     KF    (2.21) 
Then after obtaining the nodal displacement, the stress and strain in each element can be 
calculated by combining the formula (2.11) and (2.15). 
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is almost lamelleted distribution. Therefore, the lamelleted structure is adopted to establish 
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used to describe the thin cranial cavity made up of skull and duramater. Here the cranial 
cavity deformation of laminated structure is analyzed as follows: 
(1) The stress and strain analysis for the single layer of cranial deformation  
Each layers of cranial cavity are all thin flat film. The skulls are transversely isotropic 
material. The thickness of Tabula externa, diploe, Tabula interna, duramater is all very small. 
So compared with the components in the surface, the stress components are very small 
along the normal direction, and can be neglected. So the deformation analysis to single-layer 
cranial cavity can be simplified to be the stress problems of two-dimensional generalized 
plane. 
The stress-strain relationship of each single-layer structure in the cranial cavity: 
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Where, 1,2 - The main direction of elasticity in the plane; 
 Q - Stiffness matrix, 111 mEQ  ， 21212 EmQ  ， 222 mEQ  ， 1266 GQ  ； 
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The shape function was derivative to be: 
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The matrix  J  is the three-dimensional Yake ratio matrix of coordinate transformation:  
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The stress-strain relationship of space elements is: 
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The element stiffness matrix from the principle of virtual work is: 
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Where: 
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The equivalent nodal forces acting on the space element nodes are: 

      eee kF   (2.19) 
Because the internal pressure in the cranial cavity is surface force, the equivalent load for the 
pressure acting on the element nodes is: 
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The relationship between force and displacement in the entire cranial cavity is: 
     KF    (2.21) 
Then after obtaining the nodal displacement, the stress and strain in each element can be 
calculated by combining the formula (2.11) and (2.15). 
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Where, 1,2 - The main direction of elasticity in the plane; 
 Q - Stiffness matrix, 111 mEQ  ， 21212 EmQ  ， 222 mEQ  ， 1266 GQ  ； 
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1E 、 2E - The elastic modulus of four independent surfaces in each layer structure; 

12G - Shear modulus; 

12 - Poisson's ratio of transverse strain along the 2 direction that the stress acts on 
the 1 direction. 
(2) The stress and strain analysis for the laminated deformation of cranial cavity 
The cranial cavity is as a whole formed by the four-layer structures. So the material, 
thickness and elastic main direction are all different. The overall performance of cranial 
cavity is anisotropic, macroscopic non-uniformity along the thickness direction and 
non-continuity of mechanical properties. Thus, the assumptions need to be made before 
analyzing the overall deformation of cranial cavity [14]: 
1) The same deformation in each layer 
Each single layer is strong glued. There are the same deformation, and no relative 
displacement; 
2) No change of direct normal 
The straight line vertical to the middle surface in each layer before the deformation remains 
still the same after the deformation, and the length of this line remains unchanged whether 
before or after deformation; 
3) 0z  
The positive stress along the direction of thickness is small compared to other stress, and can 
be ignored; 
4) The plane stress state in each single layer 
Each single-layer structure is similar to be assumed in plane stress state. 
From the four-layer laminated structure composed of Tabula externa, diploe, Tabula interna, 
duramater, the force of each single-layer structure is indicated in Fig2.4. The middle surface 
in the laminated structure of cranial cavity is the xy  coordinate plane. z axis is 
perpendicular to the middle surface in the plate. Along the z axis, each layer in turn will be 
compiled as layer 1, 2, 3, and 4. The corresponding thickness is respectively 1t ， 2t ， 3t ， 4t . 
As a overall laminated structure, the thickness of cranial cavity is h , shown in Fig2.5. 

 
Fig. 2.4 The orientation relationship in each single-layer structure of cranial cavity  

 
Fig. 2.5 The sketch of four-layered laminated structure of cranial cavity  
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The z  coordinates is respectively 1kz  and kz ，then 20 hz   and 24 hz  . 
The displacement components at any point within the laminated structure of cranial cavity: 
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The strain is: 
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Where: ),,( zyxuu  ， ),,( zyxvv  ， ),,( zyxww  - The displacement components at 
any point within the cranial cavity; 

),(0 yxu 、 ),(0 yxv - The displacement components in the middle surface; 

),( yxw - Deflection function, the deflection function of each layer is the same. 
Fomular (2.26) can be expressed to be in matrix form: 
      kz 0  (2.27) 
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The strain is: 
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Where: ),,( zyxuu  ， ),,( zyxvv  ， ),,( zyxww  - The displacement components at 
any point within the cranial cavity; 

),(0 yxu 、 ),(0 yxv - The displacement components in the middle surface; 

),( yxw - Deflection function, the deflection function of each layer is the same. 
Fomular (2.26) can be expressed to be in matrix form: 
      kz 0  (2.27) 
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Where: 0  - Strain array in the plane,  
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The mean internal force and torque acting on the laminated structure of cranial cavity in the 
unit width is: 
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Taking into account the discontinuous stress caused by the discontinuity along the direction 
of laminated structure in the cranial cavity, the formula (2.28) can be rewritten in matrix 
form: 
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After substituting the formula (2.22) and (2.27) into equation (2.29), the average internal 
force and internal moment of the laminated structure in the cranial cavity is: 
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Where:  A  - The stiffness matrix in the plane, 
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Then the flexibility matrix of laminated structure in the cranial cavity is: 
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Thus, the stress-strain relationship of laminated structure in the cranial cavity is: 
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With the changing ICP, to determine how the viscoelasticity of human skull and duramater 
influences the strains of human skull respectively by ignoring and considering the 
viscoelasticity of human skull and duramater, we make the analysis of the actual 
deformation of cranial cavity by considering the viscoelasticity of human skull-duramater 
system with the finite-element software MSC_PATRAN/NASTRAN and ANSYS. 
Considering the complexity to calculate the viscoelasticity of human skull and duramater, 
we can simplify the calculation while on-line analysis only considering the elasticity but 
ignoring the viscoelasticity of human skull and duramater after obtaining the regularity 
how the viscoelasticity influence the deformation of cranial cavity. 

 
2.2.3 The finite-element analysis of strains by ignoring the viscoelasticity of human 
skull and duramater 
The craniospinal cavity may be considered as a balloon. For the purpose of our analysis, we 
adopted the model of hollow sphere (Fig2.6). We presented the development and validation 
of a 3D finite-element model intended to better understand the deformation mechanisms of 
human skull corresponding to the ICP change. The skull is a layered sphere constructed in a 
specially designed form with a Tabula externa, Tabula interna, and a porous Diploe 
sandwiched in between. Based on the established knowledge of cranial cavity importantly 
composed of skull and duramater, a thin-walled structure was simulated by the composite 
shell elements of the finite-element software [15]. 

 
Fig. 6. The sketch of 3D cranial cavity and grid division 
 

www.intechopen.com



Finite element analysis on strains of viscoelastic human skull and duramater 21

Where: 0  - Strain array in the plane,  
T

o

x
v

y
u

y
v

x
u






























 000
0 ,, ; 

k - Strain array of bending in the surface,  
T

yx
w

y
w

x
wk 





















2

2

2

2

2

2,, . 

The mean internal force and torque acting on the laminated structure of cranial cavity in the 
unit width is: 
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Taking into account the discontinuous stress caused by the discontinuity along the direction 
of laminated structure in the cranial cavity, the formula (2.28) can be rewritten in matrix 
form: 
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After substituting the formula (2.22) and (2.27) into equation (2.29), the average internal 
force and internal moment of the laminated structure in the cranial cavity is: 
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Then the flexibility matrix of laminated structure in the cranial cavity is: 
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Thus, the stress-strain relationship of laminated structure in the cranial cavity is: 
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With the changing ICP, to determine how the viscoelasticity of human skull and duramater 
influences the strains of human skull respectively by ignoring and considering the 
viscoelasticity of human skull and duramater, we make the analysis of the actual 
deformation of cranial cavity by considering the viscoelasticity of human skull-duramater 
system with the finite-element software MSC_PATRAN/NASTRAN and ANSYS. 
Considering the complexity to calculate the viscoelasticity of human skull and duramater, 
we can simplify the calculation while on-line analysis only considering the elasticity but 
ignoring the viscoelasticity of human skull and duramater after obtaining the regularity 
how the viscoelasticity influence the deformation of cranial cavity. 

 
2.2.3 The finite-element analysis of strains by ignoring the viscoelasticity of human 
skull and duramater 
The craniospinal cavity may be considered as a balloon. For the purpose of our analysis, we 
adopted the model of hollow sphere (Fig2.6). We presented the development and validation 
of a 3D finite-element model intended to better understand the deformation mechanisms of 
human skull corresponding to the ICP change. The skull is a layered sphere constructed in a 
specially designed form with a Tabula externa, Tabula interna, and a porous Diploe 
sandwiched in between. Based on the established knowledge of cranial cavity importantly 
composed of skull and duramater, a thin-walled structure was simulated by the composite 
shell elements of the finite-element software [15]. 

 
Fig. 6. The sketch of 3D cranial cavity and grid division 
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Of course, the structure, dimension and characteristic parameter of human skull must be 
given before the calculation. The thickness of calvaria [16] varies with the position, age, 
gender and individual, so does dura mater [17]. Tabula externa and interna are all compact 
bones and the thickness of Tabula externa is more than that of Tabula interna. Diploe is the 
cancellous bone between Tabula externa and Tabula interna [18]. The parietal bone is the 
transversely isotropic material, namely it has the mechanical property of rotational 
symmetry in the axially vertical planes of skull [19]. The important mechanical characteristic 
of cancellous bone is viscoelasticity, which is generally considered as the semi-closed 
honeycomb structure composed of bone trabecula reticulation. The main composition of 
cerebral dura mater, a thick and tough bilayer membrane, is the collagenous fiber which has 
the characteristic of linear viscoelasticity [20]. And the thickness of dura mater obviously 
varies with the changing ICP [21]. The mechanical performance of skull is isotropic along 
the tangential direction on the surface of skull bone [22], in which the performance of 
compact bone in the Tabula externa is basically the same as that in the Tabula interna [23]. 
Thus both cancellous bone and dura mater can be regarded as isotropic materials. And the 
elastic modulus of fresh dura mater varies with the delay time [24]. 
Next we need determine the fluctuant scope of human ICP. ICP is not a static state, but one 
that influenced by several factors. It can rise sharply with coughing and sneezing, up to 50 
or 60mmHg to settle down to normal values in a short time. It also varies according to the 
activity the person is involved with. For these reasons single measurement of ICP is not a 
true representation. ICP needs to be measured over a period. Measured by means of a 
lumbar puncture, the normal ICP in adults is 8 mmHg to 18 mmHg. But so far there are 
almost no records of the actual human being’s ICP in clinic. The geometry and structure of 
monkey’s skull, mandible and cervical muscle are closer to those of human beings than 
other animals’. So the ICP of monkeys [25] can be taken as the reference to that of human 
beings’. The brain appears to be mild injury when ICP variation is about 2.5 kPa, moderate 
injury when ICP variation is about 3.5 kPa and severe injury when ICP variation is about or 
more than 5 kPa. Therefore, we carried out the following theoretical analysis with the ICP 
scope from 1.5 kPa to 5 kPa. 
In this paper, the finite-element software MSC_PATRAN/NASTRAN and ANSYS are 
applied to theoretically analyze the deformation of human skull with the changing ICP. The 
external diameter of cranial cavity is about 200 mm. The thickness of shell is the mean 
thickness of calvarias. The average thickness of adult’s calvaria is 6.0 mm, that of Tabula 
externa is 2.0 mm, diploe is 2.8 mm, Tabula interna is 1.2 mm and, dura mater in the parietal 
position is 0.4 mm. 
Considering the characteristic of compact bone, cancellous bone and dura mater, we adopt 
their elastic modulus and Poisson ratios as 1.5×104 MPa, 4.5×103 MPa [26], 1.3×102 MPa [27] 
and 0.21, 0.01, 0.23 respectively. 
After ignoring the viscoelasticity of human skull and dura mater, the strains of cranial cavity 
are shown in Table 1 with the finite-element software MSC_PATRAN/NASTRAN as ICP 
changing from 1.5 kPa to 5.0 kPa (Fig2.7). There is the measurable correspondence between 
skull strains and ICP variation. The strains of human skull can reflect the ICP change. When 
ICP variation is raised up to 2.5 kPa, the stress and strain graphs of skull bone are shown in 
Fig2.8～Fig2.13. 
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Fig. 2.7 The strain curves of finite-element simulation under the conditions of ignoring and 
considering the viscoelasticity of human skull and duramater with the changing ICP from 
1.5kPa to 5kPa 
 

 
Fig. 2.8 Stress distribution 
 
The scope of stress change on the outside surface is from 22.1 kPa to 25.3 kPa when ICP 
variation is raised up to 2.5 kPa by ignoring the viscoelasticity of human skull and dura 
mater. 
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Of course, the structure, dimension and characteristic parameter of human skull must be 
given before the calculation. The thickness of calvaria [16] varies with the position, age, 
gender and individual, so does dura mater [17]. Tabula externa and interna are all compact 
bones and the thickness of Tabula externa is more than that of Tabula interna. Diploe is the 
cancellous bone between Tabula externa and Tabula interna [18]. The parietal bone is the 
transversely isotropic material, namely it has the mechanical property of rotational 
symmetry in the axially vertical planes of skull [19]. The important mechanical characteristic 
of cancellous bone is viscoelasticity, which is generally considered as the semi-closed 
honeycomb structure composed of bone trabecula reticulation. The main composition of 
cerebral dura mater, a thick and tough bilayer membrane, is the collagenous fiber which has 
the characteristic of linear viscoelasticity [20]. And the thickness of dura mater obviously 
varies with the changing ICP [21]. The mechanical performance of skull is isotropic along 
the tangential direction on the surface of skull bone [22], in which the performance of 
compact bone in the Tabula externa is basically the same as that in the Tabula interna [23]. 
Thus both cancellous bone and dura mater can be regarded as isotropic materials. And the 
elastic modulus of fresh dura mater varies with the delay time [24]. 
Next we need determine the fluctuant scope of human ICP. ICP is not a static state, but one 
that influenced by several factors. It can rise sharply with coughing and sneezing, up to 50 
or 60mmHg to settle down to normal values in a short time. It also varies according to the 
activity the person is involved with. For these reasons single measurement of ICP is not a 
true representation. ICP needs to be measured over a period. Measured by means of a 
lumbar puncture, the normal ICP in adults is 8 mmHg to 18 mmHg. But so far there are 
almost no records of the actual human being’s ICP in clinic. The geometry and structure of 
monkey’s skull, mandible and cervical muscle are closer to those of human beings than 
other animals’. So the ICP of monkeys [25] can be taken as the reference to that of human 
beings’. The brain appears to be mild injury when ICP variation is about 2.5 kPa, moderate 
injury when ICP variation is about 3.5 kPa and severe injury when ICP variation is about or 
more than 5 kPa. Therefore, we carried out the following theoretical analysis with the ICP 
scope from 1.5 kPa to 5 kPa. 
In this paper, the finite-element software MSC_PATRAN/NASTRAN and ANSYS are 
applied to theoretically analyze the deformation of human skull with the changing ICP. The 
external diameter of cranial cavity is about 200 mm. The thickness of shell is the mean 
thickness of calvarias. The average thickness of adult’s calvaria is 6.0 mm, that of Tabula 
externa is 2.0 mm, diploe is 2.8 mm, Tabula interna is 1.2 mm and, dura mater in the parietal 
position is 0.4 mm. 
Considering the characteristic of compact bone, cancellous bone and dura mater, we adopt 
their elastic modulus and Poisson ratios as 1.5×104 MPa, 4.5×103 MPa [26], 1.3×102 MPa [27] 
and 0.21, 0.01, 0.23 respectively. 
After ignoring the viscoelasticity of human skull and dura mater, the strains of cranial cavity 
are shown in Table 1 with the finite-element software MSC_PATRAN/NASTRAN as ICP 
changing from 1.5 kPa to 5.0 kPa (Fig2.7). There is the measurable correspondence between 
skull strains and ICP variation. The strains of human skull can reflect the ICP change. When 
ICP variation is raised up to 2.5 kPa, the stress and strain graphs of skull bone are shown in 
Fig2.8～Fig2.13. 
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Fig. 2.7 The strain curves of finite-element simulation under the conditions of ignoring and 
considering the viscoelasticity of human skull and duramater with the changing ICP from 
1.5kPa to 5kPa 
 

 
Fig. 2.8 Stress distribution 
 
The scope of stress change on the outside surface is from 22.1 kPa to 25.3 kPa when ICP 
variation is raised up to 2.5 kPa by ignoring the viscoelasticity of human skull and dura 
mater. 
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Fig. 2.9 Strain distribution 
 
The scope of strain change on the outside surface is from 1.52 μ  to 1.57 μ  when ICP 
variation is raised up to 2.5 kPa by ignoring the viscoelasticity of human skull and dura 
mater. 

 
Fig. 2.10 The maximal stress vector distribution 
 
The maximal main stress is about 22.4kPa when ICP variation is raised up to 2.5 kPa by 
ignoring the viscoelasticity of human skull and dura mater. 
 

 
Fig. 2.11 The maximal strain vector distribution 
 
The maximal main strain is about 2.2 μ  when ICP variation is raised up to 2.5 kPa by 
ignoring the viscoelasticity of human skull and dura mater. 
 

 
Fig. 2.12 Stress vector distribution 
 
The main stress vector is about 21.8kPa when ICP variation is raised up to 2.5 kPa by 
ignoring the viscoelasticity of human skull and dura mater. 
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Fig. 2.13 Strain vector distribution 
 
The main strain vector is about 2.14 μ  when ICP variation is raised up to 2.5 kPa by 
ignoring the viscoelasticity of human skull and dura mater. 

 
2.2.4 The finite-element analysis of strains by considering the viscoelasticity of human 
skull and dura mater 
Human skull has the viscoelastic material [28]. Considering the viscoelasticity of human 
skull and dura mater, we use the viscoelastic option of the ANSYS finite-element program to 
analysis the strains on the exterior surface of human skull as ICP changing. According to the 
symmetry of 3D model of human skull, the preprocessor of the ANSYS finite-element 
program is used to construct a 1/8 finite-element model of human skull and dura mater 
consisting of 25224 nodes and 24150 three-dimensional 8-node isoparametric solid elements, 
shown in Fig2.10. 
  

 
Fig. 2.14 Finite element model of 1/8 cranial cavity shell 
 
 

The three-dimensional stress-strain relationships for a linear isotropic viscoelastic material 
are given by: 
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Here， ij ——the Cauchy stress tensor; 

ije ——the deviatoric strain tensor; 

ij ——the Kronecker delta; 

)(tG ——the shear relaxation function; 
)(tK ——the bulk relaxation function; 

)(t ——the volumetric strain; 
t——the present time; 
 ——the past time. 
Before the theoretical analysis of the minitraumatic strain-electrometric method, we need to 
set up the viscoelastic models to describe the relevant mechanical properties of human skull 
and dura mater. 
 
(1) Viscoelastic model of human skull 
Under the constant action of stress, the strain of ideal elastic solid is invariable and that of 
ideal viscous fluid keeps on growing at the equal ratio with time. However, the strain of 
actual material increases with time, namely so-called creep. Generally, Maxwell and Kelvin 
models are the basic models to describe the performance of viscoelastic materials. Maxwell 
model represents in essence the liquid. Despite the representative of solid, Kelvin model 
can’t describe stress relaxation but only stress creep (Fig2.11). So the combined models made 
up of the primary elements are usually adopted to describe the viscoelastic performance of 
actual materials. The creep of linear viscoelastic solid can be simulated by the Kelvin model 
of three parameters or the generalized Kelvin model. 

 

Fig. 2.15 Three parameters Kelvin model of human skull. 
 
Kelvin model of three parameters is shown in Fig2.12 (a). Fig2.12 (b) is the relaxation curves 
of human skull and Kelvin model of three parameters in the compressive experiment. 
Fig2.10 (c) is the creep curves of human skull and Kelvin model of three parameters. It 
shows that the theoretical Kelvin model of three parameters can well simulate the 
mechanical properties of human skull in the tensile experiments. Thus the Kelvin model of 
three parameters is adopted to describe the viscoelasticity of human skull in this paper. 
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Fig. 2.16 The relaxation and creep train-time curves between experiment and three 
parameters Kelvin theoretical model of human skull. 
 
For the Kelvin model of three parameters, the stress and strain of human skull are shown in 
equation (2.34), 
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After the calculation based on the equation (1), the elastic modulus of human skull is 
equation (2.35), 
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Here,  ——Direct stress acted on elastic spring or impact stress acted on viscopot; 
       ——Direct strain of elastic spring; 

      E——Elastic modulus of tensile compression; 
      ——Viscosity coefficient of viscopot; 

——strain ratio; 
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(2) Viscoelastic model of human duramater 
The generalized Kelvin model is shown in Fig2.13 (c). Fig2.13 (a) is the creep experimental 
curves of human duramater. Fig2.13 (b) is the curves of creep compliance for the generalized 
Kelvin model. It shows that the tendency of creep curve in the experiment is coincident with 
that of creep compliance for the generalized Kelvin model. Creep is the change law of 
material deformation with time under the invariable stress, so here   is constant. For the 
generalized Kelvin model, the stress-strain relationship is  )()( tJt  . Thus the tendency 
of theoretical creep curve is totally the same as that of experimental one for human 
duramater. So in this paper, the generalized Kelvin model composed of three Kelvin-unit 
chains and a spring is adopted to simulate the viscoelasticity of human dura mater in this 
paper. 
 

 
(a)                                          (b) 

 
(c) 

Fig. 2.17 Creep train-time curves under different loads for fresh human duramater 
(L0=23mm，θ=37℃). Creep compliance curves of human duramatar Kelvin model. And the 
Kelvin model of the duramater. 
 
For the viscoelastic model of human dura mater composed of the three Kelvin-unit chains 
and a spring, the stress and strain of human dura mater are shown in equation (2.36), 
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Fig. 2.16 The relaxation and creep train-time curves between experiment and three 
parameters Kelvin theoretical model of human skull. 
 
For the Kelvin model of three parameters, the stress and strain of human skull are shown in 
equation (2.34), 
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After the calculation based on the equation (1), the elastic modulus of human skull is 
equation (2.35), 
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Here,  ——Direct stress acted on elastic spring or impact stress acted on viscopot; 
       ——Direct strain of elastic spring; 

      E——Elastic modulus of tensile compression; 
      ——Viscosity coefficient of viscopot; 

——strain ratio; 
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(2) Viscoelastic model of human duramater 
The generalized Kelvin model is shown in Fig2.13 (c). Fig2.13 (a) is the creep experimental 
curves of human duramater. Fig2.13 (b) is the curves of creep compliance for the generalized 
Kelvin model. It shows that the tendency of creep curve in the experiment is coincident with 
that of creep compliance for the generalized Kelvin model. Creep is the change law of 
material deformation with time under the invariable stress, so here   is constant. For the 
generalized Kelvin model, the stress-strain relationship is  )()( tJt  . Thus the tendency 
of theoretical creep curve is totally the same as that of experimental one for human 
duramater. So in this paper, the generalized Kelvin model composed of three Kelvin-unit 
chains and a spring is adopted to simulate the viscoelasticity of human dura mater in this 
paper. 
 

 
(a)                                          (b) 

 
(c) 

Fig. 2.17 Creep train-time curves under different loads for fresh human duramater 
(L0=23mm，θ=37℃). Creep compliance curves of human duramatar Kelvin model. And the 
Kelvin model of the duramater. 
 
For the viscoelastic model of human dura mater composed of the three Kelvin-unit chains 
and a spring, the stress and strain of human dura mater are shown in equation (2.36), 
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After the calculation based on the equation (2.36), the creep compliance of human dura 
mater is equation (2.37), 
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Then the elastic modulus of human dura mater is equation (5), 
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Here,  ,  , E ,  , ——Ditto mark; 

1 , 2 , 3 ——Lag time, that is 111 / E  , 222 / E  , 333 / E  . 
In the finite-element software ANSYS, there are three kinds of models to describe the 
viscoelasticity of actual materials, in which the Maxwell model is the general designation for 
the combined Kelvin and Maxwell models. Considering the mechanical properties of human 
skull and dura mater, we adopt the finite-element Maxwell model to simulate the 
viscoelasticity of human skull-dura mater system. The viscoelastic parameters of human 
skull and dura mater are respectively listed in Table 2.1 and Table 2.2. 
 
               Elastic Modulus（GPa）     Viscosity（GPa/s）     Delay time （s） 

                  E0           E1                             *         d * 

Compression    5.69±0.26   42.24±2.09      26.9±1.5        2022±198  2292±246 
Tension     13.64±0.59   51.45±2.54     57.25±4.27       3180±300  4026±372 

*
21 EEr   ，

2Ed
   

Table 1. Coefficients for the viscoelastic properties for human skull 
 
                    Elastic modulus（MPa）                   Delay time （s） 

E0        E1        E2        E3           1       2       3 

Duramater     16.67     125.0     150.0      93.75         40      104     106 
Table 2. Creep coefficients for the viscoelastic properties for fresh human duramater 
 
(3) The stress and strain distribution by the finite-element analysis  
Fig2.14 (a) ~ (e) are the analytic graphs of stress and strain with finite-element software 
ANASYS when ICP variation is raised up to 2.5kPa. After considering the viscoelasticity of 
human skull and duramater, the stresses and strains of cranial cavity are shown in Fig2.15 
as the ICP changing from 1.5kPa to 5kPa with the finite-element software ANSYS.It shows 
that the stress and strain distributions on the exterior surface of human skull are 
well-proportioned and that the stress and strain variation on the exterior surface of cranial 
cavity is relatively small corresponding to the ICP change. The strains of cranial cavity are 

coincident with ICP variation. The deformation scope of human skull is theoretically from 
0.9 με  to 3.4 με  as the ICP changing from 1.5kPa to 5.0kPa. Corresponding to ICP of 
2.5kPa, 3.5kPa and 5.0kPa, the strain of skull deformation separately for mild, moderate and 
severe head injury is 1.5 με , 2.4 με , and 3.4 με  or so. 
 

  
Stress nephogram                               Strain nephogram 

 
XY shear stress nephogram                   XZ shear stress nephogram 

 
YZ shear stress nephogram          Interbedded strain change nephogramin the  

                   human duramater and skull 
Fig. 2.18 The stress and strain distribution considering viscoelasticity of human skull and 
duramater 
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After the calculation based on the equation (2.36), the creep compliance of human dura 
mater is equation (2.37), 
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Fig2.14 (a) ~ (e) are the analytic graphs of stress and strain with finite-element software 
ANASYS when ICP variation is raised up to 2.5kPa. After considering the viscoelasticity of 
human skull and duramater, the stresses and strains of cranial cavity are shown in Fig2.15 
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From the relationships about total, elastic and viscous strains of human skull and dura 
mater in Fig.4 (g), the viscous strains account for about 40% and the elastic strains are about 
60% of total strains with the increasing ICP. 
 

 
Fig. 2.19 Curves among total, elastic and viscous strain when the ICP increment is 2.5KPa. 
Here EPELX is elastic strain curve, EPPLX is viscous strain curve. The viscous strain is about 
40% of total strain. 

 
3. Potential Therapeutic Actions of Hypothermia 

Intracranial pressure (ICP) is a main index and extremely important to the diagnoses and 
treatment of many diseases in neurosurgery. Acute cerebral diseases frequently lead to 
elevated ICP that is the early signal of illness complication in the skull and the common 
reason of death in the advanced stage, and intracranial pressure has been higher than 2.0kPa 
(15mmHg) [29]. An increase in ICP is a severe medical problem. The diseases of central 
nervous system, such as severe head injury, cerebrovascular accidence, brain tumor, etc, can 
cause various central high fevers, often up to 39℃ or above [30], which have serious 
adverse effects on the disease prognosis. Because the increased ICP affects the 
thermoregulation center of hypothalamus, a sustained high fever will be appeared in clinic, 
often up to 39℃ or above [31]. Mild hypothermia therapy can significantly improve the 
recovery of the central nervous system, has a positive effect on the treatment of severe head 

injury, can reduce intracranial hypertension and mortality, and improve the prognosis [32]. 
Thus, the mild hypothermia is the main temperature environment for the treatment of brain 
injury, intracranial hypertension, and so on. Mild hypothermia treatment of severe 
traumatic brain injury in recent years is another important means [33]. 
Yue et al [34,35] proved the human skull and duramater could be deformed with the 
changing ICP, and the deformation scope of human skull is from 1.30 μ  to 4.80 μ  as the 
ICP changing from 1.5 kPa to 5.0 kPa. The deformation tendency in this paper needs to be 
studied with the increasing ICP under the mild hypothermia environment.  
The finite-element method extensively solves the biomechanical problem in the medical 
fields. Compared to other bio-mechanical modelling, the finite-element method can more 
accurately express the human body geometry and architecture. Therefore, the ANSYS 
finite-element software is in this paper used to reconstruct the three-dimensional cranial 
cavity of human being with the mild hypothermia treatment. 

 
3.1 Methods 
3.1.1 The geometric model 
Reconstruction of the finite-element model of cranial cavity are mostly through the multi-CT 
scanning technology at home and abroad [36, 37], which is simple and high precision. 
However, the object being scanned is only a single individual. It is difficult to scan multiple 
images of individual unity for the universal data. Based on the average measured data of 
human skull of 104 Chinese people from 18 to 76 years of age, including 67 male and 37 
female [38], the three-dimensional model of cranial cavity are directly drawn in the ANSYS 
program. 
This paper studied importantly the deformation of cranial cavity, including brain tissue, 
cerebrospinal fluid and brain blood flow with the ICP changes. So the model of cranial 
cavity was properly simplified: only the cavity in which the brain lies, that is, a closed cavity 
is made up of the parietal bone, occipital, frontal and temporal bone, and a layer of 
duramater. For the approximate symmetry of person's head, the 1/2 cranial cavity model is 
built in this paper (Fig3.1). 
 

 
Fig. 3.1 Skeleton of the cranial cavity trendline 
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In Fig3.1, the thickness of parietal, frontal, occipital, temporal bone, as well as duramater are 
respectively 5.3560mm, 6.5558mm, 7.5286mm, 2mm and 0.4mm [39, 40]. From outside to 
inside each layer in turn, the thickness of external compact bone, diploe and internal 
compact bone are about 3mm, 1.8mm, 1mm. Due to the smoothness, the parietal bone is 
regarded as the main measured position. By the Extrude command, the Fig.1 can be formed 
the volume. After bonding the border among the frontal, parietal, occipital and temporal 
bone and the duramater with the glue command, the model of cranial cavity is shown in 
Fig3.2. 

 
3.1.2 The meshing and load 
Although the thickness is only 0.4mm [41], the viscoelasticity of duramater is strong [42], so 
the effect is great on the cranial deformation. The three-dimensional finite element model of 
cranial cavity is dealt with a composite structure made up of the skull and duramater. The 
elastic modulus and Poisson's ratio of parietal bone, frontal bone and other parts is shown in 
Table 3.1. The hexahedral grid was adopted to mesh the entire cranial cavity. The adjacent 
parts were dealt with the Glue command, and the grid refinement with the Meshing-Modify 
Mesh command were used as the irregular mesh to the edge, sharp or irregular position. 
Thus the 1/2 finite-element model of the cranial cavity, including the parietal, pre-frontal, 
occipital, temporal bone and duramater, and the cell type is block unit. The Fig3.3 is the 
meshing diagram of 1/2 cranial cavity, in which there are 9,700 hexahedral element and 
27,256 nodes. 

 
Fig. 3.2 3D model of 1/2 cranial cavity 
 

Parietal bone Elastic modulus Poisson's ratio 
Compact bone 1.5×1010Pa 0.21 
Cancellous bone 4.5×109Pa 0.01 

Duramater 1.3×108Pa 0.23 

Table 3. [43, 44] The material characteristics of human skull and duramater 

 
Fig. 3.3 Finite-element meshes of 1/2 cranial cavity 
 
According to the literature [45], the scope of increased intracranial pressure is refined from 
2.0kPa to 6.0kPa. Namely, the outward loads among 2.0kPa ~ 6.0kPa are imposed on the 
inside surfaces of the cranial cavity model to simulate the ICP changes. The temperature of 
high fever caused by the Intracranial hypertension is 39.5℃ [30], which is the initial 
temperature inside the cranial cavity. The medical definition range of mild hypothermia is 
from 28℃ to 35℃ [46]. The over-temperature protection will make the protective effect isn’t 
obvious. If the treatment temperature is too low, the serious complications will come into 
being. So the optimal temperature of treatment are consistent with the scope among 32℃ ~ 
35℃ at home and abroad [47]. The average 33.5℃ is the set point in this paper. In Clinic, 
the ice bag or blanket wrapped around the patients’ body is used to cool the temperature 
during the mild hypothermia therapy [49]. Thus the temperature load of 33.5℃ is exerted to 
the outer surface of human skull to simulate the mild hypothermia therapy. 

 
3.2 Results 
While patients have high fever or are in the mild hypothermia treatment, Fig3.4 – Fig3.7 are 
separately the strain graphs corresponding to ICP of 2.5kPa and 5.0kPa. And the Table 3.2 is 
the relevant data of finite-element simulation. Based on the above graphs and charts, it 
shows that the strains of human skull are in agreement with ICP variation whether under 
the high fever or mild hypothermia environments. But the former is slightly lower than the 
latter. At the same time, the strains of junction between the occipital and frontal parietal 
bone is the maximum, the connecting with the temporal bone is smaller, and the strains lie 
in the middle level at the central part of parietal bone.  
Fig3.4 and Fig3.5 are the respectively strain diagrams of cranial cavity under the mild 
hypothermia environment and normal temperature conditions while the ICP is 3.0kPa. It 
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inside each layer in turn, the thickness of external compact bone, diploe and internal 
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bone and the duramater with the glue command, the model of cranial cavity is shown in 
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According to the literature [45], the scope of increased intracranial pressure is refined from 
2.0kPa to 6.0kPa. Namely, the outward loads among 2.0kPa ~ 6.0kPa are imposed on the 
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high fever caused by the Intracranial hypertension is 39.5℃ [30], which is the initial 
temperature inside the cranial cavity. The medical definition range of mild hypothermia is 
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during the mild hypothermia therapy [49]. Thus the temperature load of 33.5℃ is exerted to 
the outer surface of human skull to simulate the mild hypothermia therapy. 

 
3.2 Results 
While patients have high fever or are in the mild hypothermia treatment, Fig3.4 – Fig3.7 are 
separately the strain graphs corresponding to ICP of 2.5kPa and 5.0kPa. And the Table 3.2 is 
the relevant data of finite-element simulation. Based on the above graphs and charts, it 
shows that the strains of human skull are in agreement with ICP variation whether under 
the high fever or mild hypothermia environments. But the former is slightly lower than the 
latter. At the same time, the strains of junction between the occipital and frontal parietal 
bone is the maximum, the connecting with the temporal bone is smaller, and the strains lie 
in the middle level at the central part of parietal bone.  
Fig3.4 and Fig3.5 are the respectively strain diagrams of cranial cavity under the mild 
hypothermia environment and normal temperature conditions while the ICP is 3.0kPa. It 
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shows that the strains decreased about 0.001με under the mild hypothermia environment 
than those under the normal temperature conditions during the same circumstance of ICP 
changes. 
 

 
Fig. 3.4 Strain graph without hypothermia treatment when the ICP is 3.0kPa 
 

 
Fig. 3.5 Strain graph with hypothermia treatment when the ICP is 3.0kPa 

Fig3.6 and Fig3.7 are the respectively strain diagrams of cranial cavity under the mild 
hypothermia environment and normal temperature conditions while the ICP is 5.0kPa. It 
shows that the deformation strains of cranial cavity were significantly increased with the 
rising ICP. The strains increased while ICP is 3.0kPa about 39.9% than those while ICP is 
5.0kPa under the normal temperature conditions. Moreover, the strains decrease more 
obviously under the mild hypothermia environment, and the maximum is 0.03με appeared 
in the junction among the parietal, frontal and occipital bone. 

 
Fig. 3.6 Strain graph without hypothermia treatment when the ICP is 5.0kPa 
 

 
Fig. 3.7 Strain graph with hypothermia treatment when the ICP is 5.0kPa 
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ICP variation Strains of 39.5℃ Strains of 33.5℃ 

kPa     

2.0 1.510 1.500 

2.5 1.880 1.870 

3.0 2.260 2.250 

3.5 2.630 2.620 

4.0 3.010 2.990 

4.5 3.390 3.370 

5.0 3.760 3.740 

6.0 4.520 4.490 

Table 4. Strain data of cranial cavity simulated by ANSYS with the ICP variation  

 
4. Results and Discussion 

4.1 Results 
This paper carries respectively on the stress and strain analysis on both conditions of 
ignoring and considering the viscoelasticity of human skull and duramater by finite-element 
software MSC_PPATRAN/NASTRAN and ANSYS as ICP changing from 1.5kPa to 5kPa. 
The three-dimensional finite element model of cranial cavity and the viscoelastic models of 
human skull and duramater are constructed in this paper. At the same time, the ANSYS 
finite-element software is in this paper used to reconstruct the three-dimensional cranial 
cavity of human being with the mild hypothermia treatment. The conclusion is as follows:  
(1) The human skull and duramater are deformed as ICP changing, which is corresponding 
with mechanical deformation mechanism. 
(2) When analyzing the strain of human skull and duramater as ICP changing by the 
finite-element software ANSYS, the strain of considering the viscoelasticity is about 14% less 
than that of ignoring the viscoelasticity of human skull and duramater. Because the 
viscoelasticity analysis by finite-element software ANSYS is relatively complex and the 
operation needs the huge memory and floppy disk space of computer, it is totally feasible to 
ignore the viscoelasticity while calculating the FEA strain of human skull and duramater as 
ICP changing. 
(3) The viscosity plays an important role in the total deformation strain of human skull and 
duramater as ICP changing. In the strains analysis of human skull and duramater with the 
changing ICP by the finite-element software ANASYS, the viscous strain accounts for about 
40% of total strain, and the elastic strain is about 60% of total strain. 
(4) Because the strains of human skull are proportional to ICP variation and the caniocerebra 
characteristic symptoms completely correspond to different deformation strains of human 
skull, ICP can be completely obtained by measuring the deformation strains of human skull. 

That is to say, the minitraumatic method of ICP by strain electrometric technique is feasible. 
Furthermore, ICP variation is respectively about 2.5kPa when the strain value of human 
skull is about 1.4µε, about 3.5kPa when the strain value of human skull is about 2.1µε, and 
about 5KPa when the strain value of human skull is about 3.9µε. 
(5) The strains decreased under the mild hypothermia environment about 0.56% than those 
under the normal temperature conditions during the same circumstance of ICP changes. 
(6) The deformation scope of human skull is theoretically from 1.50 μ  to 4.52 μ  as the 
ICP changing from 2.0kPa to 6.0kPa under the normal situation, and from 1.50 μ  to 
4.49 μ  under the mild hypothermia environment. Accordingly, the strains of skull 
deformation for mild, moderate and severe head injuries are separately 1.87 μ , 2.62 μ and 
3.74 μ  or so corresponding to ICP of 2.5kPa, 3.5kPa and 5.0kPa. 

 
4.2 Discussion 
From the eighties, the scholars abroad paid more attention to the effect on the mild and 
moderate hypothermia for the brain protection after the ischemic and traumatic brain injury, 
temperature from 29℃ to 36℃ [32]. And now the mild hypothermia has gradually been 
applied to the treatments of cerebral injury and ischemia. After the introduction of mild 
hypothermia in clinic, the impact must be considered on the protective measures to the 
other protection or measurement mechanisms. The deformation of cranial cavity had been 
calculated with the changing ICP by the finite element method [48]. Considering the 
increased ICP can cause central heat, taking into account, thereby requiring cooling 
measures, the hypothermia treatment should be carried out, which has been another 
important means of treating the severe craniocerebral trauma in recent years. Since the 
strains decreased under the mild hypothermia environment about 0.56% than those under 
the normal temperature conditions during the same circumstance of ICP changes, the mild 
hypothermia has obvious impact on the deformation of cranial cavity. That is to say, the 
effect must be considered on the mild hypothermia to measurement data in clinic or medical 
experiments while measuring the deformation of cranial cavity under the mild hypothermia 
environment simultaneously. 
In this paper, the finite-element simulation was carried out to analyze the deformation of 
cranial cavity. Many complex relationships and influencing factors lie in the actual 
deformation of cranial cavity with the changing ICP. Therefore, in order to obtain the 
accurate deformation tendency of cranial cavity, the precise simulation to the finite-element 
model and further experimental studies in vivo and clinic need to be carried on. 
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