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1. Introduction     

Constructing Bayesian network models is a complex and time consuming task. It is difficult 
to obtain complete and consistent models but to get the correct and reliable probability data 
for the designed models is much more difficult. Normally, there are two methods to enter 
the probability values into the chance node of a Bayesian network model. The first method 
is to consult an expert for the probability values and enter them into the models. The second 
method is to obtain probability values from statistical or learned data (Druzdzel et al., 2001). 
Both methods use static data, not dynamic data. The second method acts like dynamic data 
but it is actually not. The statistical data from a database need to be loaded and processed 
each time to get the probability values. This works similar to batch processing. Finally, users 
still need to enter probability values into the model by manual feeding the data by hand. It 
is not possible to have real-time processing. The probability values are fed to every node of 
the model and the joint probability distribution is computed at the final stage when the 
model is performing Bayesian updates. The disadvantage of using manually fed data or 
static data is that it cannot be performed in using real-time processing, monitoring, and 
updating.  
In this article, we propose a technique for feeding data into the Bayesian network model 
dynamically. A case study of several factors that have an impact on students for making a 
decision in enrollment is selected as the case for an application implementation of a 
Bayesian network model. The probability values for each node are calculated from student’s 
data and then transferred into the model dynamically. A SMILE web-based application 
provides a user friendly web interface for Bayesian inference.  It provides the feature set of 
Bayesian diagnosis for the user. The SMILE web-based application was developed based on 
SMILE (Structural Modeling, Inference, and Learning Engine) and SMILE.NET. SMILE is a 
reasoning engine that is used for graphical probabilistic models and provides functionality 
to perform diagnosis. SMILE.NET is used for accessing the SMILE library from the web-
based interface. Using SMILE application, users can also perform Bayesian inference in the 
model and they can compute the impact of observing values of a subset of the model 
variables on the probability distribution over the remaining variables based on real-time 
data. Using the other BN software tools for constructing a Bayesian network model, there 
are some limitations such as dependent platform and is unusable on a global basis. Fig. 1 
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shows a generic implementation for dynamic data feed to Bayesian network model and 
SMILE web application. 
 

 
Fig. 1. A Generic implementation for dynamic data feed to BN model and SMILE web 
application 
 
2. Fundamentals 

This section is intended to describe the fundamentals and techniques for implementing a 
Bayesian network model in general. They are the followings: 

 
2.1 Bayesian Network  
Bayesian networks (also called belief networks, Bayesian belief networks, causal 
probabilistic networks, or causal networks) (Pearl, 1988) are acyclic directed graphs in which 
nodes represent random variables and arcs represent direct probabilistic dependencies 
among them. The structure of a Bayesian network is a graphical, qualitative illustration of 
the interactions among the set of variables that it models. The structure of the directed graph 
can mimic the causal structure of the modeled domain, although this is not necessary. When 
the structure is causal, it gives a useful, modular insight into the interactions among the 
variables and allows for prediction of the effects of external manipulation. 
Nodes of a Bayesian network are usually drawn as circles or ovals. The following simple 
Bayesian network, shown in Fig. 2, represents two variables, Curriculum and Enrollment, 
and expresses the fact that they are directly dependent on each other. 
 

 
Fig. 2. An example of Bayesian network 
 
A Bayesian network also represents the quantitative relationships among the modeled 
variables. Numerically, it represents the joint probability distribution among them. This 
distribution is described efficiently by exploring the probabilistic independence among the 

 

modeled variables. Each node is described by a probability distribution conditional on its 
direct predecessors. Nodes with no predecessors are described by prior probability 
distributions. For example, the node Curriculum shown in Fig. 2 will be described by a prior 
probability distribution over its two outcomes: Impact and NoImpact. See Fig. 3 below. 
 

 
Fig. 3. Prior probability distribution for a curriculum node 
 
The enrollment node will be described by a probability distribution over its outcomes 
(Enroll, NotEnroll) conditional on the outcomes of its predecessor (node Curriculum 
outcomes, Impact and NoImpact). See Fig. 4 below. 
 

 
Fig. 4. Conditional probability values for an enrollment node 

 
Both the structure and the numerical parameters of a Bayesian network can be elicited from 
an expert. They can also be derived from data, as the structure of a Bayesian network is 
simply a representation of independencies in the data and the numbers are a representation 
of the joint probability distributions that can be inferred from the data. Finally, both the 
structure and the numerical probabilities can be a mixture of expert knowledge, 
measurements and objective frequency data. 

 
2.2 Bayesian Updating 
Bayesian updating, also referred to as belief updating, or somewhat less precisely as 
probabilistic inference is based on the numerical parameters captured in the model (Cooper, 
1990). The structure of the model which is an explicit statement of the independencies in the 
domain helps in making the algorithms for Bayesian updating more efficient (Dagum & 
Luby, 1997). All algorithms for Bayesian updating are based on a theorem proposed by Rev. 
Thomas Bayes (1702-1761) and is known as Bayes Theorem. 
Belief updating in Bayesian networks is computationally complex. In the worst case, belief 
updating algorithms are NP-hard (Cooper, 1990). There exist several efficient algorithms, 
however, that make belief updating in graphs consisting of tens or hundreds of variables 
tractable. Pearl developed a message-passing scheme that updates the probability 
distributions for each node in a Bayesian network in response to observations of one or 
more variables (Pearl, 1986). Lauritzen and Spiegelhalter, Jensen et al, and Dawid proposed 
an efficient algorithm that first transforms a Bayesian network into a tree where each node 
in the tree corresponds to a subset of variables in the original graph (Lauritzen & 
Spiegelhalter, 1988; Jensen et al., 1990; Dawid, 1992). The algorithm then exploits several 
mathematical properties of this tree to perform probabilistic inference. 
Several approximate algorithms based on stochastic sampling have been developed. Of 
these, best known are probabilistic logic sampling (Henrion, 1988), likelihood sampling 
(Shachter & Peot, 1989; Fung & Chang, 1989), and backward sampling (Fung & del Favero, 
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shows a generic implementation for dynamic data feed to Bayesian network model and 
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modeled variables. Each node is described by a probability distribution conditional on its 
direct predecessors. Nodes with no predecessors are described by prior probability 
distributions. For example, the node Curriculum shown in Fig. 2 will be described by a prior 
probability distribution over its two outcomes: Impact and NoImpact. See Fig. 3 below. 
 

 
Fig. 3. Prior probability distribution for a curriculum node 
 
The enrollment node will be described by a probability distribution over its outcomes 
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Both the structure and the numerical parameters of a Bayesian network can be elicited from 
an expert. They can also be derived from data, as the structure of a Bayesian network is 
simply a representation of independencies in the data and the numbers are a representation 
of the joint probability distributions that can be inferred from the data. Finally, both the 
structure and the numerical probabilities can be a mixture of expert knowledge, 
measurements and objective frequency data. 

 
2.2 Bayesian Updating 
Bayesian updating, also referred to as belief updating, or somewhat less precisely as 
probabilistic inference is based on the numerical parameters captured in the model (Cooper, 
1990). The structure of the model which is an explicit statement of the independencies in the 
domain helps in making the algorithms for Bayesian updating more efficient (Dagum & 
Luby, 1997). All algorithms for Bayesian updating are based on a theorem proposed by Rev. 
Thomas Bayes (1702-1761) and is known as Bayes Theorem. 
Belief updating in Bayesian networks is computationally complex. In the worst case, belief 
updating algorithms are NP-hard (Cooper, 1990). There exist several efficient algorithms, 
however, that make belief updating in graphs consisting of tens or hundreds of variables 
tractable. Pearl developed a message-passing scheme that updates the probability 
distributions for each node in a Bayesian network in response to observations of one or 
more variables (Pearl, 1986). Lauritzen and Spiegelhalter, Jensen et al, and Dawid proposed 
an efficient algorithm that first transforms a Bayesian network into a tree where each node 
in the tree corresponds to a subset of variables in the original graph (Lauritzen & 
Spiegelhalter, 1988; Jensen et al., 1990; Dawid, 1992). The algorithm then exploits several 
mathematical properties of this tree to perform probabilistic inference. 
Several approximate algorithms based on stochastic sampling have been developed. Of 
these, best known are probabilistic logic sampling (Henrion, 1988), likelihood sampling 
(Shachter & Peot, 1989; Fung & Chang, 1989), and backward sampling (Fung & del Favero, 
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1994), Adaptive Importance Sampling (AISBN) (Cheng & Druzdzel, 2000), and Approximate 
Posterior Importance Sampling (APIS-BN) (Yuan & Druzdzel, 2003). Approximate belief 
updating in Bayesian networks has also been shown to be worst case NP-hard (Dagum & 
Luby, 1993).  

 
2.3 SMILE and SMILE.NET 
The core reasoning engines of the SMILE web-based application development capability 
consist of SMILE and SMILE.NET. SMILE is a reasoning engine that is used for graphical 
probabilistic models and provides functionality to perform diagnosis. SMILE.NET is used 
for accessing the SMILE library from the web-based interface. This section provides some 
more detailed information about SMILE and SMILE.NET wrapper. 
SMILE (Structural Modeling, Inference, and Learning Engine) is a fully platform 
independent library of functions implementing graphical probabilistic and decision-
theoretic models, such as Bayesian networks, influence diagrams (IDs), and structural 
equation models (Druzdzel, 1999). Its individual functions, defined in the SMILE 
Application Programmer Interface (API), allow creating, editing, saving, and loading 
graphical models, and using them for probabilistic reasoning and decision making under 
uncertainty. SMILE can be embedded in programs that use graphical probabilistic models as 
their reasoning engines. Models developed in SMILE can be equipped with a user interface 
that best suits the user of the resulting application. SMILE is written in C++ in a platform-
independent manner and is fully portable. Model building and the reasoning process are 
under full control of the application program as the SMILE library serves merely as a set of 
tools and structures that facilitates them. The sample source code below is the main function 
of SMILE that contains the core functions of the implemented model SMILE. 
 
int main()  
{   
     CreateNetwork();   
     InfereceWithBayesNet();   
     UpgradeToInfluenceDiagram();   
     InferenceWithInfluenceDiagram();   
     ComputeValueOfInformation();   
     return(DSL_OKAY);  
}; 
 
SMILE.NET is a library of .net classes for reasoning about graphical probabilistic models, 
such as Bayesian networks and influence diagrams. It can be embedded in programs that 
use graphical probabilistic models as a reasoning engine. It is a wrapper library that enables 
access to the SMILE and SMILEXML C++ libraries from .net applications. SMILE.NET is not 
limited to stand-alone applications. It can also be used on the back-end side of a multi-tiered 
application.   
 
2.4 GeNIe 
The GeNIe's name and its uncommon capitalization originate from the name Graphical 
Network Interface, given to the original simple interface to SMILE, the library of functions 

 

for graphical probabilistic and decision-theoretic models (Druzdzel, 1999). GeNIe is a 
development environment for building graphical decision-theoretic models. It is 
implemented in Visual C++ and draws heavily on MFC (Microsoft Foundation Classes). It 
allows for building models of any size and complexity, limited only by the capacity of the 
available memory of the computer. The original interface was designed for SMILE which is 
described in a previous section. It may be seen as an outer shell to SMILE. It provides 
numerous tools for users such as an interface to build Bayesian network models or influence 
diagrams, to learn the causal relationships of a model using various algorithms, and to 
perform model diagnosis. In order to use GeNIe efficiently, the GeNIe software must be 
installed and the user should have some background knowledge about probabilistic 
graphical models and become familiar with the tools provided in GeNIe. Fig. 5 shows the 
main interface of GeNIe program.  
 

 
Fig. 5. The main GeNIe interface 
 
3. Graphical Bayesian Network Model 

3.1 Bayesian network model in GeNIe  
In the first phase, we develop and test the graphical Bayesian network model in GeNIe as 
shown in Fig. 6. The students’ attitude on several factors in an enrollment decision has been 
proposed as a case study for the model. This model contains ten variables or nodes. There 
are nine parent nodes thus there are no predecessor nodes and one child or predecessor 
node. The outcomes of each parent node are identical. It consists of impact and no impact 
values. There are also two outcomes for the child node (the enrollment node), enroll and not 
enroll values. The probability values for each parent node and the values for each state 
combination with an enrollment node are further defined by an expert.   
  

 
Fig. 6. Graphical Bayesian network model in GeNIe 
 
When the specified outcome of each node and their probability values are defined, the belief 
updating is ready. The belief update allows for performing Bayesian inference. It is used to 
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When the specified outcome of each node and their probability values are defined, the belief 
updating is ready. The belief update allows for performing Bayesian inference. It is used to 
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compute the impact of observing values of a subset of the model variables on the probability 
distribution over the remaining variables. Working with this model and performing 
Bayesian inference, we can answer simple questions. For example, the question: "What is the 
chance for the impact for every parent node if the expert judges the prospects for impact to 
be enroll?" The evidence for the enrollment variable is set at the value of “enroll” as shown 
in Fig. 7. We have observed a value of the enrollment variable and ask it to update its 
probability distribution over all parent variables. The result is shown in Fig. 8. 
 

 
Fig. 7. Setting evidence at enroll outcome for an enrolment node 

 

 
Fig. 8. The posterior probability distribution over a curriculum node 
 
Constructing a Bayesian network model in GeNIe is simply done. There are a lot of tools 
provided in GeNIe for working and implementing a model but GeNIe has some limitations. 
Firstly, GeNIe only runs under the Windows operating systems. GeNIe is implemented in 
Visual C++ and draws heavily on the MFC (Microsoft Foundation Classes), which runs only 
on a Windows platform. It does not support cross-platform, web or an Internet-based 
application environment so that there are some limitations for its use on a worldwide basis. 
Secondly, the probability value of each variable node must be entered manually. This means 
that the probability determination method must be done before using GeNIe. The 
probability values can be obtained by asking the experts, statistical methods, or learned data 
from a database. However, the probability values are still put into the model by hand 
because GeNIe itself cannot support real-time or dynamic data. Thirdly, a graphical 
presentation such as pie chart or bar chart in GeNIe is intentionally designed for displaying 
an individual node. It does not present an overview or comparison for similar outcomes of 
all nodes. Lastly, the model in GeNIe is static, not dynamic. The model needs to be loaded, 
have some values changed, and observe the results after updating beliefs one at a time. 

 
3.2 Client/server architecture for SMILE web application  
To overcome these limitations of GeNIe mentioned in 3.1. We designed the SMILE web 
application that works similar to GeNIe. GeNIe is the interface to SMILE for a windows 
platform. The SMILE web application is the interface of SMILE on the web or an Internet-

 

based platform. It means that the SMILE web application can support real-time data 
processing that GeNIe cannot. It also supports a dynamic data feed into the model. See 
Client/Server Architecture of the SMILE web application in Fig. 9. 
 

 
Fig. 9. Client/server architecture of SMILE web              

 
In the client/ server architecture of the SMILE web application, the client web application is 
designed in order to collect data from students through an online questionnaire.   The data 
from the client is sent over the Internet to the server. The server web application or SMILE 
web is designed to handle incoming data, calculate probability values and put them into 
each chance node, construct the Bayesian network model in .xdsl file format, feed the 
calculated probability values into the model, call the core functions of SMILE, read and 
update probability values for each node in database, send all parameters to SMILE, receive 
values from SMILE and visualize the results. Both the client and server web application are 
implemented in the “.NET” environment. Web pages are created by ASP.NET and the code 
behind is developed in visual C#.net. The code behind the web server application contains 
the core functions of SMILE such as CreateNetwork(), InfereceWithBayesNet(), and 
ComputeValueOf Information().  A CreateNetwork function is mainly used for creating the 
Bayesian network model. This function creates chance nodes, adds arcs from one node to 
other nodes, and fills in the conditional probability distribution for all nodes in the model. 
An InfereceWithBayesNet function is used to read the .xdsl file or model, specify the 
clustering algorithm, update the network or update beliefs, set an evidence for each node 
and obtain the returned result values. The clustering algorithm in the second function works 
in two phases: (1) compilation of a directed graph into a junction tree, and (2) probability 
updating in the junction tree. It has been a common practice to compile a network and then 
perform all operations in the compiled version. The clustering algorithm is the fastest 
known exact algorithm for belief updating in Bayesian networks. The clustering algorithm is 
the SMILE web default algorithm and should be sufficient for most applications. When 
networks become very large and complex, the clustering algorithm may not be fast enough. 
In that case, it is suggested that the user choose an approximate algorithm, such as one of 
the stochastic sampling algorithms. The “ComputeValueOf Information” function is used to 
compute an expected value of information for the model. 

 
4. Implementation 

According to the Client/Server Architecture of SMILE Web mentioned in section 3, SMILE 
web is designed to work in a more flexible manner for analyzing and diagnosing reasoning. 
It is designed for worldwide users, who can access the Internet for diagnosing the model. It 
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compute the impact of observing values of a subset of the model variables on the probability 
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networks become very large and complex, the clustering algorithm may not be fast enough. 
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overcomes platform dependent, limitations on graphical presentation, and the manual data 
entry for a Bayesian network model found in GeNIe. To implement SMILE web, there are 
four main components according to the client/server architecture as follows: 1) Client Web 
Application, 2) SMILE Server Web Application, 3) Probability Calculation Process, and 4) 
SMILE Engine. 
The first part, client web application, is an online questionnaire designed for prospective 
students. They are asked to fill out the questionnaire before downloading an application 
form from the university website. See Fig. 10. 
 

 
Fig. 10. Online questionnaire for prospected students 
 
The second part, SMILE Server Web Application, is designed for the reasoning aspect of the 
web user interface for SMILE. Users can update beliefs and perform diagnosis through the 
SMILE web application as GeNIe did, See Fig. 11 and Fig. 12. The third part, Probability 
Calculation Process, is actually a probability calculation function in the SMILE web 
application. It receives the data from client web application (online questionnaire) and 
processes the probability values in real-time. Moreover, it is responsible for feeding the 
probability values into the model dynamically. The advantage of this function is that we can 
get real-time data and probability values for the model that GeNIe could not do. The last 
part, the SMILE Engine, receives data from the SMILE web application. SMILE’s functions 
such as CreateNetwork(), InfereceWithBayesNet(), and   ComputeValueOfInformation () are 
called to perform according to its operation. The resulting values are sent back to the SMILE 
web application. The SMILE engine is written in C++ in a platform-independent fashion and 
is fully portable. The web application's interface is defined in terms of a collection of C++ 
classes that form the "body" of the library and can be used within an application program. 
These classes allow building graphical models, editing, saving and loading them, and using 
them for probabilistic reasoning and decision making under uncertainty. 
 

 

 
Fig. 11. SMILE web application 

 

 
Fig. 12. Setting evidence at enroll outcome for an enrolment node 

 
Users are allowed to perform diagnosis by setting evidence at one variable or node and 
exploring the probabilistic independencies among the modeled variables. See the sample 
variables, Public/Private University, Facilities, and International Opportunity, in Fig. 13. 
 

 
Fig. 13. Three sample nodes for observing values. 

 
The Clear Evidence option is also provided for canceling the diagnosis and going back to 
use the original values in the calculation. Users can set and clear the evidence at every node 
in the model in order to perform diagnosis. The graphical representation of SMILE web is 
shown in Fig. 14, 15, and 16.    
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Fig. 15.  Bar chart for parent nodes 

 
 

 
Fig. 16.  Pie chart for parent nodes 
 
5. Conclusion 

GeNIe, Graphical Network Interface, is designed for a windows environment. It works well 
on a windows platform. It cannot be run on a web or Internet-based platform. That is why 
there is some limitation for its use on a worldwide basis. Another thing is that it does not 
support is real-time data processing. To overcome the limitations of GeNIe, the SMILE web 
application was designed and implemented on a client/server architecture mentioned in 
section 3. GeNIe is an outer shell of SMILE.  SMILE web is also the outer shell of SMILE. The 
difference is that the SMILE web application is basically constructed in a web-based 
environment.  SMILE web calls and submits parameters to the core functions of SMILE 
directly. After processing, SMILE returns all computed values back to SMILE web. SMILE 
web represents the Bayesian network model on a website. It is the model that users, who 
access the Internet, can utilize to perform diagnosis. They can update the probability 
distributions for each variable in a Bayesian networks in response to observations of one or 
more variables. SMILE web also provides a function to handle dynamic data, compute 
probability values in real-time, and enter them into the model. This article presents the first 
step for developing SMILE web application. The next step is to enhance the efficiency of 
SMILE web by improving the SMILE web interface, including more functions, and 
increasing the flexibility for model creation. The final phase for SMILE web development 
will be to enable it to handle influence diagrams and structural equation models. Users can 
use SMILE web for choosing a decision alternative that has the highest expected gain or 
utility.  
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