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During the last decades, “Transport Demand" and “Mobility" has been a continuously de-
veloping branch in the transport literature. This is reflected in the great amount of research
papers published in scientific magazines dealing with trip matrix estimation (see (Doblas &
Benítez, 2005)) and traffic assignment problems (see (Praskher & Bekhor, 2004)). Current traf-
fic models reproduce the mobility using several data inputs, in particular prior trip matrix,
link counts, etc. (see (Yang & Zhou, 1998)) which are data only from a subset of the problem
variables, and its size will depend on the available budget for the study being carried on.
Among the problems faced for solving these models we can emphasize the high number of
possible solutions which is usually solved by choosing the solution where the model results
best fits real data. Nevertheless a model does not have to reproduce only the real data, but
also must reproduce accurately all the variables. To this end, the aim of this paper consists of
presenting two Bayesian network models for traffic estimation, trying to bring a new tool to
the transportation field. The first one deals with the problem of link flows, trip matrix estima-
tion and traffic counting location and in the second one we propose a Bayesian network for
route flow estimation (and hence link flows and OD flows) using data from plate scanning
technique together with a model for optimal plate scanning device location. Since a Gaussian
Bayesian network is used, these models allow us to update the predictions from a small subset
of real data and probability intervals or regions are obtained to get an idea of the associated
uncertainties. In addition dealing with data from the plate scanning approach we improve the
under-specification level of the traffic flow estimation problem.

1. Some background on Bayesian network models

A Bayesian network (see, (Castillo et al., 1999)) is a pair (G,P), where G is a directed
acyclic graph (DAG) defined on a set of nodes X (the random variables), and P =
{p(x1|π1), . . . , p(xn|πn)} is a set of n conditional probability densities (CPD), one for each
variable, and Πi is the set of parents of node Xi in G. The set P defines the associated joint
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probability density of all nodes as

p(x) =
n

∏
i=1

p(xi|πi). (1)

The graph G contains all the qualitative information about the relationships among the vari-
ables, no matter which probability values are assigned to them1. Complementary, the proba-
bilities in P contain the quantitative information, i.e., they complement the qualitative prop-
erties revealed by the graphical structure.
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��

�� ��
��

�

Fig. 1. A traffic network and its associated Bayesian network.

As an example of how a traffic network can be represented by means of G let us consider the
simple traffic network in Figure 1. Assume that we have only the OD pair (1, 3) and two
routes {(1, 2), (3)}. Then, it is clear that the link flows v1, v2 and v3 depend on the OD flow
t, leading to the Bayesian network in the right part of Figure 1, where the arrows go from
parents to sons. Note that link flow va has the t OD flow as a parent, and the t OD flow has
va as son, if link a is contained in at least one path of such a OD pair.
Since a normal model is going to be used, the particular case of Gaussian Bayesian networks
is presented next. A Bayesian network (G,P) is said to be a Gaussian Bayesian network (see
(Castillo et al., 1997a;b)) if and only if the joint probability distribution (JPD) associated with its
variables X is a multivariate normal distribution, N(µ, Σ), i.e., with joint probability density
function:

f (x) = (2π)−n/2|Σ|−1/2 exp
{

−1/2(x − µ)TΣ−1(x − µ)
}

, (2)

where µ is the n-dimensional mean vector, Σ is the n × n covariance matrix, |Σ| is the deter-
minant of Σ, and µT denotes the transpose of µ.
In transportation problems, when some variables are observed, one needs to consider the
other variables conditioned on the observations, and then the remaining variables change
expected values and covariances. The following equations permit updating the mean and the
covariance matrix of the variables when some of them are observed. They illustrate the basic
concepts underlying exact propagation in Gaussian network models (see (Anderson, 1984)).
These updating equations are:

µY|Z=z = µY + ΣYZΣ−1
ZZ(z − µZ), (3)

ΣY|Z=z = ΣYY − ΣYZΣ−1
ZZΣZY , (4)

1 This allows determining which information is relevant to given variables when the knowledge of other
variables becomes available. As we will see in section 2.3 this fact is the basis of the traffic counts
location problem.
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where Y and Z are the set of unobserved and observed variables, respectively, which allow
calculating the conditional means and variances given the actual evidence, i.e. they are the
updating equations for the means and variance-covariance matrix of the unobserved vari-
ables and the already deterministic values of observed variables, when the later have been
observed.
Note that instead of using a single process with all the evidences, one can incorporate the
evidences one by one. In this way, one avoids inverting the matrix ΣZZ, which for some
solvers can be a problem because of its size. Note also that the conditional mean µY|Z=z
depends on z but the conditional variance ΣY|Z=z does not.

2. Traffic link count based method for traffic flow prediction

In this section a method for traffic flow prediction using Bayesian networks with data from
traffic counts is presented (see (Castillo, Menéndez & Sánchez-Cambronero, 2008a)).

2.1 Model assumptions

In our Gaussian Bayesian network for traffic flow prediction using data from traffic counts,
we make the following assumptions:

Assumption 1: The vector T with elements tks of OD flows from origin k to destination s,
are multivariate normal N(µT , ΣT) random variables with mean µT and variance-covariance
matrix ΣT .
At this point we have to note that the T random variables are correlated. In particular, at the
beginning and end of vacation periods the traffic increases for all OD pairs and strong weather
conditions reduce traffic flows in all OD pairs. This fact can be formulated as follows:

tks = ζksU + ηks, (5)

where ζks are positive real constants, U is a normal random variable N(µU , σ2
U), and ηks are

independent normal N(0, γ2
ks) random variables. The meanings of these variables are as fol-

lows:

U : A random positive variable that measures the level of total mean flow. This means that
flow varies randomly and deterministically in situations similar to those being analyzed
(weekend period, labor day, beginning or end of a general vacation period, etc.).

ζ : A column matrix which element ζks measures the relative weight of the traffic flow
between origin k to destination s with respect to the total traffic flow (including all OD
pairs).

η : A vector of independent random variables with null mean such that its ks element mea-
sures the variability of the OD pair ks flow with respect to its mean.

Assumption 2: The conditional distribution of each link flow V given the OD flows is the
following normal distribution

vij|T ∼ N



µvij + ∑
k,s∈Πij

βijks(tks − µtks
), ψ2

ij



 ,

where vij is the traffic flow in link lij, βijks is the regression coefficient of vij on tks, which is

zero if the link lij does not belong to any path of the OD pair ks, ψ2
ij is its variance and Πij is

the set of parents of link lij.
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Note that this forces our model to satisfy the flow conservation laws. If there are no errors
in measurements, that is, ψ2

ij = 0; ∀lij ∈ A, where A is the set of links, the conservation laws

hold exactly. If errors are allowed (ψ2
ij �= 0) they are statistically satisfied.

Note that this regression relationship, comes from the well known flow equilibrium equation:

vij = ∑
ks

tks

(

∑
r

pks
r δks

ijr

)

, (6)

where tks and are the flows of the OD ks, pks
r is the probability of the user travelling from k to

s to choose the path r, and δks
ijr is the incidence matrix, i.e., it takes value 1 if link lij belongs to

path r of the OD pair ks, and 0, otherwise.
In fact, Equation (6) can be written as

vij = ∑
ks

tks

(

∑
r

pks
r δks

ijr

)

= ∑
ks

βijksµtks
+ ∑

ks

βijks(tks − µtks
), (7)

and then, it becomes apparent that

E[vij] = µvij = ∑
ks

βijksµtks
(8)

βijks = ∑
r

pks
r δks

ijr. (9)

Note that the pks
r depend on the intensities of the traffic flow. Thus, this model is to be assumed

conditional on the pks
r values. If one desires to combine this model with traffic assignment

models, one can obtain the pks
r values from the predicted OD pair flows and iterate until

convergence (this is a particular example of a bi-level method that will be explained in chapter
2.2.2 combined with the WMV assignment model).
Therefore, we can assume that the link flows are given by

V = βT + ε, (10)

where ε = (ε1, ε2, . . . , εn) are mutually independent normal random variables, independent
of de random variables in T, and εℓ has mean E[εℓ] and variance ψ2

ℓ
; ℓ = 1, 2, . . . , n. These

variables represent the traffic flow that enters or exits the link ℓij apart from that going from
the origin to the destination node of such a link. In particular, they can be assumed to be null.

Note also that assumption 1 is reasonable because when there is a general increase or decrease
of flows (the U value), this affects to all ODs, and this effect can be assumed to be proportional,
and the random variables ηks account for random variations over these proportional distribu-
tions of flows.
Therefore, from (5), we have

T =
(

ζ | I
)





U
−−
ηT





and the variance-covariance matrix ΣT of the T variables becomes

ΣT =
(

ζ | I
)

Σ(U,η)





ζT

−−
I



 = σ2
UζζT + Dη, (11)
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where the matrices Σ(U,η) and D are diagonal.

Then, we have
(

T

V

)

=





I | 0

− + −
β | I









T

−−
ε





which implies that the mean E[(T, V)] is

E[(T, V)] =





E(U)ζ
−−−−−−−
E(U)βζ + E(ε)



 , (12)

and since the variance-covariance matrix of (T, ε) is

Σ(T,ε) =





ΣT | 0

−− + −−
0 | Dε



 ,

the variance-covariance matrix of (T, V) becomes

Σ(T,V) =





I | 0

− + −
β | I









ΣT | 0

−− + −−
0 | Dε









I | 0

− + −
β | I





T





ΣT | ΣTβT

−−− + −−−−−−

βΣT | βΣTβT + Dε



 . (13)

All these assumptions imply that the joint PDF of (t12, t13, . . . tks, v12, v23, . . . , vij) can be writ-
ten as

f (t12, t13, . . . tks, v12, v23, . . . , vij) = fN(µT ,ΣT)
(t12, t13, . . . tks)∏

ks

fN(µvij
+ ∑

ks∈Πij

βijks(tks−µtks
),ψ2

ij)(Vks)
, (14)

and can be used to predict traffic flows when information from traffic counts becomes avail-
able. The idea consists of using the joint distribution of OD pairs and link traffic flows condi-
tioned on the available information. In fact, since the remaining variables (those not known)
are random, the most informative item we can get is its conditional joint distribution, and this
is what the Bayesian network methodology supplies.
Now the most convenient graph for this problem (from our point of view), is going to be de-
scribed: the OD flows tks should be the parents of all link flows vij used by the corresponding
travelers, and the error variables should be the parents of the corresponding flows, that is, the
εij must be parents of the vij, and the ηks must be parents of the tks. Finally, the U variable must
by on top (parent) of all OD flows, because it gives the level of them (high, intermediate or
low). This solves the problem of “parent" being well defined, without the need for recursion
in general graphs. One could seemingly have a “deadlock" situation in which it is not clear
what node is the parent of which other node (see (Sumalee, 2004))
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2.2 The Bayesian network model in a bi-level approach

Up to now the Bayesian network trip matrix estimation model (BNME) has been considered
as a ME model, i.e., a model able to predict the OD and link flows from a given probability
matrix with elements pks

r or βijks. The main difference with other methods is that it gives
the joint conditional distributions of all not observed variables and that makes no difference
between OD flows and link flows, in the sense that information of any one of them gives
information about the others indistinctly. In particular the marginal distributions of any flow
(OD or link) are supplied by the method, so that not only predictions can be obtained but
probability intervals or regions.
In this chapter we show that the BNME can be easily combined with some assignment method
to obtain the equilibrium solution of the traffic problem and therefore obtain a more realis-
tic solution, for example in the congested case, using a bi-level approach. In particular, the
proposed model is combined with an assignment model which identifies the origin and desti-
nation of the travelers who drive on a link (see (Castillo, Menéndez & Sánchez-Cambronero,
2008b)). Among its advantages, we can emphasize that the βijks coefficients are easily cal-
culated and the most important, the route enumeration is avoided. This method, called
the “Wardrop minimum variance (WMV) method", is next, combined with the BNME proposed
method, but first let us give a detailed explanation of it.

2.2.1 The WMV assignment model

In this section a User Equilibrium based optimization problem is presented that, given the tks

OD flows, deals with the link ℓij flows xijks coming from node k (origin) and going to node s
(destination). The balance of all these flows particularized by origins and destinations, allows
us classifying the link flows by ODs.
This important information can be used, not only to have a better knowledge of the user be-
havior and the traffic in the network but to make decisions, for example, when some network
events take place. In addition, this method avoids the route enumeration problem which is a
very important issue because including a sub routine which deals with this problem is always
a thorny issue.
The problem is formulated as follows:

Minimize
x

Z = ∑
ℓij∈A

∫ ∑
k,s

xijks

0
cij(x)dx +

λ

m ∑
ℓij∈A

∑
k,s

(xijks − µ)2 (15)

subject to

tks(δik − δis) = ∑
ℓij∈A

xijks − ∑
ℓji∈A

xjiks ∀i; ∀k, s; k �= s, (16)

µ =
1

m ∑
ℓij∈A

∑
k,s

xijks, (17)

xijks ≥ 0 ∀i, j, k, s, (18)

where cij(·) is the cost function for link ℓij, xijks is the flow through link ℓij with origin node k
and destination node s, λ > 0 is a weighting factor, δik are the Dirac deltas (δik = 0, if i �= k,
δii = 1), µ is the mean of the xijks variables, and m is its cardinal. We have also assumed that
the cost on a link depends only on the flow on that link.
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Note that equation (16) represents the flow balance associated with the OD-pair (k, s), for all
nodes, and that the problem (15)-(18) for λ = 0 is a statement of the Beckmann et al. formula-
tion of the Wardrop UE equilibrium problem, but stated for each OD pair. As the cost function
we have selected the Bureau of Public Roads (BPR) type cost functions, because it is generally
accepted and has nice regularity properties, but other alternative cost functions with the same
regularity properties (increasing with flow, monotonic and continuously differentiable) can be
used instead. This function is as follows:

cij

(

∑
k,s

xijks

)

= cij






1 + αij





∑
k,s

xijks

qij





γij





, (19)

where for a given link ℓij, cij is the cost associated with free flow conditions, qij is a constant
measuring the flow producing congestion, and αij and γij are constants defining how the cost
increases with traffic flow. So the total flow vij through link ℓij is:

vij = ∑
k,s

xijks. (20)

The problem (15)-(18) for λ = 0 becomes a pure Wardrop problem and has unique solution in
terms of total link flows, but it can have infinitely many solutions in terms of xijks, though they
are equivalent in terms of link costs (they have the same link costs). Note that any exchange of
users between equal cost sub-paths does not alter the link flows nor the corresponding costs.
So, given an optimal solution to the problem, exchanging different OD users from one sub-
path to the other leads to another optimal solution with different xijks values, though the same
link flows vij. To solve this problem one can choose a very small values of λ. In this case, the
problem has a unique solution. Note also that since for λ > 0, (15) is strictly convex, and the
system (16)-(18) is compatible and convex, the problem (15)-(18) has a unique solution, which
is a global optimum.

2.2.2 Combining the BN model and the WMV equilibrium model

In this section the Bayesian network model is combined with the new WMV assignment model
described in section 2.2.1 using a bi-level algorithm. The aim of proposing this assignment
method instead of, for example, an standard SUE assignment model is twofold. First this
method avoids the route enumeration which is a very important issue. Second, once the flows
xijks are known, the βijks coefficients can be easily calculated as:

βijks =
xijks

tks
. (21)

which is a very important data for the BNME proposed method and allow us an easily imple-
mentation of it.

Algorithm 1 (Bi-level algorithm for the BN and WMV models).

INPUT. E[U], the ζ matrix of relative weight of each OD-pair, the cost coefficients cij, αij, qij and γij,
∀lij ∈ A, and the observed link flows, are the data needed by the algorithm.

OUTPUT. The predictions of the OD and link flows given the observed flows.
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Step 0: Initialization. Initialize the OD flows to the initial guess for E[T]:

T0 = E[T] = E[U]ζ. (22)

Step 1: Master problem solution. The WMV optimization problem (15)-(18) is solved.

Step 2: Calculate the β matrix. The β matrix, of regression coefficients of the V variables given T0,
is calculated using Equation (21).

Step 3: Subproblem: Update the OD and link flow predictions using the Bayesian network.
The new OD-pair T and link V flows are predicted using equations shown in this section, which are:

E[V] = E[U]βζ + E[ε] (23)

Dη = Diag (vE[T]) (24)

ΣTT = σ
2
UζζT + Dη (25)

ΣTV = ΣTTβT (26)

ΣVT = ΣTV (27)

ΣVV = βΣTTβT + Dε (28)

E[Y|Z = z] = E[Y] + ΣYZΣ
−1
ZZ(z − E[Z]) (29)

ΣY|Z=z = ΣYY − ΣYZΣ
−1
ZZΣZY (30)

E[Z|Z = z] = z (31)

ΣZ|Z=z = 0 (32)

T = E[Y|Z = z]|(Y,Z)=T (33)

Step 4: Convergence checking. Compute actual error by means of

error = (T0 − T)T(T0 − T). (34)

If the error is less than the tolerance, stop and return the values of T and V. Otherwise, let T0 = T
and continue with Step 1.

Equation (22) is the initial OD flow matrix calculated using the random variable U, which
gives an estimation of the global flow in the system, and the relative weight vector ζ, which
gives the relative importance of the different OD flows. This T0 matrix with elements t0

ks, is
initially the input data for the problem (15)-(18) and is the initial guess for the OD matrix with
which the calculations are started.
As it has been indicated, for the non-observed data (OD or/and link flows), one can supply a
probability interval, obtained from the resulting conditional probabilities given the evidence.
The relevance of the proposed method consists of using the covariance structure of all the
variables involved. The importance of this information has been pointed out by (Hazelton,
2003), who shows how the indeterminacy of the system of equations relating link and OD
flows, due to the larger number of the latter, can be compensated by the covariance structure.
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2.3 Optimal counting location method using Bayesian networks

This section describes how the Bayesian network model can be also used to select the opti-
mal number and locations of the links counters based on maximum correlation (see (Castillo,
Menéndez & Sánchez-Cambronero, 2008b)). To deal with this problem, a simple procedure
based on the correlation matrix is described below.

Algorithm 2 (Optimal traffic counting locations.).

INPUT. The set of target variables to be predicted (normally OD flows), a variance tolerance, and the
initial variance-covariance matrix ΣZZ, or alternatively, σU and the matrices ζ, Dη, Dε and β.

OUTPUT. The set of variables to be observed (normally link flows).

Step 0: Initialization. If the initial variance-covariance matrix ΣTV is not given, calculate it using
(23)-(28).

Step 1: Calculate the correlation matrix. The correlation matrix Corr with elements

Corrab =
Cov(XaXb)√

σxa σxb

(35)

is calculated from the variance-covariance matrix ΣTV.

Step 2: Select the target and observable variables. Select the target variable (normally among
the OD-flows) and the observable variable (normally among the link flows), by choosing the largest
absolute value of the correlations in matrix Corr. Note that a value of Corrab close to 1 means that
variables a and b are highly correlated. Therefore if the knowledge of a certain target variable is desired,
it is more convenient to observe a variable with greater correlation coefficient because it has more
information than other variables on the target variable.

Step 3: Update the variance-covariance matrix ΣTV. Use formulas (30) and (32) to update the
variance-covariance matrix.

Step 4: End of algorithm checking. Check residual variances of the target variables and determine
if they are below the given threshold. If they are, stop the process and return the list of observable
variables. If there are still variables to be observed, continue with Step 1. Otherwise, stop and inform
that there is no solution with the given tolerance and provide the largest correlation in order to have a
solution.

Note that equation (30), which updates the variance-covariance matrix, does not need the
value of the evidence, but only the evidence variable. Thus, the algorithm can be run without
knowledge of the evidences. Note also that this algorithm always ends, either with the list
of optimal counting locations or with a threshold2 value for the correlation coefficient for the
problem to have a solution.

2 Because the model determines the links to be observed, this selection is done with a given error level,
therefore the quality of the results depend on it.
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2.4 Example of applications: The Nguyen-Dupuis network

In this section, we illustrate the previous models using the well known Nguyen-Dupuis net-
work. It consists of 13 nodes and 19 links, as shown in Figure 2.
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Fig. 2. The Nguyen-Dupuis network.

2.4.1 Selecting an optimal subset of links to be observed

Because the selection procedure is based on the covariance matrix of the link and OD flows,
we need this matrix. To simplify, in this example, the matrix Dε is assumed to be diagonal
with diagonal elements equal to 0.1 (a very small number), that is, we assume that there is
practically no measurement error in the link flows. The matrix Dη is also assumed to be

diagonal with variances equal to the (0.1E[tks])
2.

The mean and standard deviation of U are assumed to be E[U] = 100 and σU = 20, respec-
tively, and the assumed elements of the ζ matrix are given in left part of Table 1.

OD ζ Prior T0

1-2 0.4 40
1-3 0.8 80
4-2 0.6 60
4-3 0.2 20

link cij qij αij γij

1 -5 7 70 1 4
1 -12 9 56 1 4
4 -5 9 56 1 4
4 -9 12 70 1 4
5 -6 3 42 1 4
5 -9 9 42 1 4
6 -7 5 70 1 4
6 -10 5 28 1 4
7 -8 5 70 1 4
7 -11 9 70 1 4

link cij qij αij γij

8 -2 9 70 1 4
9 -10 10 56 1 4
9 -13 9 56 1 4
10-11 6 70 1 4
11-2 9 56 1 4
11-3 8 56 1 4
12-6 7 14 1 4
12-8 14 56 1 4
13-3 11 56 1 4

Table 1. Data needed for solving the example :Prior OD flow, ζ matrices and link parameters.

Because we have no information about the beta matrix β, we have used a prior OD trip matrix
T0 and solved the problem (15)-(18) with the cost coefficients cij, αij, qij and γij ∀ℓ ∈ A, shown
in right part of Table 1, to obtain one. The method has been used, and Table 2 shows this initial
matrix.
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Link proportions (β matrix)
OD 1 -5 1 -12 4 -5 4 -9 5 -6 5 -9 6 -7 6 -10 7 -8 7 -11 8 -2 9 -10 9 -13 10-11 11-2 11-3 12-6 12-8 13-3
1 -2 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
1 -3 0.84 0.16 0.00 0.00 0.47 0.37 0.37 0.26 0.00 0.37 0.00 0.00 0.37 0.26 0.00 0.63 0.16 0.00 0.37
4 -2 0.00 0.00 0.36 0.64 0.36 0.00 0.36 0.00 0.36 0.00 0.36 0.64 0.00 0.64 0.64 0.00 0.00 0.00 0.00
4 -3 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 2. Initial β matrix.

With this information and considering a threshold value of 1 for the variances of the OD flows,
one can use Algorithm 2 where the initial variance-covariance matrix ΣTV has been calculated
using (25)-(28).
After solving this problem, one knows that to predict the OD matrix at the given quality level
it is necessary to observe only the following links:

1 − 5, 12 − 8, 9 − 10, 9 − 13. (36)

It is interesting to observe the boldfaced columns associated with these links in the beta matrix
in Table 2 to understand why these link flows are the most adequate to predict all the OD

flows.

Variances in each iteration
Variable 0 1 2 3 Final

OD-pair 1-2 80.00 28.82 0.10 0.10 0.10
OD-pair 1-3 320.00 0.14 0.14 0.14 0.14
OD-pair 4-2 180.00 64.95 52.06 0.24 0.24
OD-pair 4-3 20.00 7.20 5.78 5.23 0.11

Link 1-5 226.48 0.00 0.00 0.00 0.00

Link 1-12 128.92 28.94 0.20 0.20 0.20
Link 4-5 23.73 8.62 6.93 0.13 0.13
Link 4-9 154.50 45.93 33.87 5.46 0.31
Link 5-6 159.32 8.68 6.98 0.16 0.16
Link 5-9 44.49 0.12 0.12 0.12 0.12
Link 6-7 117.21 8.68 6.96 0.15 0.15

Variances in each iteration
Variable 0 1 2 3 Final
Link 6-10 22.20 0.11 0.11 0.11 0.11
Link 7-8 23.73 8.62 6.93 0.13 0.13

Link 7-11 42.77 0.12 0.12 0.12 0.12
Link 8-2 173.30 51.48 7.08 0.23 0.23

Link 9-10 73.39 26.47 21.26 0.00 0.00

Link 9-13 112.01 7.34 5.91 5.36 0.00

Link 10-11 159.74 26.47 21.29 0.21 0.21
Link 11-2 73.38 26.51 21.27 0.20 0.20
Link 11-3 126.29 0.16 0.16 0.16 0.16
Link 12-6 8.20 0.10 0.10 0.10 0.10
Link 12-8 80.10 28.92 0.00 0.00 0.00

Link 13-3 112.01 7.35 5.92 5.36 0.20

Table 3. Variance of all variables initially and after updating the evidences in each step

Table 3 shows the variance of each variable at each stage, i.e., after the observable variables are
being observed. In the Iteration 0 column, the variances when the information is not available
are shown. In Iteration 1, the variances after observing the first observable variable w1,5 are
shown, and so on. It is interesting to see that the variances decrease with the knowledge
of new evidences. At the end of the process all variances are very small (smaller than the
selected threshold value). Note that the unobserved link flows can also be estimated with a
small precision. Table 4 shows the correlation sub matrices at each iteration, together with
the associated largest absolute value (boldfaced) used to choose the target and observable
variable.

2.4.2 OD matrix estimation

Once the list of links to be observed have been obtained, one can observe them. The observed
flows corresponding to these links have been simulated assuming that they are normal ran-
dom variables with their corresponding means and standard deviations. The resulting flows
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were:
v̂1,5 = 59.73; v̂12,8 = 36.12; v̂9,10 = 39.68; v̂9,13 = 49.87;

To estimate the OD flows with Algorithm 1 one needs some more data. We have assumed
E[ε] = 0.1 and a tolerance value to check convergence of 0.00001. The initial guess for T:

T0 = E[T] = E[U]ζ. (37)

Iteration 1
OD-pair

Link 1-2 1-3 4-2 4-3
1-5 0.800 1.000 0.800 0.800
1-12 0.988 0.881 0.831 0.831
4-5 0.798 0.798 0.998 0.798
4-9 0.838 0.838 0.976 0.910
5-6 0.840 0.973 0.917 0.840
5-9 0.799 0.999 0.799 0.799
6-7 0.842 0.963 0.932 0.842
6-10 0.798 0.998 0.798 0.798
7-8 0.798 0.798 0.998 0.798
7-11 0.799 0.999 0.799 0.799
8-2 0.975 0.839 0.913 0.839
9-10 0.799 0.799 0.999 0.799
9-13 0.841 0.967 0.841 0.926

10-11 0.839 0.913 0.974 0.839
11-2 0.799 0.799 0.999 0.799
11-3 0.800 1.000 0.800 0.800
12-6 0.795 0.994 0.795 0.795
12-8 0.999 0.800 0.800 0.800
13-3 0.841 0.967 0.841 0.926

Target variable=OD-pair 1-3
Observed variable=link 1-5.

Iteration 2
OD-pair

Link 1-2 4-2 4-3
1-12 0.998 0.444 0.444
4-5 0.442 0.994 0.442
4-9 0.513 0.934 0.733
5-6 0.442 0.992 0.442
6-7 0.443 0.993 0.443
7-8 0.442 0.994 0.442
8-2 0.930 0.740 0.514

9-10 0.444 0.998 0.444
9-13 0.442 0.442 0.992
10-11 0.444 0.998 0.444
11-2 0.444 0.998 0.444
12-8 0.998 0.444 0.444
13-3 0.442 0.442 0.992

Target variable=OD-pair 1-2
Observed variable=link 12-8.

Iteration 3
OD-pair

Link 4-2 4-3
4-5 0.993 0.306
4-9 0.918 0.657
5-6 0.991 0.306
6-7 0.991 0.306
7-8 0.993 0.306
8-2 0.986 0.307
9-10 0.998 0.308
9-13 0.306 0.990

10-11 0.997 0.308
11-2 0.998 0.308
13-3 0.306 0.990

Target variable=OD-pair 4-2
Observed variable=link 9-10.

Iteration 4
OD-pair

Link 4-3
4-9 0.982
9-13 0.989

13-3 0.989

Target variable=OD-pair 4-3
Observed variable=link 9-13.

Table 4. Correlation sub matrices

The initial values of vij and xijks variables, using (37), are shown in table 5, and the resulting
OD and link flows after convergence of the process are shown in Table 6 column 2, and the
final β matrix is shown in Table 7.

www.intechopen.com



Bayesian networks methods for trafic low prediction 329

Thus, the resulting OD matrix estimates and the prediction for the link flow variables are
shown in Table 6. In addition, for the sake of comparison, in algorithm 1 the WMV has been
replaced by a Logit SUE assignment, and the results are shown in column 4 of Table 6. Note
that the results are very similar.

Link Cost vij 1-2 1-3 4-2 4-3
1 -5 13.0 67.3 0.0 67.3 0.0 0.0

1 -12 16.1 52.7 40.0 12.7 0.0 0.0
4 -5 9.2 21.7 0.0 0.0 21.7 0.0
4 -9 17.8 58.3 0.0 0.0 38.3 20.0
5 -6 14.9 59.3 0.0 37.5 21.7 0.0
5 -9 11.3 29.8 0.0 29.8 0.0 0.0
6 -7 6.4 51.0 0.0 29.2 21.7 0.0

6 -10 6.6 21.0 0.0 21.0 0.0 0.0
7 -8 5.0 21.7 0.0 0.0 21.7 0.0

7 -11 9.3 29.2 0.0 29.2 0.0 0.0

Link Cost vij 1-2 1-3 4-2 4-3
8 -2 14.4 61.7 40.0 0.0 21.7 0.0
9 -10 12.2 38.3 0.0 0.0 38.3 0.0
9 -13 14.6 49.8 0.0 29.8 0.0 20.0
10-11 9.1 59.3 0.0 21.0 38.3 0.0
11-2 11.0 38.3 0.0 0.0 38.3 0.0
11-3 13.2 50.2 0.0 50.2 0.0 0.0
12-6 11.8 12.7 0.0 12.7 0.0 0.0
12-8 17.6 40.0 40.0 0.0 0.0 0.0
13-3 17.9 49.8 0.0 29.8 0.0 20.0

Table 5. Link cost, link total flows, and link flows after using WMV assignment.

OD or Link flows
link BN-WMV Prior BN-SUE
1-2 36.15 40.00 38.07
1-3 72.81 80.00 71.81
4-2 67.72 60.00 61.15
4-3 22.45 20.00 29.19

1 -5 59.73 67.27 59.73
1 -12 49.19 52.73 50.02
4 -5 28.07 21.74 34.33
4 -9 62.10 58.26 56.00
5 -6 60.48 59.25 60.87
5 -9 27.36 29.76 33.33
6 -7 52.88 50.95 52.63

OD or Link flows
link BN-WMV Prior BN-SUE
6 -10 20.64 21.03 22.10
7 -8 27.92 21.74 21.94

7 -11 24.97 29.21 30.70
8 -2 64.07 61.74 58.09

9 -10 39.68 38.26 39.68
9 -13 49.87 49.76 49.87
10-11 60.28 59.28 61.80
11-2 39.80 38.26 41.14
11-3 45.45 50.24 51.36
12-6 13.04 12.73 13.87
12-8 36.12 40.00 36.12
13-3 49.82 49.76 49.63

Table 6. OD and link flows resulting from algorithm 1, and replacing the WMV by a Logit
SUE method.

Link proportions (β matrix)
OD 1 -5 1 -12 4 -5 4 -9 5 -6 5 -9 6 -7 6 -10 7 -8 7 -11 8 -2 9 -10 9 -13 10-11 11-2 11-3 12-6 12-8 13-3
1 -2 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
1 -3 0.82 0.18 0.00 0.00 0.45 0.38 0.34 0.28 0.00 0.34 0.00 0.00 0.38 0.28 0.00 0.62 0.18 0.00 0.38
4 -2 0.00 0.00 0.41 0.59 0.41 0.00 0.41 0.00 0.41 0.00 0.41 0.59 0.00 0.59 0.59 0.00 0.00 0.00 0.00
4 -3 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 7. Final β matrix.

Before analyzing the previous results, one must realize that we are using two sources of in-
formation: that contained in the Bayesian network (the joint normal distribution of links and
OD flows), and the observed link or OD flows. We must note that the first one can be very
informative. In fact, when no observations are available it is the only one supplying infor-
mation about flows, but when observations become available it can still be more informative
than that contained in the observations, if the number of observed links is small.
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3. Plate scanning based method for traffic prediction.

This section shows how the Bayesian network tool can be also used with data from the plate
scanning technique (see (Sánchez-Cambronero et al., 2010). Therefore, first the plate scanning
approach will be introduced, and then the model will be described (see (Castillo, Menéndez
& Jiménez.P, 2008)).

3.1 Dealing with the information contained in the data from the plate scanning technique.

The idea of plate scanning consists of registering plate numbers and the corresponding times
of the circulating vehicles when they travel on some subsets of links. This information is then
used to reconstruct vehicle routes by identifying identical plate numbers at different locations
and times. In order to clarify the concepts, let us consider a traffic network (N ,A) where N is

1

4

1 2

3

4 5

2 3

Fig. 3. The elementary example network used for illustrative purposes.

a set of nodes and A is a set of links. We have used the simple network in Figure 3 of 4 nodes
and 5 links. Table 8 shows the 4 OD-pairs considered and the corresponding 7 paths used in
this example.

OD path code (r) Links
1-4 1 1 3 5
1-4 2 1 4
1-4 3 2 5
2-4 4 3 5
2-4 5 4
1-2 6 1
2-3 7 3

Table 8. Set of 4 OD-pairs and 7 paths considered in the elementary example.

We assume that we have selected a nonempty subset SC ⊂ A of nsc �= 0 links to be scanned.
To illustrate, consider the scanned subset SC of 4 links3

SC ≡ {1, 3, 4, 5}. (38)

In the scanned links the plate numbers and the passing times4 of the users are registered, i.e.,
the initially gathered information I consists of the set

I ≡ {(Ik, ℓk, τk); k = 1, 2, . . . , m; ℓk ∈ SC}, (39)

3 This subset is not arbitrary, but has been carefully selected as we will see.
4 Passing times are used only to identify the scanned user routes.
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where Ik is the identification number (plate number) of the k-th observed user, ℓk ∈ SC is the
link where the observation took place, τk is the corresponding pass time through link ℓk, and
m is the number of observations.
For illustration purposes, a simple example with 28 registered items is shown in left part
of Table 9, where the plate numbers of the registered cars and the corresponding links and
passing times, in the format second-day-month-year, are given.

item # Plate Link Time
k Ik ℓk τk

1 1256 ADL 1 00001 19-12-2009
2 3789 BQP 3 00022 19-12-2009
3 7382 BCD 2 00045 19-12-2009
4 9367 CDF 1 00084 19-12-2009
5 9737 AHH 1 00123 19-12-2009
6 3789 BQP 5 00145 19-12-2009
7 7382 BCD 5 00187 19-12-2009
8 6453 DGJ 4 00245 19-12-2009
9 9737 AHH 3 00297 19-12-2009

10 9367 CDF 4 00309 19-12-2009
11 3581 AAB 1 00389 19-12-2009
12 6299 HPQ 4 00478 19-12-2009
13 9737 AHH 5 00536 19-12-2009
14 3581 AAB 3 00612 19-12-2009
15 1243 RTV 3 00834 19-12-2009
16 7215 ABC 1 00893 19-12-2009
17 8651 PPT 3 01200 19-12-2009
18 3581 AAB 5 01345 19-12-2009
19 1974 PZS 1 01356 19-12-2009
20 1256 ADL 4 01438 19-12-2009
21 2572 AZP 1 01502 19-12-2009
22 6143 BBA 3 01588 19-12-2009
23 7614 CAB 1 01670 19-12-2009
24 6143 BBA 5 01711 19-12-2009
25 1897 DEP 2 01798 19-12-2009
26 1897 DEP 5 01849 19-12-2009
27 2572 AZP 4 01903 19-12-2009
28 7614 CAB 4 01945 19-12-2009
...

...
...

...

item # Plate Scanned links Code
z Iz Csz

s

1 1256 ADL {1, 4} 2
2 3789 BQP {3, 5} 4
3 7382 BCD {5} 3
4 9367 CDF {1, 4} 2
5 9737 AHH {1, 3, 5} 1
6 6453 DGJ {4} 5
7 3581 AAB {1, 3, 5} 1
8 4769 CCQ {3} 7
9 2572 AZP {1, 4} 2

10 6143 BBA {3, 5} 4
11 7614 CAB {1, 4} 2
12 1897 DEP {5} 3
13 6299 HPQ {5} 3
14 7215 ABC {1} 6
15 1974 PZS {1} 6
16 1243 RTV {3} 7
...

...
...

...

Scanned links
OD r s 1 3 4 5 ŵs

1-4 1 1 X X X 2
1-4 2 2 X X 4
1-4 3 3 X 3
2-4 4 4 X X 2
2-4 5 5 X 1
1-2 6 6 X 2
2-3 7 7 X 2

Table 9. Example of registered data by scanned links and the data after been processed.

Note that a single car user supplies one or more elements (Ik, ℓk, τk), in fact as many as the
number of times the corresponding user passes through an scanned link. For example, the
user with plate number 9737 AHH appears three times, which means he/she has been regis-
tered when passing through three scanned links (1, 3 and 5).
A cross search of plate numbers contained in the different (Ik, ℓk, τk) items of information and
check of the corresponding passing times allows one determining the path or partial paths
followed by the scanned users. This allows building the set

{(Iz, Csz
)| z = 1, 2, . . . , n; Csz

∈ P (SC)}, (40)

where Csz
is the subset of links associated with the Iz user, which includes all links in which

the user has been scanned (scanned partial path of that user), n is the number of registered
users, and P (SC) is the set of parts of SC, which contains 2nsc elements. A registered user
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has an associated Csz subset only if the corresponding scanned links belong to its route. Of
course, a non-registered user appears in no registered links, which corresponds to Csz = ∅.
We associate with each user the subset Csz of scanned links contained in his/her route, and
call a subset Csz of scanned links feasible if there exists a user which associated subset is Csz .
Note that not all subsets of scanned links are feasible and each route must leads to a feasible
subset. Upper right part of Table 9, shows the plate numbers and the associated scanned sub-
path (Csz set of registered links for given users) of the registered users in columns two and
three. For example, the user with plate number 3581AAB appears as registered in links 1, 3
and 5, thus leading to the set Csz ≡ {1, 3, 5}.
To obtain the feasible C sets one needs only to go through each possible path and determine
which scanned links are contained in it. The two first columns of bottom part of Table 9 shows
all paths, defined by the OD and r (the order of the path within the OD) values. The third
column corresponds with the set of scanned link code s which, in this case, is the same as
the route code because we have full route observability. Finally, the last columns corresponds
with the scanned links and its associated sets (each indicated by an X).
An important point to note is that since all combinations of scanned links are different for all
paths, and this happens because the set of links to be scanned has been adequately selected,
the scanning process allows identifying the path of any scanned user. Therefore, using this
information, one obtains the observed number of users ŵs with associated s-values and Cs

sets (see Table 9). This allows us to summarize the scanned observations as

{ŵs : s ∈ S}, (41)

where S is the set S ≡ {1, 2, . . . , n} and n the number of different Cs sets in S , which is the
information used by the proposed model to estimate the traffic flows. Note also that standard
models are unable to deal with this problem, i.e., to handle the information in the form (41).
To control this type of information, the traffic flow must be disaggregated in terms of the new
variables ŵs, which refer to the flow registered by the scanned links in Cs. Then, one needs to
write the conservation laws as follows:

ŵs = ∑
r∈R

δsr fr; r ∈ R; s ∈ S , (42)

where fr is the flow of route r, δsr is one if the route r contains all and only the links in Cs.

3.2 Model assumptions

In this section, the model assumptions for the BN-PLATE (see (Sánchez-Cambronero et al.,
2010) model are introduced. Note that there are important differences with the model de-
scribed in section 2 in which the model was built considering OD-pair and link flows, instead
of route and scanned links flows, respectively.
Therefore assuming the route and subsets of scanned link flows are multivariate random
variables, we build a Gaussian Bayesian network using the special characteristics of traffic
flow variables. To this end, we consider the route flows as parents and the subsets of scanned
link flows as children and reproduce the conservation law constraints defined in (42) in an
exact or statistical (i.e., with random errors) form. In our Gaussian Bayesian network model
we make the following assumptions:

Assumption 1: The vector F of route flows is a multivariate normal N(µF, ΣF) random vari-
able with mean µF and variance-covariance matrix ΣF.
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For the same reason than in the BN-WMV model, it is clear that the F random variables are
correlated. Therefore:

fr = krU + ηr, (43)

where kr, r = 1, . . . , m are positive real constants, one for each route r, U is a normal random
variable N(µU , σ2

U), and ηr are independent normal N(0, γ2
r ) random variables. The meanings

of these variables are as follows:

U : A random positive variable that measures the level of total mean flow.

K : A column matrix whose element kr measures the relative weight of the route r flow with
respect to the total traffic flow (including all routes).

η : A vector of independent random variables with null mean such that its r element mea-
sures the variability of the route r flow with respect to its mean.

Assumption 2: The flows associated with the combinations of scanned link flows and
counted link flows can be written as

W = ∆F + ε, (44)

where ws, fr and δsr have the same meaning than before, and ε = (ε1, ε2, . . . , εn) are mutually
independent normal random variables, independent of the random variables in F, and εs has
mean E(εs) and variance ψ2

s ; s = 1, 2, . . . , n. The εs represents the error in the corresponding
subset of scanned links. In particular, they can be assumed to be null i.e. the plate data is got
error free.

Then, following these assumptions, we have

F =
(

K | I
)





U
−−
ηT



 (45)

and the variance-covariance matrix ΣF of the F variables becomes

ΣF =
(

K | I
)

Σ(U,η)





KT

−−
I



 = σ2
UKKT + Dη, (46)

where the matrices Σ(U,η) and Dη are diagonal.

From (44) and (45)
(

F

W

)

=





I | 0

− + −
∆ | I









F

−−
ε



 ,

which implies that the mean E[(F, W)] is

E[(F, W)] =





E(U)K
−−−−−−−
E(U)∆K + E(ε)



 , (47)

and the variance-covariance matrix of (F, W) becomes

Σ(F,W) =





ΣF | ΣF∆
T

−− + −−−−
∆ΣF | ∆ΣF∆

T + Dε



 . (48)
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Now we have to define the graph: the route flows fr are the parents of all link flow combi-
nations ws used by the corresponding travelers, and the error variables are the parents of the
corresponding flows, that is, the εs are the parents of the ws, and the ηr are the parents of the
Fr. Finally, the U variable is on top (parent) of all route flows, because it gives the level of
them (high, intermediate or low).
In this section we consider the simplest version of the proposed model, which considers only
the route flows, and the scanned link flow combinations. Therefore, a further analysis requires
that a model with all variables must be built i.e. including the mean and variance matrix of
the all variables (U, ηr; r = 1, 2, . . . , m and εs; s = 1, 2, . . . , n).

3.3 Using the model to predict traffic flows

Once we have built the model, we can use its JPD (similar to the one defined in (14)) to predict
route flows (and therefore OD and link flows) when the information becomes available. In
this section we propose an step by step method to implement the plate scanning-Bayesian
network model:

Step 0: Initialization step. Assume an initial K matrix (for example, obtained from solving
a SUE problem for a given out-of-date prior OD-pair flow data), the values of E[U] and σU ,
and the matrices Dε and Dη .

Step 1: Select the set of links to be scanned. The set of links to be scanned must be selected.
This chapter deals with this problem in Section 3.4 providing several methods to select the
best set of links to be scanned.

Step 2: Observe the plate scanning data. The plate scanning data ŵs are extracted.

Step 3: Estimate the route flows. The route matrix F with elements fr are estimated using the
Bayesian network method, i.e., using the following formulas (see (47), (48),(3) and (4)):

E[F] = E[U]K (49)

E[W] = E[U]∆K + E[ε] (50)

Dη = Diag (νE[F]) , (51)

ΣFF = σ2
UKKT + Dη (52)

ΣFW = ΣFF∆
T (53)

ΣWF = ΣFW (54)

ΣWW = ∆ΣFF∆
T + Dε (55)

E[F|W = w] = E[F]+ ΣFWΣ
−1
WW(w − E[W]) (56)

ΣF|W=w = ΣFF − ΣFWΣ
−1
WWΣWF (57)

E[W|W = w] = w (58)

ΣW|W=w = 0 (59)

F = E[F|W = w]|(F,W)=F (60)
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where ν is the coefficient of variation selected for the η variables, and we note that F and W
are the unobserved and observed components, respectively.

Step 4. Obtain the F vector. Return the the fr route flows as the result of the model. Note that
from F vector, the rest of traffic flows (link flows and OD pair flows) can be easily obtained.

3.4 The plate scanning device location problem

Due to the importance of the traffic count locations to obtain good traffic flow predictions,
this section deals with the problem of determining the optimal number and allocation of plate
scanning devices(see (Mínguez et al., 2010)).

3.4.1 Location rules

In real life, the true error or reliability of an estimated OD matrix is unknown. Based on the
concept of maximal possible relative error (MPRE), (Yang & Zhou, 1998) proposed several
location rules. We have derived analogous rules based on prior link and flow values and the
following measure (RMSRE, root mean squared relative error):

RMSRE =

√

√

√

√

1

m
∑
i∈I

(

t0
i − ti

t0
i

)2

, (61)

where5 t0
i and ti are the prior and estimated flow of OD-pair i, respectively, and m is the

number of OD-pairs belonging to the set I . Since the prior OD pair flows t0
i are known and

there are the best available information, they are used to calculate the relative error.
Given the set R of all possible routes, any of them corresponding to a unique OD pair, if Ri is
the set of routes belonging to OD-pair i, we have t0

i = ∑r∈Ri
f 0
r , and then the RMSRE can be

expressed as:

RMSRE =

√

√

√

√

1

m
∑
i∈I

(

t0
i − ∑r∈Ri

f 0
r yr

t0
i

)2

, (62)

where yr is a binary variable equal to one if route r is identified uniquely (observed) through
the scanned links, and zero otherwise. Note that the minimum possible RMSRE-value corre-
sponds to yr = 1; ∀r ∈ R, where ti = t0

i and RMSRE=0.
However, if nsc = ∑∀r∈R yr ≤ nr then RMSRE> 0, and then, one interesting question is: how
do we select the routes to be observed so that the RMSRE is minimized? From (62) we obtain

m × RMSRE2 = ∑
i∈I

(

1 − ∑
r∈Ri

f 0
r

t0
i

yr

)2

, (63)

where it can be deduced that the bigger the value of ∑r∈Ri

f 0
r

t0
i

yr the lower the RMSRE. If the

set of routes is partitioned into observed (OR) and unobserved (UR) routes associated with
yr = 1 or yr = 0, respectively, (63) can be reformulated as follows

m × RMSRE2 = ∑
i∈I



1 − ∑
r∈(Ri∩OR)

f 0
r

t0
i





2

= ∑
i∈I



 ∑
i∈(Ri∩UR)

f 0
r

t0
i





2

, (64)

5 from now on, and for simplicity, we denoted each OD pair as i instead of ks and each link as a instead
of ℓij
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so that routes to be observed (yr = 1) should be chosen minimizing (64).
The main shortcoming of equations (63) or (64) is their quadratic character which makes the
RMSRE minimization problem to be nonlinear. Alternatively, the following RMARE (root
mean absolute value relative error) based on the mean absolute relative error norm can be
defined:

RMARE =
1

m ∑
i∈I

∣

∣

∣

∣

∣

t0
i − ti

t0
i

∣

∣

∣

∣

∣

=
1

m ∑
i∈I

∣

∣

∣

∣

∣

t0
i − ∑r∈Ri

f 0
r yr

t0
i

∣

∣

∣

∣

∣

, (65)

and since the numerator is always positive for error free scanners (0 ≤ ∑r∈Ri
f 0
r yr ≤ T0

i ; ∀i ∈
I), the absolute value can be dropped, so that the RMARE as a function of the observed and
unobserved routes is equal to

RMARE = 1 −
1

m



∑
i∈I

∑
r∈(Ri∩OR)

f 0
r

t0
i



 =
1

m



∑
i∈I

∑
r∈(Ri∩UR)

f 0
r

t0
i



 , (66)

which implies that minimizing the RMARE is equivalent to minimizing the sum of relative
route flows of unobserved routes, or equivalently, maximize the sum of relative route flows of
observed routes. Note that this result derives in a rule that can be denominated the Maximum
Relative Route Flow rule.
The above location rule has been derived by supposing that the prior trip distribution matrix
is reasonably reliable and close to the actual true value, because the accuracy of the prior ma-
trix has a great impact on the estimates of the true OD matrix. Note that even though the
knowledge of prior OD pair flows could be difficult in practical cases, the aim of the pro-
posed formulation is determining which OD flows are more important than others in order
to prioritize their real knowledge.
Since the proper identifiability of routes must be made through plate scanner devices in links,
an additional rule related to links should be considered, which states that scanned links must
allow us to identify uniquely the routes to be observed (yr = 1) from all possible routes being
considered. This rule can be denominated the Full Identifiability of Observed Path Flows
rule.

3.4.2 Location models

The first location model to be proposed in this chapter considers full route observability, i.e.
RMSRE= 0, but including budget considerations. In the transport literature, each link, is
considered independently of the number of lanes it has. Obviously, when trying to scan plate
numbers links with higher number of lanes are more expensive. Then:

M1 = Minimize
z

∑
a∈A

Paza (67)

subject to

∑
a∈{A}

(δr
a + δr1

a )(1 − δr
aδr1

a )za ≥ 1

{

∀(r, r1)|r < r1

∑
a∈A

δr
aδr1

a > 0 (68)

∑
a∈A

zaδr
a ≥ 1; ∀r, (69)

where za is a binary variable taking value 1 if the link a is scanned, and 0, otherwise, r and r1

are paths, ∆ is the route incidence matrix with elements δr
a.
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Note that constraint (68) forces to select the scanned links so that every route is uniquely
defined by a given set of scanned links (every row in the incidence matrix ∆ is different from
the others) and (69) ensures that at least one link for every route is scanned (every row in the
incidence matrix ∆ contains at least one element different from zero). Both constraints force
the maximum relative route flow and full identifiability of observed path flows rules to hold. Note
also that all OD pairs are totally covered. In addition, this model allows the estimation of the
required budget resources B∗ = ∑

a∈A
Paz∗a for covering all OD pairs in the network. However,

budget is limited in practice, meaning that some OD pairs or even some routes may remain
uncovered, consequently based on (66) the following model is proposed in order to observe
the maximum relative route flow:

M2 = Maximize
y, z

∑
∀i∈I

∑
r∈Ri

f 0
r

t0
i

yr (70)

subject to

∑
a∈{A}

(δr
a + δr1

a )(1 − δr
aδr1

a )za ≥ yr

{

∀(r, r1)|r < r1

∑
a∈A

δr
aδr1

a > 0 (71)

∑
a∈A

zaδr
a ≥ yr; ∀r, (72)

∑
a∈A

Paza ≤ B, (73)

where yr is a binary variable equal to 1 if route r can be distinguished from others and 0
otherwise, za is a binary variable which is 1 if link a is scanned and 0 otherwise, and B is the
available budget.
Constraint (71) guarantees that the route r is able to be distinguished from the others if the
binary variable yr is equal to 1. Constraint (72) ensures that the route which is able to be dis-
tinguished contains at least one scanned link. Both constraints (71) and (72) ensure that all
routes such that yr = 1 can be uniquely identified using the scanned links. It is worthwhile
mentioning that using yr instead of 1 in the right hand side of constraints (71) and (72) im-
mediately converts into inactive the constraint (69) for those routes the flow of which are not
fully identified.
Note that the full identifiability of observed path flows is included in the optimization itself
and it will be ensured or not depending on the available budget B. Note also that previous
models can be easily modified in order to include some practical considerations as for example
the fact that some detectors are already installed and additional budget is available. To do that
one only need to include the following constraint to models M1 or M2

za = 1; ∀a ∈ OL. (74)

where OL is the set of already observed links (links with scanning devices already installed).

3.5 Example of application

In this section we illustrate the proposed methods by their application to a simple example.
Consider the network in Figure 4 with the routes and OD-pairs in Table 10, which shows the
feasible combination of scanned links after solving the M1 model (SL = {1, 2, 3, 4, 7, 8}).
Next, the proposed method in Section 3.3 is applied.
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Fig. 4. The elementary example network

path code
OD (r) Links
1-4 1 1 5 8
1-4 2 2 8
1-4 3 3 9
1-4 4 3 6 8
1-4 5 4 7 9
1-4 6 4 7 6 8
2-4 7 5 8
2-4 8 7 6 8
3-4 9 7 9

set code Scanned links
(s) 1 2 3 4 7 8
1 X X
2 X X
3 X
4 X X
5 X X
6 X X X
7 X
8 X X
9 X

Table 10. Required data for the simple example.

Step 0: Initialization step. To have a reference flow, we have considered that the true
route flows are those shown in the second column of Table 11. The assumed mean value
was E[U] = 10 and the value of σU was 8. The initial matrix K is obtained by multiplying
each true route flow by an independent random uniform U(0.4, 1.3)/10 number. The Dε is
assumed diagonal matrix, the diagonal of which are almost null (0.000001) because we have
assumed error free in the plate scanning process. Dη is also a diagonal matrix which values
are associated with a variation coefficient of 0.4.

Step 1: Select the set of links to be scanned. The set of links to be scanned have been
selected using the M2 model for different available budget, i.e. using the necessary budget for
the devices needed to be installed in the following links:

SL ≡ {1, 2, 3, 4, 7, 8};SL ≡ {1, 4, 5, 7, 9};SL ≡ {1, 4, 7, 9};

SL ≡ {4, 7, 9};SL ≡ {1, 5}; SL ≡ {2}.

Step 2: Observe the plate scanning data. The plate scanning data ws is obtained by scanning
the selected links as was explained in Section 3.1.

Step 3: Estimate the route flows. The route flows F with elements fr are estimated us-
ing the Bayesian network method and the plate scanning data, i.e., using the formulas (49)-(60)
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True Scanned links
Route flow Method 0 1 2 3 4 5 6

1 5.00 BN 4.26 4.35 5.00 4.91 5.00 5.00 5.00
LS 4.26 4.26 5.00 4.26 5.00 5.00 5.00

2 7.00 BN 6.84 7.00 7.76 7.89 7.91 7.85 7.00
LS 6.84 7.00 6.84 6.84 6.84 6.84 7.00

3 3.00 BN 3.45 3.52 3.91 3.00 3.00 3.00 3.00
LS 3.45 3.45 3.45 3.00 3.00 3.00 3.00

4 5.00 BN 3.00 3.07 3.41 3.46 3.47 3.45 5.00
LS 3.00 3.00 3.00 3.00 3.00 3.00 5.00

5 6.00 BN 5.36 5.47 6.08 6.00 6.00 6.00 6.00
LS 5.36 5.36 5.36 6.00 6.00 6.00 6.00

6 4.00 BN 3.37 3.45 3.82 4.00 4.00 4.00 4.00
LS 3.38 3.38 3.38 4.00 4.00 4.00 4.00

7 10.00 BN 8.90 9.08 10.00 10.25 10.28 10.00 10.00
LS 8.90 8.90 10.00 8.90 8.90 10.00 10.00

8 7.00 BN 3.97 4.06 4.50 7.00 7.00 7.00 7.00
LS 3.97 3.97 3.97 7.00 7.00 7.00 7.00

9 5.00 BN 5.45 5.57 6.18 5.00 5.00 5.00 5.00
LS 5.45 5.45 5.45 5.00 5.00 5.00 5.00

Table 11. Route flow estimates using BN and LS approaches
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Fig. 5. Conditional distribution of the route flows

The method has been repeated for different subsets of scanned links shown in step 2 of the pro-
cess. The resulting predicted route flows are shown in Table 11. The first rows correspond to
the route predictions using the proposed model. With the aim of illustrating the improvement
resulting from the plate scanning technique using Bayesian networks, we have compared the
results with the standard method of Least Squares (LS) using the same data. The results ap-
pear in the second rows in Table 11. The results confirm that the plate scanning method using
Bayesian networks outperforms the standard method of Least Squares for several reasons:
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• The BN tool provides the random dependence among all variables. This fact allows
us to improve the route flow predictions even though when we have no scanned link
belonged to this particular route. Note that using the LS approach the prediction is the
prior flow (the fourth column in Table 11, i.e with 0 scanned links in the network).

• The BN tool provides not only the variable prediction but also the probability intervals
for these predictions using the JPD function. Fig. 5 shows the conditional distributions
of the route flows the different items of accumulated evidence. From left to right and
from top to bottom f1, f2 . . . predictions are shown. In each subgraph the dot represents
the real route flow in order to analyze the predictions.
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