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1. Introduction

During the last twenty years there has been spectacular growth in the volume of research
on studying and processing the signals with time–dependant spectral content. For such sig-
nals we need techniques that can show the variation in the frequency of the signal over time.
Although some of the methods may not result in a proper distribution, these techniqes are
generally known as time–frequency distributions (TFDs) (1, Boashash 2003). The TFDs are
two–dimensional (2–D) functions which provide simultaneously, the temporal and spectral
information and thus are used to analyze the non–stationary signals. By distributing the sig-
nal energy over the time–frequency (TF) plane, the TFDs provide the analyst with information
unavailable from the signal’s time or frequency domain representation alone. This includes
the number of components present in the signal, the time durations and frequency bands over
which these components are defined, the components’ relative amplitudes, phase informa-
tion, and the instantaneous frequency (IF) laws that components follow in the TF plane.
There has been a great surge of activity in the past few years in the TF signal processing
domain. The pioneering work in this area is performed by (2, Claasen & Mecklenbrauker
1980), (3, Janse & Kaizer 1983), and (4, Boashash 1978). They provided the initial impetus,
demonstrated useful methods for implementation and developed ideas uniquely suited to the
situation. Also, they innovatively and efficiently made use of the similarities and differences
of signal processing fundamentals with quantum mechanics. Claasen and Mecklenbrauker
devised many new ideas, procedures and developed a comprehensive approach for the study
of joint TFDs. However Boashash is believed to be the first researcher, who used various TFDs
for real world problems. He developed a number of new methods and particularly realized
that a distribution may not behave properly in all respects or interpretations, but it could still
be used if a particular property such as the IF is well defined. The research presented in (6,
Flandrin & Escudie 1980) transcribed directly some of the early quantum mechanical results,
particularly the work on the general class of distributions, into signal analysis. The work in
(3, Janse & Kaizer 1983) developed innovative theoretical and practical techniques for the use
of TFDs and introduced new methodologies remarkable in their scope.
Historically the spectrogram has been the most widely used tool for the analysis of time–
varying spectra. The spectrogram is expressed mathematically as the magnitude–square of
the short–time Fourier transform (STFT) of the signal, given by
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where s(t) is the signal and h(t) is a window function. Nevertheless, the spectrogram has
severe drawbacks, both theoretically, since it provides biased estimators of the signal IF and
group delay, and practically, since the Gabor–Heisenberg inequality makes a tradeoff between
temporal and spectral resolutions unavoidable. However STFT and its variation being simple
and easy to manipulate, are still the primary methods for analysis of the signals with time
varying spectral contents and most commonly used today.
There are other approaches with a motivation to improve upon the spectrogram, with an
objective to clarify the physical and mathematical ideas needed to understand time–varying
spectrum. These techniques generally aim at devising a joint function of time and frequency, a
distribution that will be highly concentrated along the IFs present in a signal and cross terms
(CTs) free thus exhibiting good resolution. One form of TFD can be formulated by the multi-
plicative comparison of a signal with itself, expanded in different directions about each point
in time. Such formulations are known as quadratic TFDs (QTFDs) because the representation
is quadratic in the signal. This formulation was first described by Eugene Wigner in quantum
mechanics (7, Wigner 1932) and introduced in signal analysis by Ville (8, Ville 1946) to form
what is now known as the Wigner–Ville distribution (WVD). The WVD is the prototype of
distributions that are qualitatively different from the spectrogram, produces the ideal energy
concentration along the IF for linear frequency modulated signals, given by

W(t, ω) �
1
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∫
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2
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1

2
τ)e−jωτdτ (2)

It is found that the spectrogram results in a blurred version (5, Cohen 1995), which can be
reduced to some degree by use of an adaptive window or by combination of spectrograms.
On the other hand, the use of WVD in practical applications is limited by the presence of non-
negligible CTs, resulting from interactions between signal components. These CTs may lead
to an erroneous visual interpretation of the signal’s TF structure, and are also a hindrance to
pattern recognition, since they may overlap with the searched TF pattern. Moreover If the IF
variations are non–linear, then the WVD cannot produce the ideal concentration. Such imped-
iments, pose difficulties in the correct analysis of non–stationary signals, are dealt in various
ways and historically many techniques are developed to remove them partially or completely.
They were partly addressed by the development of the Choi–Williams distribution (9, Choi &
Williams 1989), followed by numerous ideas proposed in literature with an aim to improve
the TFDs’ concentration and resolution for practical analysis (10, Shafi et al. 2009). Few other
important non–stationary representations among the Cohen’s class of bilinear TF energy dis-
tributions include the Margenau–Hill distribution (11, Margenau & Hill 1961), their smoothed
versions (12, Hippenstiel & Oliveira 1990), and others with reduced CTs (13, Jeong & Williams
1992) are members of this class. Nearly at the same time, some authors also proposed other
time–varying signal analysis tools based on a concept of scale rather than frequency, such
as the scalogram (14, Daubechies 1990) (the squared modulus of the wavelet transform), the
affine smoothed pseudo WVD (15, Rioul & Flandrin 1992) or the Bertrand distribution (16,
Bertrand 1988). The theoretical properties and the application fields of this large variety of
these existing methods are now well determined, and wide–spread. Although many other
QTFDs have been proposed in the literature, no single QTFD can be effectively used in all
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possible applications. This is because different QTFDs suffer from one or more problems (5,
Cohen 1995).
An ideal TFD function roughly requires the four properties namely (i) high clarity i.e high con-
centration along individual components, (ii) CTs’ elimination, (iii) good mathematical proper-
ties, and (iv) lower computational complexity. These characteristics are necessary for an easy
visual interpretation of their outcomes and a good discrimination between known patterns for
non-stationary signal classification tasks. To analyze the signals well, choosing an appropriate
TFD function is important. Which TFD function should be used depends on what application
it applies on. On the other hand, the short comings make specific TFDs suited only for analyz-
ing non–stationary signals with specific types of properties and TF structures. Half way in this
decade, there has been an enormous amount of work towards achieving high concentration
and good resolution along the individual components and to enhance the ease of identify-
ing the closely spaced components in the TFDs. The aim has been to correctly interpret the
fundamental nature of the non–stationary signals in the TF domain.
We shall present a novel Bayesian regularized artificial neural network (ANN) based method
for computing highly informative TFDs. The proposed method provides a way to obtain a
non-blurred and high resolution version of the TFDs of signals whose frequency components
vary with time. The resulting TFDs do not have the CTs that appear in case of multicomponent
signals in some distributions such as WVD, thus providing visual way to determine the IF of
non-stationary signals. It is proved that Bayesian inference framework and ANN learning
capabilities can be successfully applied in the TF field, where they have not been used before.

2. Bayesian regularized Neural Network based Framework for Computing De-blurred

TFDs

This section presents the Bayesian regularized ANN model (BRNNM) based correlation vec-
tored taxonomy algorithm to compute the TFDs that are highly concentrated in the TF plane
(23, Shafi et al. 2008). The degree of regularization is automatically controlled in the Bayesian
inference framework and produces networks with better generalized performance and lower
susceptibility to over–fitting. The grayscale spectrograms and pre–processed WVD of known
signals are vectored and clustered as per the elbow criterion to constitute the training data for
multiple ANNs. The best trained networks are selected and made part of the localized neural
networks (LNNs). Test TFDs of unknown signals are then processed through the algorithm
and presented to LNNs. Experimental results demonstrate that appropriately vectored and
clustered data and the regularization, with input training under Mackay’s evidence frame-
work, once processed through LNNs produce high resolution TFDs.
Bayesian regularization involves modifying the usually used objective function, such as the
mean sum of squared network errors (24, MacKay 1992).

mse =
1

N

K

∑
k=1

(ek)
2 (3)

where mse, ek, and N represent MSE, network error and network errors’ taps for averaging
respectively. It is possible to improve generalization if the performance function is modified
by adding a term that consists of the mean of the sum of squares of the network weights and
biases

msereg = γmse + (1 − γ)msw (4)
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where γ, msereg, and msw are the performance ratio, performance function and mean of the
sum of squares of network weights and biases, respectively. msw is mathematically described
as under:

msw =
1

n

n

∑
i=1

(wi)
2 (5)

using this performance function causes the network to have smaller weights and biases, and
this forces the network response to be smoother and less likely to over fit. Moreover it helps
in determining the optimal regularization parameters in an automated fashion.

Fig. 1. Flow diagram of the method

Fig. 1 is the overall block representation of the proposed ANN based framework. This block
diagram highlights three major modules of the method that include (i) pre–processing of
training data, (ii) processing through the BRNNM and (iii) post–processing of output data.
These modules and the rationale of the proposed method are described below:
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2.1 Pre–processing of Training Data

Fig. 2 depicts the block diagram for this module. It consist of four major steps, namely (i) two–
step pre–processing of target TFDs, (ii) vectorization, (iii) subspaces selection and direction
vectors, and (iv) correlation and taxonomy. They are described as follows.

Fig. 2. Pre-processing of training data

2.1.1 Two–step pre–processing of target TFDs

The highly concentrated WVD of various known signals are used as the target TFDs. As will
be shown in Fig. 4, the WVD suffers from CTs which make them unsuitable to be presented
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as targets to the ANNs (17, Hagan, Demuth & Beale 1996). The CTs are therefore eliminated
before the WVD is fed to the ANN. This is achieved in two steps:

1. The WVD is multiplied point by point with spectrogram of the same signal obtained
with a hamming window of reasonable size.

2. All values below a certain threshold are set to zero.

The resultant target TFDs are shown in Fig. 5, which are fed to the ANN after vectorization
described as follows.

Fig. 3. The spectrograms used as input training images of the (a) sinusoidal FM, and (b)
parallel chirp signals.

Fig. 4. Target TFDs with CTs unsuitable for training ANN taking WVD of the, (a) parallel
chirps’ signal, and (b) sinusoidal FM signal.

2.1.2 Vectorization

(1) Input TFDs. Fig. 3 depicts input spectrograms. A TFD is considered as 2–D image
which can be mathematically described as a matrix of pixels depicting grayscale values e.g.,
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Fig. 5. Target TFDs without CTs suitable for training ANN after pre-processing WVD of the,
(a) parallel chirps’ signal, and (b) sinusoidal FM signal.







a11 · · · a1n

...
. . .

...
am1 · · · amn






.These pixel values can be used to generate vectors, for example, a vector

of length three will contain three pixel values of a row/column of TFD image. The suitable
vector length is decided after experimenting with various vector lengths (3, 5, 7 and 9). The
decision is made based on visual results. Each input TFD image is thus converted to vectors.
These vectors are paired with the vectors obtained from target TFDs, to be subsequently used
for training.
(2) Target TFDs. After CTs’ removal from the target WVD, they are vectored. Next the
mean values of these vectors are computed. For example, if 〈a11, a12, a13〉 is a pixel vector of
the input TFD and 〈b11, b12, b13〉 is the vector representing the same region of the target TFD,

then
(b11+b12+b13)

3 will become the target numerical value for the input vector. Mean values
are taken as targets with a view that the IF can be computed by averaging frequencies at each
time instant, a definition suggested by many researchers (5, Cohen 1995).

2.1.3 Subspaces selection and direction vectors

1. Elbow Criterion. The elbow criterion is a common rule of thumb to determine what
number of clusters should be chosen. It states that number of clusters be chosen so
that adding another cluster does not add sufficient information (18). More precisely,
if the percentage of variance explained by the clusters is plotted against the number
of clusters, the first clusters will add much information (explain a lot of variance), but
at some point the marginal gain will drop, giving an angle in the graph (the elbow).
On the following graph (Fig. 6) which is drawn for the problem in hand, the elbow is
indicated by the "goose egg". The number of clusters chosen is therefore three.

2. The number of subspaces Ns into which vectors are distributed is decided based on
elbow criterion in relation to underlying image features like edges present in the data.
The edge is considered because it is one of the important image underlying features and
characteristics. Moreover it is well established fact that blurring mostly causes loss of
edge information (19, Gonzalez & Wintz 1987). An edge could be ascending (1, 2, 3),
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descending (3, 2, 1), wedge (1, 3, 2), flat (1, 1, 1), triangular (1, 3, 1) etc. Empirically it
is found that going from three to four clusters does not add sufficient information, as
the end result has no significant change in entropy values as indicated in Table 1 and
evident from Fig. 6. The impact of clustering is noted for six different test images (TIs),
described in section 3. As a result of this study, Ns = 3 is chosen considering the first
three most general types of edges.

3. The sub space direction vectors vn (n = 1, 2 . . . Ns) are selected that will best represent
the subspaces. As these subspaces are defined on the basis of edges, so three directional
vectors vh, vc, vl are computed in the following manner:

(a) vh is obtained by rearranging (any) 3 integers in descending order.

(b) vcis obtained by rearranging (any) 3 integers in a wedge shape where the highest
value occurs in the middle and values on either side are in descending order.

(c) vl is obtained by rearranging (any) 3 integers in ascending order.

4. All the direction vectors vh, vc, vl are normalized.

Fig. 6. Elbow criterion

2.1.4 Correlation & Taxonomy

1. An input vector xi is chosen from input spectrogram. The correlation between each
input vector xi from input TFD and each direction vector vh, vc, vl is calculated, i.e.
tij = xT

i vj where j = h, c, l.

2. There will be Ns product values obtained as a result of last step for each input vector xi.
To find the best match, if tic has the largest value then this indicates that the input xi is
most similar to the directional vector vc, which implies that the vector is wedge type.

www.intechopen.com



Time-frequency analysis using Bayesian regularized neural network model 413

Description EQ (bits) for test TFDs
TI 1 TI 2 TI 3 TI 4 TI 5 TI 6

No cluster 20.539 18.113 18.323 19.975 21.548 17.910

2 clusters 13.523 12.294 12.421 11.131 14.049 11.940

3 clusters 8.623 6.629 7.228 5.672 8.175 6.948

4 clusters 8.101 6.300 7.202 5.193 8.025 6.733

5 clusters 7.998 6.187 7.111 5.012 7.939 6.678

6 clusters 7.877 6.015 7.019 5.995 7.883 6.661

Table 1. Entropy values vs clusters

3 Step (2) is repeated for all input vectors. Consequently all the vectors are classified
based on the type of edge they represent and Ns clusters are obtained. The statistical
data revealing various vector types in the two TFD images depicted in Fig. 3 is shown
in Table 2.

4 The pairs of vectors from training and target TFDs are formed. These pairs are divided
into training set and validation set for training phase and by observing error on these
two sets, the aspect of overfitting is avoided.

These steps of vectorization, correlation and taxonomy are further elaborated in graphical
form by Fig. 7.

Fig. 7. Vectorization, correlation and taxonomy of TFD image.

2.2 Processing through Bayesian Regularized Neural Network Model

Fig. 8 represents this module. There are three steps in this module, namely (i) training of
BRNNM, (ii) selecting the LNNs, and (iii) testing the LNNs. They are discussed as under.
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Various parameters Cluster 1 Cluster 2 Cluster 3
(input training TFDs) ascending edge descending edge wedge edge

type vectors type vectors type vectors

Sinusoidal FM signal 19157 18531 112

Parallel chirps’ signal 4817 4959 52

The best ANN ANN − 3 ANN − 2 ANN − 1

Time consumed for training 308 seconds 114 seconds 55 seconds

MSE converged 2.54 × 10−4 3.56 × 10−4 1.38 × 10−2

Table 2. Cluster parameters

2.2.1 ANN Training

1. Since the ANN is being used in a data–rich environment to provide high resolution
TFDs, it is important that it does well on data it has not seen before, i.e. that it can
generalize. To make sure that the network does not become over trained. the error is
monitored on a subset of the data that does not actually take part in the training. This
subset is called the validation set other than the training set. If the error of the validation
sets increases the training stops. For this purpose, alternate pairs of vectors from input
and target TFDs are included in training and validation sets.

2. The input vectors represented by xi and the mean values yi of the pixel values, of the
corresponding window from the target TFD image are used to train the multiple ANNs
under Bayesian framework. There are three ANNs trained for each cluster, being the
smallest numerical value to check the advantage of training multiple ANNs. This selec-
tion has no relation with the number of subspaces or direction vectors.

3. Step (2) is repeated until all pairs of input and corresponding target vectors are used
for training.

2.2.1.1 Topology, Architecture and Training TFDs

To address the stated problem, Bayesian Regularized LMB training algorithm is used with
feed forward back propagation ANN architecture and 40 neurons in the single hidden layer.
This architecture is chosen after an empirical study (20; 21, Shafi et at. 2006, Ahmad et al.
2006). We experiment with various training algorithms using different parameters such as
different activation functions between layers, number of hidden layers and number of neu-
rons. Also the positive impact of localised processing by selecting the best trained ANN out
of many is ascertained (22, Shah et al. 2007). The ‘tansig’ and ‘poslin’ transfer functions are
used respectively representing the hidden layer of sigmoid neurons followed by an output
layer of positive linear neurons. Multiple layers of neurons with nonlinear transfer functions
allow the network to learn linear and nonlinear relationships between input and output vec-
tors. The linear output layer lets the network produce values outside the range [−1. + 1].
The spectrograms and WVD of the two signals are used as input and target TFDs respectively
for training the ANNs. The first signal is a sinusoidal FM signal, given by:

x(n) = e−jπ[ 5
2 +{0.1 sin( 2πn

N )}]n (6)

where N refers to the number of sampling points. The spectrogram of this signal is depicted
in Fig. 3(a). The respective target TFD, obtained through WVD, is depicted in Fig. 5(a).
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Fig. 8. Bayesian regularised neural network model

The second signal is with two parallel chirps given by:

y(n) = ej( πn
4n )n + ej( π

3 +
πn
4n )n (7)

The spectrogram of this signal is depicted in Fig. 3(b). The respective target TFD, obtained
through the WVD, is depicted in Fig. 5(a).

2.2.2 LNNs’ selection

1. As mentioned above, three ANNs are being trained for each cluster and the best for
each cluster is required to be selected. The “training record” is a programmed structure
in which the training algorithm saves the performance of the training–set, test–set, and
the validation–set, as well as the epoch number and the learning rate. By keeping track
of the network error or performance, accessible via the training record, the best network
is selected for each cluster. These best networks selected for various clusters are called
the LNNs.
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2. Using multiple networks for each cluster is found to be advantageous because the
weights are initialized to random values, and when the network begins to over–fit the
data, the error in the validation set typically begins to rise. If this happens for a spec-
ified number of iterations, the training is stopped, and the weights and biases at the
minimum of the validation error are obtained. As a result, various networks will have
different MSEs in the last training epoch. The ANN with minimum MSE is the winner
and is included in the LNNs. There are three ANN trained for each of three clusters,
and as recorded in Table 2 it is found that ANN − 3 and ANN − 2 are the best for the
first and second clusters respectively, and the ANN − 1 is found to be the best for the
third cluster only. It is assumed that these selected ANN are optimally trained and will
posses better generalization abilities.

2.2.3 ANN Testing

1. Test TFDs are converted to vectors (zi) and clustered after correlating with the direction
vectors, as done for the training TFDs.

2. Each test vector zi is fed to the LNN trained for the particular type and the results are
recorded.

2.3 Post–processing of the Output Data

This module is illustrated in Fig. 9. After testing phase, the resultant data is post–processed
to get the resultant TFD. As we obtain one value for each vector of length three from test
TFD after processing through the LNNs. There are two possibilities to fill the rest of two
pixels, either (i) replicate the same value for other two places, or (ii) use zero padding around
this single value to complete the number of pixels. Zero padding is optimal because it is
found to reduce the blur in TF plane. Next the resultant vectors of correct length are placed at
their original places from where they were correlated and clustered. These vectors are placed
according to the initially stored grid positions.

3. Discussion on Experimental Results

The discussion on experimental results by the proposed approach and performance evalua-
tion of various bilinear distributions is presented in this section. It uses objective methods
of assessment to evaluate the performance of de–blurred TFDs estimated through BRNNM
(henceforth the NTFDs). The objective methods allow quantifying the quality of TFDs instead
of relying solely on visual inspection of their plots. Performance comparison with various
other quadratic TFDs is provided too. This section is organized in two subsections. The sub-
section 3.1 discusses the NTFDs’ performance basing on the visual results and carrying out
their information quantification by measuring the entropy values only. In subsection 3.2, the
concept and importance of TFDs’ objective assessment is described using both real life and
synthetic signals.

3.1 Visual Interpretation and Entropy Analysis

In the first phase, five synthetic signals are tested to evaluate the effectiveness of the proposed
algorithm basing on visual results and their entropy analysis. They include (i) a two sets
of parallel chirps signal intersecting at four places, (ii) a mono–component linear chirp sig-
nal, (iii) combined quadratic swept–frequency signals whose spectrograms are concave and
convex parabolic chirps respectively, (iv) a combined crossing chirps and sinusoidal FM sig-
nal and (v) a quadratic chirp signal. The spectrograms of these signals are shown in Figs.
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Fig. 9. Post-processing of the output data

10(a) to 10(e) respectively. Keeping in mind that estimation of the IF is rather difficult at the
intersections of chirps, the first and fifth test cases are considered to check the performance
of proposed algorithm at the intersection of the IFs of individual components present in the
signals.
The spectrogram of the two sets of parallel chirps signals crossing each other at four points is
fed as the first test signal, depicted in Fig. 10(a), is obtained by:

TS1(n) = ej[π− πn
6N ]n + ej[ π

3 −
πn
6N ]n + ej[ πn

N ]n + ej[π+ πn
N ]n (8)

The second test signal is a mono–component chirp signal given by:

TS2(n) = ej[π+ πn
N ]n (9)

The spectrogram of the resultant signal is depicted in Fig. 10(b).
The third test signal is obtained by point–by–point addition of two quadratic swept–frequency
signals whose spectrograms are concave and convex parabolic chirps respectively. Mathemat-
ically both the signals can be obtained by manipulating different parameters of following
equation:

TS3(n) = cos

[

2π

(

∂

1 + β

)

(

n(1+β)
)

+ f0 +
θ

360

]

, (10)
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Fig. 10. Test TFDs (a) Crossing chirps (TI 1), (b) mono-component linear chirp (TI 2), (c)
combined quadratic swept-frequency signals whose spectrograms are concave and convex
parabolic chirps respectively (TI 3), (d) combined sinusoidal FM and crossing chirps (TI 4),
and (e) quadratic chirp (TI 5)

where
∂ = ( f1 − f0) ρ(−β)
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The method Resultant EQ (bits) for test TFDs

TI 1 TI 2 TI 3 TI 4 TI 5

NTFD 8.623 6.629 5.672 8.175 6.948

WVD 21.562 10.334 18.511 20.637 18.134

Spectrogram 28.231 18.987 27.743 28.785 23.774

Table 3. Entropy values for various techniques

here β, f0, f1, θ and ρ are defined as the matching string constant, start frequency, frequency
after one second, initial phase of signal and sample rate respectively. The spectrogram of the
first quadratic swept–frequency signal is concave parabolic chirp which starts at 250 Hz and
go down to 0 Hz at a 1 kHz sample rate; whereas spectrogram of the second quadratic swept–
frequency signal is a convex parabolic chirp starting at 250 Hz and going up to 500 Hz at a
1 kHz sample rate. These aspects are evident in the combined spectrogram depicted in Fig.
10(c).
Another test signal is obtained by combining crossing chirps and sinusoidal FM signal as:

TS4(n) = ej[ πn
N ]n + ej[π+ πn

N ]n + ejπ[ 1
2 −(0.1 sin( 2πn

N ))n] (11)

The spectrogram of the signal is depicted in Fig. 10(d).
Yet another test signal is a quadratic chirp which starts at 100 Hz and cross es 200 Hz at 1
second with a 1 kHz sample rate. It is obtained from Eqn. (10) after necessary adjustment of
different parameters. The spectrogram of this signal is depicted in Fig. 10(e).

3.1.1 Resultant NTFDs – Experimental Results

The five synthetic test signals are: a combined parallel chirps signal crossing at four points,
a mono–component linear chirp signal, combined quadratic swept–frequency signals whose
spectrograms are concave and convex parabolic chirps respectively, combined crossing chirps
and sinusoidal FM signals without any intersection and a quadratic chirp signal. The spectro-
grams of these signals constitute test image 1 (TI 1), test image 2 (TI 2), test image 3 (TI 3), test
image 4 (TI 4), and test image 5 (TI 5). They are depicted in Figs. 10(a–e) respectively. The

entropy expression given by EQ = −∑
N−1
n=0 Q (n, ω) log2 Q (n, ω) dω ≥ 0 is used to quantify

the TFDs’ information, which has an inverse relation with the information (25, Gray 1990).
The entropy values for different TFDs have been recorded in Table 3, which are the lowest
for the NTFDs than other technique like WVD and the spectrogram. TI 1 and TI 5 are taken
into account to check the performance of the proposed algorithm for estimation of the IFs at
the intersections along the individual components in the signals. Even though estimation of
IF is considered rather difficult at intersections, the algorithm performs well as depicted in
Figs. 11(a) and (d). The test images including TI 2, TI 3 and TI 5 present the ideal cases to
check the performance of the proposed algorithm trained with signals of different nature. The
resultant TFD images are highly concentrated along the IF of individual components present
in the signal as shown in Figs. 11(b), (c) and (e).

3.2 Objective Assessment

In this subsection, the objective measures are used to analyze the NTFDs’ performance in
comparison to other TFDs. The aim has been to find, based on these measures, the highly
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Fig. 11. Resultant TFDs after processing through correlation vectored taxonomy algorithm
with LNNs for (a) Crossing chirps (TI 1), (b) mono-component linear chirp (TI 2), (c) combined
quadratic swept-frequency signals whose spectrograms are concave and convex parabolic
chirps respectively (TI 3), (d) combined sinusoidal FM and crossing chirps (TI 4), and (e)
quadratic chirp (TI 5)

informative TFDs having the best concentration and the highest resolution. Five new exam-
ples, including both real life and synthetic multicomponent signals, are being considered. The
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signals include (i) a multicomponent bat echolocation chirp signal, (ii) a two–component in-
tersecting sinusoidal FM signal, (iii) a two sets of nonparallel, nonintersecting chirps’ signal,
and (iv) a closely spaced three–component signal containing a sinusoidal FM component in-
tersecting the crossing chirps. The respective spectrograms, termed as test image A (TI A), test
image B (TI B), test image C (TI C), and test image D (TI D), are shown in Figs. 12(a), 14(a)–
16(a) respectively. As an illustration of the evaluation of the NTFDs’ performance through
Boashash concentration and resolution measures in (26, Boashash & Sucic 2003), we have fur-
ther considered a closely spaced multicomponent signal containing two significantly close
parallel chirps. The spectrogram of this signal, termed as test image E (TI E), is depicted in
Fig. 17(a). The resultant NTFDs for the test signals are shown in Fig. 12(b) & Figs. 14(b)– 17(b)
respectively. The visual results are indicative of NTFDs’ high resolution and concentration
along the IF of the individual component present in the signals.

Fig. 12. Test TFDs for bat chirps signal, (a) the spectrogram TFD, and (b) the resultant TFD
after processing through proposed framework.

Fig. 13. Resultant TFD obtained by the method of (28, Baraniuk & Jones 1993).
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Fig. 14. (a) The test spectrogram (TI 2) [Hamm, L = 90], and (b) The NTFD of a synthetic signal
consisting of two sinusoidal FM components intersecting each other.

Fig. 15. (a) The test spectrogram (TI 3) [Hamm, L = 90], and (b) The NTFD of a synthetic signal
consisting of two-sets of non-parallel, non-intersecting chirps.

3.2.1 Real Life Test Case

Real life data for bat echolocation chirp sound (adopted from (27)) provides an excellent mul-
ticomponent test case. The nonstationary nature of the signal is only obvious from its TFD.
The spectrogram of this signal is shown in Fig. 12(a), and the resultant NTFD is depicted in
Fig. 12(b). The result for the same test case TFD is computed using an existing optimal kernel
method (OKM) (28, Baraniuk & Jones 1993) and is plotted in Fig. 13. The OKM proposes a
signal–dependent kernel that changes shape for each signal to offer improved TF representa-
tion for a large class of signals based on quantitative optimization criteria. On close monitor-
ing the OKM’s output depicted in Fig. 13, it is revealed that this TFD does not fully recover all
the components, thus losing some useful information about the signal. Whereas the NTFD is
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Fig. 16. (a) The test spectrogram (TI 4) [Hamm, L = 90], and (b) The NTFD of a synthetic signal
consisting of crossing chirps and a sinusoidal FM component.

Fig. 17. (a) The test spectrogram (TI 5), and (b) the NTFD of test case E.

not only highly concentrated along the IF of the individual components present in the signal
but also more informative showing all the components.
For further analysis, slices of the test and resultant NTFDs are taken at the time instants n =
150 and n = 310 (recall that n = 1, 2, . . . , 400) and the normalized amplitudes of these slices are
plotted in Fig. 18. These instants are chosen because three chirps are visible (see Fig. 12(b))
at these time instants. Fig. 18 confirm the peaky appearance of three different frequencies
at these time instants. It is worth mentioning that the NTFD not only recovers the fourth
component (the weakest) but it has the best resolution i.e. narrower main lobe and no side
lobes.
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Fig. 18. The time slices for the spectrogram (blue) and the NTFD (red) for the bat echolocation
chirps’ signal, at n=150 (left) and n=310 (right)

3.2.2 Synthetic Test Cases

Further four specially synthesized signals of different nature are fed to the model to check its
performance at the intersection of the IFs and closely spaced components, keeping in mind
that estimation of the IF is rather difficult in these situations. The test cases are described as
under:

3.2.2.1 Test case 1.

The first one is the synthetic signal consisting of two intersecting sinusoidal FM components,
given as:

SynTS1(n) = e
−iπ( 5

2 −0.1 sin(2πn/N))n + e
iπ( 5

2 −0.1 sin(2πn/N))n (12)

The spectrogram of the signal is shown in Fig. 14(a).

3.2.2.2 Test case 2.

The second synthetic signal contains two sets of nonparallel, nonintersecting chirps once plot-
ted on the TF plane. Mathematically it can be written as:

SynTS2(n) = e
iπ( n

6N
)n + e

iπ(1+ n

6N
)n + e

−iπ( n

6N
)n + e

−iπ(1+ n

6N
)n (13)

The spectrogram of the signal is shown in Fig. 15(a).

3.2.2.3 Test case 3.

It is a three–component signal containing a sinusoidal FM component intersecting two cross-
ing chirps. It is expressed as:

SynTS3(n) = e
iπ( 5

2 −0.1 sin(2πn/N))n + e
iπ( n

6N
)n + e

iπ( 1
3 −

n

6N
)n (14)

The spectrogram of the signal is shown in Fig. 16(a). The two components (sinusoidal FM and
chirp components) are very close in between 150 − 200 Hz near 0.5 sec. This is to confirm the
model’s effectiveness in de–blurring closely spaced components.
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3.2.2.4 Test case 4.

This particular test case is adopted from Boashash (26, Boashash & Sucic 2003) to compare the
TFDs’ concentration and resolution performance at the middle of the signal duration interval
by Boashash performance measures. The signal consists of two linear frequency modulated
signals whose frequencies increase from 0.15 to 0.25 Hz and from 0.2 to 0.3 Hz, respectively,
over the time interval t∀[1, 128]. The sampling frequency is fs = 1 Hz.The authors in (26,
Boashash & Sucic 2003) have found the modified B distribution (β = 0.01) as the best per-
forming TFD for this particular signal at the middle after measuring the signal components’
parameters needed in Boashash resolution measure (see Table 5). The signal is defined as;

SynTS4(n) = cos
(

2π

(

0.15t + 0.0004t2
))

+ cos
(

2π

(

0.2t + 0.0004t2
))

(15)

The spectrogram of the signal is shown in Fig. 17(a).
The above mentioned test cases are processed through the BRNNM and the resultant NTFDs
are shown in Figs. 14(b)–17(b). High resolution and concentration along the IF of individual
components is obvious once inspecting these plots visually.

3.2.3 Performance Evaluation

To evaluate the performance, numerical computations by the methods like the ratio of norms
based measures, Shannon & Rényi entropy measures, normalized Rényi entropy measure and Stankovic
measure are recorded in Table 4. The entropy measures including Shannon & Rényi entropies
with or without normalization make excellent measures of the information extraction perfor-
mance of TFDs. By the probabilistic analogy, minimizing the complexity or information in a
particular TFD is equivalent to maximizing its concentration, peakiness, and, therefore, res-
olution (29, Jones & Parks 1992). To obtain the optimum distribution for a given signal, the
value of ratio of norms based and Boashash resolution measures should be the maximum (30,
Jones & Parks 1990), whereas TFDs’ yielding the smallest values for Stankovic and Boashash
concentration measures are considered as the best performing TFD in terms of concentration
and resolution (26; 31, Boashash & Sucic 2003, Stankovic 2001)
The values in Table 4 refer to the NTFDs as the best TFDs by various criteria. This can be
better observed by plotting these measures separately for various TI’s (i.e. TI A–TI D) shown
in Fig. 19. Few singularities are mainly attributable to inherent shortcomings and derivations’
assumptions, e.g. simple Rényi entropies, being unable to detect zero mean CTs, indicate
ZAMD as the best concentrated TFD. However the more often used volume normalized Rényi
entropies are the minimum for the NTFDs1.

1 Here the abbreviations for different methods include the spectrogram (spec), Wigner–Ville distribution
(WVD), Choi–Williams distribution (CWD), Zhao–Atlas–Marks distribution (ZAMD), neural network
based TFD (NTFD), Margenau–Hill distribution (MHD), Born–Jordan distribution (BJD), Simple Neural
network based method (SNN) without clustering the data and the optimal radially Gaussian kernel TFD
method (OKM).
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Fig. 19. Comparison plots, criteria vs TFDs, for the test images A–D, (a) The Shannon entropy
measure, (b) Rényi entropy measure, (c) Volume normalized Rényi entropy measure,(d) Ratio
of norm based measure, and (e) Stankovic measure.
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Description Test Spec WVD ZAMD MHD CWD BJD NTFD SNN OKM
TFD

Shannon TI A 13.46 36.81 102.23 42.98 17.27 17.73 7.27 10.18 14.68

entropy TI B 13.45 64.33 76.81 37.74 20.82 20.43 8.75 10.88 18.08

measure TI C 18.66 185.49 274.73 126.02 28.08 28.05 7.87 13.45 21.42

TI D 18.94 74.82 87.30 49.24 35.31 29.92 17.25 24.23 23.57

Ratio of TI A 3.81 3.84 2.94 1.05 2.89 2.73 66 13.88 8.32

Norm based TI B 1.94 1.91 2.18 1.10 3.10 4.67 24 18.12 1.59

measure TI C 51.23 58.0 1.02 48.71 38.53 26.37 44 33.90 10.26

(×10−4) TI D 0.95 0.92 1.19 0.12 1.11 2.68 14 8 4.60

Rényi TI A 12.45 10.90 7 11.47 12.67 12.54 7.26 9.25 11.65

entropy TI B 12.98 9.95 7.56 11.03 12.06 11.85 8.74 10.89 13.82

measure TI C 17.07 14.01 8.62 14.74 16.24 15.84 7.85 12.82 17.22

TI D 12.47 9.48 7.06 10.50 11.54 11.34 8.23 10.03 13.31

Energy TI A 12.45 10.90 7 11.47 12.67 12.54 7.26 9.25 11.65

Normalized TI B 12.98 9.95 7.56 11.03 12.06 11.85 8.74 10.89 13.82

Rényi TI C 17.07 14.01 8.62 14.74 16.24 15.84 7.85 12.82 17.22

entropy measure TI D 12.47 9.48 7.06 10.50 11.54 11.34 8.23 10.03 13.31

Volume TI A 12.45 12.02 9.18 12.75 12.93 12.85 7.26 12.97 11.77

Normalized TI B 12.98 11.62 9.54 12.26 12.60 12.38 8.74 11.68 10.98

Rényi TI C 17.07 16.28 11.35 16.70 16.77 16.41 7.85 14.49 15.43

entropy measure TI D 12.47 9.48 7.06 10.50 11.54 11.34 8.23 10.03 10.31

Stankovic TI A 0.2219 3.30 13.14 2.9200 1.06 1.01 0.0015 0.0912 0.6300

measure TI B 0.1600 4.68 5.6266 1.1861 1.0123 0.8946 0.0024 0.0145 8.6564

(×105) TI C 6.03 47.05 39.64 36.47 33.08 29.39 0.0043 0.9973 14.73

TI D 0.1553 8.67 9.6253 5.1848 6.0110 5.8933 1.0030 3.0223 8.5551

Table 4. Performance Measures Comparison for Various TFDs

Boashash performance measures for concentration and resolution are computationaly expensive be-
cause they require calculations at various time instants. To limit the scope, these measures are
computed at the middle of the synthetic signal defined in Eqn. (15) and the results are com-
pared with the one reported in (26, Boashash & Sucic 2003). A slice is taken at t = 64 and
the signal components’ parameters AM1

(64), AM2
(64), AM(64), AS1

(64), AS2
(64), AS(64),

Vi1
(64), Vi2

(64), Vi(64), fi1
(64), fi2

(64)and ∆ fi(64), as well as the CTs’ magnitude AX(64)
are measured. These are then used to calculate the TFDs’ normalized instantaneous resolu-
tion and modified concentration performance measures Ri(t) and Cn(t). The measurement
results are recorded in Table 5 and Table 6 seperately for Ri(64) and Cn(64). The slice of the
signal’s NTFD at t = 64 is shown in Fig. 20(f).
A TFD that, at a given time instant, has the largest positive value (close to 1) of the measure
Ri is the TFD with the best resolution performance at that time instant for the signal under
consideration. From Table 5, the NTFD of synthetic signal given by Eqn. (15) gives the largest
value of Ri at time t = 64 and hence is selected as the best performing TFD of this signal
at t = 64. On similar lines, the TFDs’ concentration performance is compared at the middle
of signal duration interval. A TFD is considered to have the best energy concentration for a
given multicomponent signal if for each signal component, it yields the smallest
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TFD (optimal parameter) AM(64) AS(64) AX(64) Vi(64) △fi(64) D(64) R(64)

Spectrogram (Hann, L = 35) 0.9119 0.0087 0.5527 0.0266 0.0501 0.4691 0.7188

WVD 0.9153 0.3365 1 0.0130 0.0574 0.7735 0.6199

ZAMD (a = 2) 0.9146 0.4847 0.4796 0.0214 0.0420 0.4905 0.5661

CWD (σ = 2) 0.9355 0.0178 0.4415 0.0238 0.0493 0.5172 0.7541

BJD 0.9320 0.1222 0.3798 0.0219 0.0488 0.5512 0.7388

Modified B (β = 0.01) 0.9676 0.0099 0.0983 0.0185 0.0526 0.5957 0.8449

NTFD 0.9013 0 0 0.0110 0.0550 0.800 0.9333

Table 5. Parameters and the Normalized Instantaneous Resolution Performance Measure of
TFDs for the Time Instant t=64

TFD AS1
(64) AS2

(64) AM1
(64) AM2

(64) Vi1
(64) Vi2

(64) fi1
(64) fi2

(64) C1 (64) C2 (64)

(optimal parameters)

Spectrogram 0.0087 0.0087 1 0.8238 0.03200 0.0200 0.1990 0.2500 0.1695 0.0905

(Hann, L = 35)
WVD 0.3365 0.3365 0.9153 0.9153 0.0130 0.013 0.1980 0.2554 0.4333 0.4185

ZAMD(a = 2) 0.4848 0.4900 1 0.8292 0.0224 0.0204 0.2075 0.2495 0.5927 0.6727

CWD(σ = 2) 0.0176 0.0179 1 0.8710 0.0300 0.0176 0.205 0.2543 0.1639 0.0898

BJD 0.1240 0.1204 1 0.8640 0.0270 0.0168 0.2042 0.2530 0.2562 0.2058

Modified B 0.0100 0.0098 1 0.9352 0.0190 0.0180 0.200 0.2526 0.1050 0.0817

(β = 0.01)
NTFD 0 0 0.8846 0.9180 0.0110 0.0110 0.2035 0.2585 0.0541 0.0425

Table 6. Parameters and the Modified Instantaneous Concentration Performance Measure of
TFDs for the Time Instant t=64

1. Instantaneous bandwidth relative to component IF (Vi(t)/ fi(t)) and,

2. Sidelobe magnitude relative to mainlobe magnitude (AS(t)/AM(t)).

The measured results are recorded in Table 6, which indicate that the NTFD of signal given
by Eqn. (15) yield the smallest values of C1,2(t) at t = 64 and hence is selected as the best
concentrated TFD at t = 64. To draw a better comparison, the values of Ri and C1,2 computed
for different TFDs are plotted in Fig. 21.

4. Conclusions

The attempt to clearly understand what a time–varying spectrum is, and to represent the
properties of a signal simultaneously in time and frequency without any ambiguity, is one of
the most fundamental and challenging aspects of signal analysis. A large pubished scientific
literature highlights the significance of TF processing with regard to improved concentration
and resolution. However as this task is achieved by many different types of TF techniques,
it is important to search for the one that is most pertinent to the application. Although the
WVD and the spectrogram QTFDs are often the easiest to use, they do not always provide an
accurate characterization of the real data. The spectrogram results in a blurred version and the
use of the WVD in practical applications has been limited by the presence of CTs and inability
to produce ideal concentration for non–linear IF variations. The spectrogram, for example,
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Fig. 20. The normalized slices at t = 64 of TFDs, (a) The spectrogram, (b) WVD, (c) ZAMD,
(d) CWD, (e) BJD, (f) NTFD. First five TFDs (dashed) are compared against the modified B
distribution (solid), adopted from Boashash (26, Boashash & Sucic 2003).

could be used to obtain an overall characterization of the non–stationary signals’ structure,
and then the information could be used to invest in another QTFD that is well matched to the
data for further processing that requires information that is not provided by the spectrogram,
the idea conceived and implemented in (32, Shafi et al. 2007).
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Fig. 21. Comparasion plots for Boashash TFDs’ performance measures vs TFDs, (a) The mod-
ified concentration measure, and (b) Boashash normalized instantaneous resolution measure

A novel ANN based approach incorporating Bayesian regularization is implemented and
evaluated of computing informative, non–blurred and high resolution TFDs. The resulting
TFDs do not have the CTs that appear in case of multicomponent signals in some distribu-
tions such as WVDs, thus providing visual way to determine the IF of non–stationary signals.
The technique explores that the mixture of localized neural networks focused on a specific task
deliver a TFD that is highly concentrated along the IF with no CTs as compared to training the
ANN which does not receive the selected input. Experimental results presented in section 3
demonstrate the effectiveness of the approach.
For the completeness of proposed framework, the NTFD’s performance is further assessed
by the information theoretic criteria. These quantitative measures of goodness are used in-
stead of relying solely on the visual measure of goodness of TFDs’ plots. The mathematical
framework to quantify the TFDs’ information is found effective in ascertaining the superior-
ity of the results obtained by the ANN based multiprocesses technique, using both synthetic
and real life examples. The NTFD is compared to some popular distributions known for their
CTs’ suppression and high energy concentration in the TF domain. It is shown that the NTFD
exhibits high resolution, no interference terms between the signal components and is highly
concentrated. Also it is found to be better at detecting the number of components in a given
signal compared to the conventional distributions.
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