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1. Introduction  

Large Equipment System Acceptance (such as reliability and accuracy, etc.) is a complicated 
system engineering. In order to check the performance of large equipment, 
multi-perspective and more-approach tests are adopted to get a variety of test information. 
These information are related to many aspects, such as the information in different phases of 
design, development, pilot, production and application phase, test information of products 
in different levels (systems, subsystems, components) and the history information of 
test-related products. These different but still interrelated information have brought a great 
more reference to analysis and assessment of large-scale equipment, and meanwhile those 
uncertain information would brought more risk to the assessment of decision-making. How 
to integrate these information of multiple sources effectively to make an objective evaluation 
on the performance of large-scale equipments has been a great challenge to the engineering 
researchers. 
For example, in assessing the reliability of weapons systems, the cost of system-level testing 
is often too much which limits the number of test times. In that condition the test 
information of various equipment and subsystems are urged to be fully utilized. Similarly, 
in order to improve the practical accuracy of INS (inertial navigation system), a series of 
checking from the test phase to application phase such as ground calibration tests, 
vehicle-loaded tests, aircraft-loaded tests and missile-loaded tests, are requisite and the 
outcome should function to the error coefficients estimation. In the circumstance of 
sufficient test data, the classical approach of comprehensive assessment to reliability has 
been widely used; while in contrast when test data are insufficient and moreover they 
present multi-stage and multi-level properties, the classical approach is in effectiveness 
challenge. With the development of computer technology and improvement of Bayes 
methods, especially the emergence of MCMC (Markov chain Monte Carlo) methods and 
WinBUGS (Bayesian inference Using Gibbs Sampling) software, the Bayesian network is 
more and more popularized in the application of multi-source information fusion [1~3].  
The Bayesian network is a causal network, which is used as an inference engine for the 
calculation of beliefs or probability of events given the observations of other events in the 
same network. It does not only make good use of model information and sample data, but 
also integrates the unknown parameters in the overall distribution of information. Besides, it 
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has overcome defects of traditional static model being incapable of handling emergencies. 
These flexible, easy to adapt to external changes features can make up for the shortage of 
insufficient poor quality samples brought to traditional statistical methods, so it is more 
suitable for prediction and reality reveal to models. The most attractive feature of the 
Bayesian network is given an observation for one node, the statistical information for all 
nodes would be updated. This feature is very valuable in the context of model validation, 
when experimental observations may not be available on the final model output but may be 
available on one or more intermediate quantities. 
This paper presents a new approach of information fusion used Bayesian network and is 
organised as follows. The background of this research, especially for the application in 
reliability assessment and precision evaluation, is introduced in section 1. In section 2, the 
fundamental of Bayesian network is stated and how to establish networks for a typical case 
are then illustrated. In section 3, it is emphasized in utilizing Bayesian networks to integrate 
multi-source testing information obtained from different layers, states and environments, 
where the examples of reliability parameters estimation for weapon system and information 
conversion for inertial navigation system error model are simulated to show the 
effectiveness of the scheme presented. Finally, some conclusions are given in the end. 

 
2. Bayesian networks  

2.1 Bayesian inference 
The basic idea of Bayesian inference is to express the uncertainty of all the unknown 
parameters of the model by probability distributions [4]. This means that an unknown 
parameter is modeled as a random parameter beforehand. are in the text the random 
parameters of our interest is denoted as 1( , ..., )n  Θ , where the index of n is presumed 
finite and the set of variables are observable. Random variables are expressed as 

1(X , ..., X )mX  with finite number of m. The observable variables X j , may consist of 

statistical observations or various experts judgments. 
The observed variables, or the evidence 1( , ..., )mx xx , are modeled by their joint 

distribution, i.e. the likelihood function ( | )f x θ , which can be described as the probability 
to observe the evidence x. Before observations are obtained, the uncertainty about the value 
of the random parameter Θ  is modeled by a prior probability distribution of ( )f θ . Given 
the evidence that the posterior distribution is the conditional distribution of Θ , it would be 
denoted as ( | )f θ x . The evidence x provides additional information about Θ , and the 
posterior distribution is updated by using the Bayes’ rule 
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2.2 Bayesian networks 
In practice, many models under interest are usually complex which are related to the 
multi-layer Bayesian problems. For example, suppose the observable variable Y is 
normally distributed with mean parameter   and standard deviation parameter 

1  as following 
2

1Y | ( , )N                               (3) 
 

where   is also normal distributed with parameters  and 2  
 

2

2| ( , )N    , H                           (4) 
 

and the prior distribution of the random variable   is known as 
 

2

3( , )N                                 (5) 
 

Note that only 1 1 1, , , ,H     are constants. Thus, with the observations 1 , ..., ny y , how 
to get the posterior estimation of   and   is a typical multi-layer Bayesian problem. To 
do this, we have to model the overall uncertainty by postulating the joint distribution of the 
all random variables of the model 
 

( , , ) ( | , ) ( | ) ( )f Y f Y f f                          (6) 
 

in which we have assumed that the appropriate conditional distributions are 
available. 
Actually the joint distribution model described in equation (6) consists of network of 
conditional dependencies between random variables. Such networks are often called 
Bayesian networks. A Bayesian network can be represented as a directed acyclic graph, in 
which elliptic nodes correspond to random variables and rectangular nodes represent 
constants and directed arcs between the nodes describe the dependence between the 
parameters. Moreover, a solid arrow indicates a stochastic dependence while a hollow 
arrow indicates a logical function. As an example the graphical representation of the 
hierarchical model described by equations (3)~(6) is depicted as a Bayesian network in 
Figure 1.  
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beta 

1sigma1 

2sigma 2 

3sigma 3 

alpha 

theta 

mu 

 
Fig. 1. Example of a Bayesian network 

 
2.3 Implementation of the proposed method 
In Bayesian models, where we are interested in the relationships of a large number of 
variables, Bayesian network becomes an appropriate representation. A Bayesian network is a 
graphical model that efficiently encodes the joint probability distribution for a large set of 
variables. However, determining the conditional posterior distributions for the parameters of 
interest is usually not a simple task in Bayesian networks. To obtain an analytic result for the 
conditional posterior distribution the denominator of the Bayes formula, which normalizes 
the conditional posterior distribution to unity, must be evaluated. A proportional result for 
the posterior distribution can be obtained without resolving the denominator, but the 
integral for the numerator is only one dimension less. For analytic result, or at least for a 
good approximation of the result, the integrals have to be determined in a way or another. 
For simple models the integrals can be evaluated using conventional numerical techniques, 
but in most applications the Bayesian network contain tens and hundreds of parameters and 
the analytic evaluation of the integrals by conventional numerical techniques is impossible.   
Therefore, an MCMC [5] approach is used for obtaining the posterior distribution. In 
MCMC methods, Monte Carlo estimates of probability density functions and expected 
values of the desired quantities are obtained using samples generated by a Markov chain 
whose limiting distribution is the distribution of interest. Thus one can generate samples of 
multiple random variables from a complicated joint probability density function without 
explicitly evaluating or inverting the joint cumulative density function. 
Several schemes such as Metropolis-Hastings algorithm, Gibbs sampling, etc. are available 
to carry out MCMC simulations [6]. Gibbs sampling is commonly utilized due to its 
simplicity in the implementation. Let x denote a vector of k random variables 1( , ..., )kx x , 

with a joint density function ( )g x . Then let ix  denote a vector of k-1 variables, without 
the ith variable, and the full conditional density for the ith component is defined as 

( )|i ig x x . To sample quantities from the full conditional density of the ith variable, the 
following relationship is used: 
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Gibbs sampling can then be used to sequentially generate samples from the joint probability 
density function using the full conditional densities, as below: 
 

Step 1: Initialize  0 0 0 0

1 2, , ..., kx x xx , 1j  ; 

Step2: Generate 1 1 1

1 1 2 3( | , , ..., )j j j j
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1 1
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kx g x x x x  , 
                … 

1 2 1( | , , ..., )j j j j

k k kx g x x x x


 ; 
Step3: 1j j  ; 
Step4: End if j reaches the maximum number of runs, or else, return to step 2. 
 

Gibbs sampling has been shown to have geometric convergence of order N (number of runs) 
[4]. Exact full conditional densities may not always be available. In such cases, the Gibbs 
sampling procedure is supplementary to the Metropolis-Hastings algorithm. During each 
run, the full conditional density function ( )|i ig x x  is constructed by taking the product 

of terms containing ix  in the joint probability density function. A rejection sampling 

technique is then used to obtain a sample ix  from ( )|i ig x x . A large number of samples 
of all the random variables can be repeatedly generated using these full conditional density 
functions. The marginal density function for any random variable ix  can be obtained by 
collecting the samples of that particular random variable. 

 
3. Testing information fusion using Bayesian networks  

Since Bayesian networks can easily establish the uncertainty relationships among 
parameters and update all the prior distributions of the random variables once new 
observations come out, it is a effective solution to multi-source information fusion. In this 
section, two representative applications of Bayesian networks to weapon system reliability 
evaluation and INS testing information conversion under different circumstance are 
discussed as illustration. Note that the modeling and simulations in this paper are carried 
out using the WinBUGS program, and so all the Bayesian networks presented below are 
depicted in the WinBUGS format. For closer review about the WinBUGS program, see 
Spiegelhalter et al. [7]. 
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3.1 Reliability evaluation of weapon system 
Since a great deal of manpower and material resources are requisite in system-level tests to 
reliability evaluation for such complex weapon system, whereas much more convenience 
would be obtained if in unit-level test case, the engineering practice usually adopts 
reliability information of composition units to analyze the reliability of the entire system. 
These unit-level test information make up for the lack of information on system-level test, 
and reduce the number of tests in the premise of sustaining its confidence effectively. 
Obviously, to evaluate weapon system reliability in Bayes method is a kind of information 
fusion. More clearly, reliability test information about unit and system should be fused into 
the posterior distribution of system reliability first, and based on it the Bayesian statistical 
inference could then be carried out. To facilitate following discussion, suppose the weapon 
system is pass-fail series system. 

 
3.1.1 Reliability analysis of pass-fail unit 
The pass-fail unit likelihood function is  
 

( ) (1 ) ,   0 1n f fL R R R R                          (8) 
  

In the discussion of binomial distribution, the prior distribution of reliability is often in Beta 
distribution, i.e. 
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Since these auxiliary parameters reflect the full utilization of prior information, selection of a 
and b are very critical for reliability analysis. Martz et al [8] displayed the empirical Bayesian 
parameters estimation for a and b.  
Suppose there are m groups of tests information, where ( 1, 2, )il i m   denotes the test 

number and iR  represents the point estimation of reliability to each group, therefore  
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When m is small, the sampling error may yield negative value in (11) of ( )a b , so that it is 
amended as 
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Once the auxiliary parameters of prior distribution are determined, using Bayes' rule there 
would be 
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where D is the experimental data, n is the number of tests, f indicates the number of failure. 
It is obviously that the posterior probability density function ( | )R D  for R is still in Beta 
distribution. 
The Bayesian analysis method for unit reliability is deduced in above discussion. The 
following would proceed to system reliability calculation for pass-fail series system. 

 
3.1.2 Series system synthesis 
Assume all the reliability tests of system or units considered is in pass-fail type. The series 
system consists of p units, and denotes i  as the reliability of the constituent units, thus 

the prior distribution of i  is 
1 11( ) ( , ) (1 ) ,   0 1i ia b

i i i i i i iB a b                           (16) 
 

Denote in  as the number of unit tests, ix  as the number of success, so the system 
reliability is 

1

p

i
i

                                 (17) 

 

Assume i  is independent of each other, and prior distribution of ( )i i   is in Beta form. 

if i i  , and ix  are subject to binomial distribution with parameters of in  and i , in 

response the posterior probability density function is Beta distributed, where i ia x  and 
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Once the auxiliary parameters of prior distribution are determined, using Bayes' rule there 
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where D is the experimental data, n is the number of tests, f indicates the number of failure. 
It is obviously that the posterior probability density function ( | )R D  for R is still in Beta 
distribution. 
The Bayesian analysis method for unit reliability is deduced in above discussion. The 
following would proceed to system reliability calculation for pass-fail series system. 
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Assume i  is independent of each other, and prior distribution of ( )i i   is in Beta form. 
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i i ib n x   are the distribution parameters. The posterior probability density function of 
the system’s reliability   is induced as 
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If there are few units in series system, the above formula for the series’ system reliability 
evaluation is feasible; while if the cell number is in great many, the calculations could not be 
sustainable any more. The system encountered in engineering practice used to be composed 
in many units, and the information obtained are comprised of unit reliability test 
information and system reliability information, in this condition the abovementioned 
method is incapable in handling complex tests information. The following would introduce 
the reliability analysis method for this kind of complex system using Bayesian network. 
Assume the distribution of system reliability is also subject to Beta, thus the posterior joint 
probability density function of unit's reliability i  and system reliability   can be 
rewritten as: 
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Since the above form of joint distribution is too complex, Bayesian network of the system 
reliability is established in assistance. In this Bayesian network, MCMC sampling method is 
employed to update the network graph, hence the analysis to posterior distribution of 
reliability could be implemented as soon as Markov chain is stabilized. Take the 
three-numbered pass-fail series as an example, the Bayesian network is developed as below. 
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Fig. 2. Bayesian network of system reliability 
 
In Figure 1, 1 2 3, , ,R R R R  represent the system’s reliability and units’ reliability; 

1 1 2 2 3 3, , , , ,a b a b a b  indicate prior distribution parameters respectively, and X, X1, X2, X3 are 
the units and system test samples respectively. If the unit reliability parameters of prior 
distribution are set to be in normal distribution, experimental data (n and , 1, 2, 3in i   are 

the experimental times; f and , 1, 2, 3if i   are the failure times) of 1 112, 0,n f   

2 2 3 312, 1, 12, 2, 12, 3n f n f n f       are derived. 
 

reliability 

prior distribution posterior distribution 

mean 
standard  
deviatio

n 
mean Standard 

deviation 
2.5% 

percentile 
Median 

percentile 
97.5% 

percentile 

1R  0.99 0.1 0.9621 0.03783 0.8622 0.9729 1.0 

2R  0.99 0.1 0.8739 0.07813 0.689 0.8862 0.9855 

3R  0.90 0.1 0.8082 0.08715 0.6146 0.8163 0.9521 

R  / / 0.6781 0.08928 0.4928 0.6836 0.8391 

Table 1. Prior and posterior statistical properties of units and system reliability  
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Fig. 3. Sample sequence of system reliability R  
 

R sample: 9500

    0.2     0.4     0.6     0.8

    0.0
    2.0
    4.0
    6.0

R1 sample: 9500

    0.6     0.7     0.8     0.9     1.0

    0.0
   10.0
   20.0
   30.0

 
R2 sample: 9500

    0.4     0.6     0.8     1.0

    0.0
    2.0
    4.0
    6.0

R3 sample: 9500

    0.2     0.4     0.6     0.8     1.0

    0.0
    2.0
    4.0
    6.0

 
Fig. 4. Posterior density distribution of units and system reliability  
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Fig. 5. Percentile statistics sequence of the unit and system reliability  
 
Using MCMC method of sampling for 10,000 times in the Bayesian network, and 
implementing statistical analysis to the sample sequence in steady-state Markov chain, the 
prior and posterior statistical characteristics of units and system reliability are computed out 
at last, see Table 1. In the sample sequence of system reliability of Figure 3, the Markov 
chain has been shown fused completely and furthermore reached steady state in sampling 
2,000 times. Figure 4 shows the profile of posterior density distribution estimation of 
reliability which is depicted in consistent with Beta distribution explicitly. 
Bayesian network integrates test information and prior information about the units and 
system, and the information in each node is then disseminated to the entire network 
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through the directed link, therefore the integrated inference about the test information is 
realized. The advantage of this approach is that reliability statistical analysis of the system in 
it would be more accurate. And furthermore, the percentile information such as the upper 
bound of reliability are also obtained through MCMC sampling, in result the system 
reliability analysis is more comprehensive and effective. 

 
3.2 Testing information fusion of INS  
When the tests are implemented under different technical conditions, the error coefficients 
of inertial navigation system may have different statistical characteristics. This paper 
presents a method of multi-source testing information fusion for inertial navigation system 
based on Bayesian network, which might provide a new idea to the precision evaluation 
work. Firstly, the testing information of all sorts is interrelated to each other by 
circumstance-conversion-factor, and then a graphic mapping model is constructed to 
represent the relationship of all variables by using Bayesian network. With testing 
information, the post statistical characteristics of variables such as 
circumstance-conversion-factor can be rapidly inferred by MCMC algorithm applied in 
Bayesian network, and consequently information conversion of inertial navigation system 
error model could be carried out between different testing conditions. 
As the test information are related to the temperature, pressure, humidity and other 
circumstance factors, a standard state for each type of test should be selected beforehand. In 
this condition, all the information would be conversed to be the one in the corresponding 
standard state first, and then conversed in the reference of standard state information. 

 
3.2.1 Inference of circumstance conversion factor 
 

 
Fig. 6. Bayesian network for testing information fusion 
 

Suppose an error coefficient to be a normally distributed random variable 2

0 0 0~ ( , )N    
in the ground calibration tests, and another normally distributed random variable 

2

1 1 1~ ( , )N    in vehicle tests. Treat the circumstance factor K , mean i  and standard 

deviation i  in calibration tests and vehicle tests to be unknown random variables, where 

K  and 0  are normal distributed, and 21 /i i   is subject to Gamma distribution, in 
which way the established Bayesian network for information fusion is depicted as Figure 6. 
 

For the sake that the tests of INS could not be a great many, there are only 10 groups of 
ground calibration and 5 groups of vehicle-loaded estimates to error factor generated 
through the simulation, see Table 2. Note that a new data generation would accompany a set 
of mean and standard deviation production. 
 

Ground calibration  true distribution of 
variables in data production 

0  
1.8609 1.8781 2.1273 1.9274 1.9414 

2~ (1.2 , 0.1 )K N  
2

0 ~ (2 , 0.05 )N  

0 ~ (100 ,1)Gamma  

1 ~ (10 ,1)Gamma  

1.9230 2.1637 1.9988 1.8513 1.9506 

vehicle-loaded estimates 

1  2.8879 2.5901 2.2561 2.1137 2.4323 

Table 2. Simulation data 
 

Before conducting statistical inference in Bayesian networks, the prior distribution of 
random variable nodes are required to set up. On the assumption that there are no prior 
information 

2~ (1,1000 )priorK N  
2

0 ~ (0 ,1000 )prior N  
6 6

0 ~ (10 ,10 )prior Gamma    
6 6

1 ~ (10 ,10 )prior Gamma    
 

Given initial random nodes and set the number of iterations of 20,000 times, Bayesian 
network could get updated by MCMC based on the test data 0  and 1 . Iteration process 
and posterior kernel density estimates of some variables are shown in Figure 7 to 14.   
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Fig. 7. Track of variable K  in iteration       

 
Fig. 8. Track of variable 0  in iteration   

 

    
Fig. 9. Track of variable 1  in iteration       
 

 
Fig. 10. Track of variable 0  in iteration   

 

    
Fig. 11. Posterior distribution estimate of K   Fig. 12. Posterior distribution estimate of 0  

 

    
Fig. 13. Posterior distribution estimate of 1    Fig. 14. Posterior distribution estimate of 0  
 
From the iterative trajectories of variables, it is known that MCMC algorithm converges in 
about 4000 steps. Therefore, abandoning the former 5000 iterations, and utilizing the latter 
15,000 values of samples to infer variables’ posterior statistical characteristics. Compare the 
prior, posterior and the true statistical characteristics of parameters comprehensively, and 
get the results summarized in Table 3, where the true distribution characteristics (mean and 
standard deviation) of 1 , 0  and 1  may be computed out from those of other 
variables. 
Obviously, in the case of 15 groups of observational data, Bayesian network has effectively 
fused the information obtained from calibration tests and vehicle-loaded tests. In 
comparison with prior distribution, the characteristics of the posterior distribution of all 
variables whether mean or standard deviation is much closer to those in real situation. 
Summarized from posterior statistical properties, estimates of the mean for each variable is 
slightly better than that of standard deviation, while the posterior inference to i  (or i ) is 

shown inferior to that of K  and i . Given the limited sample size, accomplish 
system-level test data fusion utilizing Bayesian network is still quite effective despite of the 
errors exist between posterior inference and the true data. 
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errors exist between posterior inference and the true data. 
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Table 3. Prior, posterior and true statistical characteristics of random variables 

 
3.2.2 Testing information conversion   
System-level test information fusion does not only purpose to induce posterior statistical 
properties of variables, what’s more important is through the acknowledgement of different 
types of circumstance factors,  the test information about the INS error model are 
transmitted among those tests, which realizes the conversion of different types of testing 
error coefficients. For the sake Bayes method deals with the error coefficient as a random 
variable, so this kind of "conversion" is essentially that of variables’ statistical properties. 
In actual project, the true statistical characteristics of error coefficient may vary with the 
improvement of inertial navigation system manufacturing techniques. Therefore, an 
assumption should be made before converting the error coefficient in different types of tests: 
the variance of the true expectation about this coefficient remained proportional in different 
types of tests, that is to say the statistical characteristics of circumstance factor K  remains 
almost unchanged. 
 

variable 

true distribution prior distribution posterior distribution 

mean standard 
deviation mean standard 

deviation mean standard 
deviation 

2.5% 
percentile 

Median 
percentile 

97.5% 
percentile 

K  1.2 0.1 1 1000 1.2520 0.1025 1.0580 1.2520 1.4470 

0  2 0.05 0 1000 1.9620 0.0387 1.8830 1.9620 2.0390 

1  2.4 0.2089 / / 2.4550 0.1958 2.0840 2.4550 2.8210 

0  0.1004 0.0050 / / 0.1179 0.0315 0.0739 0.1121 0.1953 

1  0.3287 0.0552 / / 0.3772 0.1972 0.1790 0.3306 0.8537 

0  100 10 1 1000 86.020 40.800 26.220 79.540 183.40 

1  10 3.1623 1 1000 11.050 7.9590 1.3740 9.1510 31.270 

 
Fig. 15. Error factors’ conversion from different types of tests in Bayesian network 
 
Still take the case of data fusion between calibration test and vehicle-loaded test 
aforementioned as an example. Suppose the statistical properties of each variable have been 
inferred from the calibration test data and vehicle test data. After that the inertial 
measurement system accepted technique improvement and whereby another set of test data 

0   about error coefficient were induced from ground calibration tests (see Table 4). In this 

condition, we wish to infer the statistical characteristics of error coefficient represents 1   in 
vehicle-loaded test in the light of circumstance factor K . The links among the variables are 
depicted in Bayesian network of Figure 15. 
 

Ground calibration tests data true distribution of variables 
in data generation  

0   1.0524 1.2588 1.2021 1.3972 1.2134 
2

0 ~ (1.2 , 0.04 )N  

0 ~ (150 ,1)Gamma  

Table 4. Test data in improved technique 
 

As long as our purpose is to do the error factor conversion, so we focus on the posterior 
inference to 1  , K  and 0  merely. According to the using means of prior information, 
two different conversion methods are adopted respectively. 
A. Conversion method 1 
At first, deal with the posterior statistical characteristics of the variables as the prior 
information of current coefficient in conversion, by making use of the data fusion results 
prior to technology improvement merely. Then update Bayesian network as shown in 
Figure 15 based on the improved calibration test data. Statistical inference results are 
obtained and displayed in Table 5. 
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variable 

true 
distribution 

prior 
distribution posterior distribution 

mean standard 
deviation mean standard 

deviation mean standard 
deviation 

2.5% 
percentile 

Median 
percentile 

97.5% 
percentile 

1   / / / / 2.4190 0.4962 1.4930 2.4230 3.3510 

K  / / 1.2520 0.1025 1.2520 0.1028 1.0490 1.2510 1.4510 

0  1.2 0.04 1.9620 0.0387 1.9340 0.0388 1.8590 1.9340 2.0120 
Table 5. Statistical results in use of prior information merely 
 
As indicated from Table 5, Circumstance factor of K  is hardly changed, mean of error 
coefficient 0  differs slightly, so there is a big gap between the posterior statistical 
characteristics and the real states. Although the posterior distribution of the test data is 
slightly "pulled back" to the real state by the novel test data, the effect is still not very 
obvious. That’s because compared to the prior distribution on one hand, the prior 
distribution is more certain (standard deviation is small), and on the other the sample 
information is too limited, so that prior information plays a leading role in the posterior 
statistical inference. The novel test information is greatly weakened by the prior, which 
yields inferior posterior inference of 0 . In the presence of large deviations of posterior 
inference, the statistical results about the conversion value of error factor is not that credible 
in this occasion. 
B. Conversion method 2 
Allowing for the impact of prior information to posterior statistical inference, especially in 
the occasion of small samples, the error coefficient conversion is dealt with improved prior 
information. These improvements include two aspects. At first, in spite the prior 
information of error coefficient may vary from the state of current system due to technical 
progress, the variation is not too much so that the mean of prior distribution could be 
remained. Second, by increasing the standard deviation of the prior distribution, the prior 
information could be "fuzzed up" so that “over- conservative” posterior inference from 
“over-certain” prior characteristic would be avoided; but note that the standard deviation 
should not be set too large, otherwise the system would tend to non-informative prior and 
lose the useful information. 
The statistical inference results from improved prior information are shown in Table 6. 
In contrast to the results in Table 5, the posterior statistical inference in Table 5 is 
significantly closer to the true distribution, so the statistical characteristics of 1   can be 
used as the conversion of error factor from the ground calibration tests to the one in 
vehicle-loaded tests. 
 
 
 
 

variable 

true 
distribution 

prior 
distribution posterior distribution 

mean standard 
deviation mean standard 

deviation mean standard 
deviation 

2.5% 
percentile 

Median 
percentile 

97.5% 
percentile 

1   / / / / 1.5320 0.4563 0.6356 1.5310 2.4140 

K  / / 1.2520 0.1025 1.2520 0.1028 1.0531 1.2530 1.4530 

0  1.2 0.04 1.9620 5 1.2260 0.0548 1.1180 1.2260 1.3350 

Table 6. Statistical results in use of improved prior information 
 
The error coefficient conversion has been done in two methods from preceding texts 
analysis. Since very few samples are available, the first method takes more advantage of 
prior information so that the impact of test information to posterior inference is very weak; 
while the second method of "fuzzes up" prior information to reduce its impact on posterior 
inference by increasing the standard deviation, in return the impact of test information is got 
increased. In the premise of small but capable of accurately reflecting the true statistical 
characteristics samples, the above examples prove the second method is better in error 
coefficient conversion than the first. However, when large deviations exist between sample 
information and the real distribution, the risk of the using the second method increases in 
accompany; therefore, it is not reasonable to say that the second method is certainly better 
than the first. 

 
4. Conclusions  

MCMC technology has brought a revolutionary breakthrough to the development and 
application of Bayes statistical theory. Especially the emergence and further promotion of 
WinBUGS software, which gets the Bayesian network inference of model parameters out of 
complicated high-dimensional integral calculations, has routinized the analysis and 
application of Bayesian network. This paper has discussed the reliability assessment of 
weapon systems and the conversion of inertial navigation test information, which provides 
model reference and possible solutions to the Bayesian network based multi-source 
information fusion methods. 
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