
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Guiding complex design optimisation using Bayesian Networks 109

Guiding complex design optimisation using Bayesian Networks

Artem Parakhine and John Leaney

0

Guiding complex design optimisation

using Bayesian Networks

Artem Parakhine and John Leaney
University of Technology, Sydney, Faculty of Engineering and Information Technology

Australia

1. Introduction

In this chapter we aim to present an approach to addressing the problem of architectural
optimisation of complex computer-based systems. Initially, we provide a survey of methods
created with the direct aim of optimising system with respect to their non-functional qualities.
An overview of commonalities and differences between these methods leads to exploration of
reasons for their success in attaining their respective goals. The results of this discussion
provide the information necessary to formulate the definition of the notion of guidance in the
context of architectural design and optimisation.
Following that, we describe a new Heuristic-based Architectural Optimisation framework de-
veloped in an attempt to unify the lessons learnt from the successes and shortcomings of the
surveyed optimisation approaches. Special attention is paid to the guidance mechanism em-
ployed by the new framework to control the progress of design optimisation. We propose
to develop a suitable guidance mechanism using a Bayesian Belief Network (BBN) obtained
from a combination of hybrid simulation modeling and BBN discovery algorithm.
Finally, the rest of the chapter is devoted to a description of a brief example problem. There, an
attempt is made to show how the guidance mechanism can be applied to a fairly simple prob-
lem that nonetheless possesses an element of ambiguity that so often falters system design
optimisation activities.

2. Complex System Design and Optimisation

The process of design optimisation is a special form of design synthesis characterised by a
high level of specificity with respect to its goals. As such it relies on the following supporting
elements:

measurable goals - clear and quantifiable statement of goals to enable evaluation of candi-
date designs.

design variability - the system design must present amenable elements. In the context of
system design the change may be made at various levels: topology of component ar-
rangement, interchangeable components, configuration within a component.

constraints - restrictions, such as budgeted cost and time, provide an essential definition of
design feasibility which effectively reduces the search space to a manageable size.

7

www.intechopen.com

Bayesian Network110

Currently, all prevalent approaches to architectural system design can be separated into two
groups based on their main artefacts: quality-driven and model-driven (Parakhine, 2009, p.
22).
The quality-driven design synthesis process focuses on extensive analysis of qualities and
possible trade-offs. It necessitates creation of goal descriptions expressed partially in terms
of choices required to attain them, which in turn contributes towards the evaluation of the
candidate architectures. On the other hand, the model-driven methodology concentrates on
representing the system design from the point of view of a specific domain (e.g. security) with
consequent modification through application of well-defined domain-specific changes.
Although the two groups operate on different artefacts, both of them fit into the same general
structure of an architectural optimisation process shown in Figure 1.

Fig. 1. A generic process of system optimisation at an architectural level.

In its simplest terms, the process of architectural optimisation can be characterised as one
based on iterative derivation and evaluation aimed at satisfaction of multiple goals. The fields
of computer science and system design offer a wealth of frameworks exhibiting features and
capabilities of the optimisation process shown in Figure 1. Table 1 details how the require-
ments for facilitation of architectural optimisation have been addressed by some of the vari-
ous frameworks built specifically for that purpose or built to solve general design problems
in a way which makes optimisation possible.
The described optimisation approaches adopt various methods and techniques to attain their
goals and produce the outcomes. Those relevant to the system design process are listed below.
The presented features and techniques are grouped by the element of the optimisation process
(Figure 1) whose function they were used to fulfill:

Genetic Algorithms - indicates that the framework performs evolutionary search that relies
on encoding of system design in the form appropriate for breeding operators.

Meta-Heuristics - shows that the framework was created around a specific optimisation
heuristic, such as simulated annealing or a tabu-search.

Function Analysis - identifies frameworks that employ a mathematical function analysis to
drive the search process.

Configuration - only variations in the properties of the system components are considered.

Component - this approach to system change adopts components as variable elements.

www.intechopen.com

Guiding complex design optimisation using Bayesian Networks 111

Table 1. Summary of approaches to architectural system optimisation.

Structure - focuses on variations in the structural arrangement of system components.

Calculation - describes a mechanism relying on a evaluation of a mathematical function.

Simulation - performs assessment of candidate architectures by constructing simulations of
system operation.

Runtime Monitoring - evaluation is performed by making changes to the system and collect-
ing metrics during its subsequent operation.

Design Suggestion - indicates that the optimisation produces a prescriptive list of design
modification.

Complete Design - shows that the framework produces a system architecture specified to a
relatively high level of detail.

The approaches to architectural optimisation listed in the matrix in Table 1 are arranged in the
order of increasing number of goals with the lowest level containing approaches aimed at a
specific non-functional system qualities such as maintainability (Bosch & Bengtsson, 2001) or
reliability (Gokhale, 2004).
The first entry in the table is the Automated Quality Assurance (AQuA) framework (Dia-
conescu & Murphy, 2005) which attempts to automatically tailor the system to the operational
conditions by varying the choice and configuration of the system components. The AQuA
framework is built to continuously check the system for performance anomalies and apply a

www.intechopen.com

Bayesian Network112

pre-defined adoption decision should such anomaly be detected. As such the framework is
limited severely by the quality of the metric collection and the depth of analysis that can be
performed in a timely manner during system operation so as to preempt possible reduction
in performance.
Further to that, the problem of achieving specific qualities can be better addressed before the
system is built. For example, an existing requirement for high reliability can be addressed by
exploring variations in the choice and number of redundant components in each of the system
modules (Coit & Smith, 1996). This formulation, in effect, links the single non-funcitonal prop-
erty (reliability) to a single type of structural architecture change (connection of components
in parallel).
However, introducing changes that may be applied in combination may render a large set of
possible candidate architectures. As this approach to optimisation developed, a number of
strategies such as Genetic Algorithms (Coit & Smith, 1996), integer programming (Coit, 2001)
and Multiple Weighted Objective optimisation heuristic (Coit & Konak, 2006) were used to
restrict and manage the pool of candidate solutions.
Bucci & Streeter considered three version of system distribution structure: centralised storage,
individual storage at each node and no centralised database, or hierarchical storage where
individual nodes synchronise with the centralised storage unit. At the core of this approach
was a model developed to assess the cost per transaction for each of the possible three arrange-
ments. The resultant model allowed to determine the cost-minimizing approach to structuring
architecture and showed how it would affect the response time and, by extension, the overall
throughput. This development has led to the creation of a more generalised model (Bucci &
Maio, Sep 1982) built to handle the trade-off between performance and cost.
Another focused optimisation approach was proposed by Bosch & Bengtsson who attempted
to formalise the relationship between the properties of the system design and the effort it
would take to change it during maintenance cycle. The key relationship guiding the opti-
misation was expressed as effort, or a form of cost, based on the sum of productivity factors
associated with each potential change.
Such focus on a single quality fails to address the situations presenting conflicting quality re-
quirements. This led to the development of the Quality Driven Architectural Design (QDAD)
family of frameworks such as Architectural Trade-off Analysis Method (Kazman et al., 1999)
and Business IT Alignment Method (Chen et al., 2005). These approaches attempt to identify
and manage the strong trade-off relationships existing in the design space. To achieve this, a
typical QDAD method relies heavily on a collection of mature analytical models similar to the
ones described above. Unfortunately, formulating, using and maintaining such combination
of metrics would be a complex and arduous task as these models would have to be manually
adjusted as system design changes in time and scale.
Another group of optimisation methods listed in Table 1 adopt an approach focused on design
options and how they can be optimally combined to get the highest feasible level of overall
system qualities.
For example the identification mechanism for “good” architectures shown by Grunske rep-
resents a culmination of the development of this type of change-centric approach (Grunske,
2003; 2006; Grunske et al., 2005). There, Grunske uses principles of graph representation, ar-
chitecture refactoring and genetic algorithms to create an optimisation framework. In this
framework, the mechanism of guidance relies on the genetic fitness function that is used to
determine the successful mutations propagated into the next generation.

www.intechopen.com

Guiding complex design optimisation using Bayesian Networks 113

The genetic algorithm approach to multi-objective optimisation and the corollary use of fit-
ness function is not without merit. The ways the concept of fitness was used by different
approaches (Coit & Smith, 1996; Grunske, 2006) are combined and extended further by the
detailed fitness function used by Gokhale to specifically address the trade-off between two
non-functional qualities (Gokhale, 2004). Although it is recognised that the successful appli-
cation of genetic algorithms relies greatly on many factors such as mutation rates and popula-
tion sizes, Grunske and Gokhale show that the fitness procedures have potential to handle the
complex link between architectural assessment and complex multi-objective process of archi-
tectural optimisation. Still, the problem of creating such a fitness function remains non-trivial
and worsens with the increase in the number of goals.
Next, Table 1 lists the Model-Driven Architectural Design methods which are based on prin-
ciples of Model-Driven Design (MDA Guide, 2003). Although the approaches in this group
do not explicitly target optimisation, they nonetheless provide an opportunity to perform it.
This is achieved by structuring the process as one comprised of models and transformations.
Consequently, the optimisation can take place by applying different transformations to the
underlying model. However, the separation into models and transformations ignores the
possible conflicts between transformations.
Still, the static analysis of artefacts created as part of MDAD can be used to better understand
the system. Additionally, it can be extended as shown by Sharma & Trivedi who used Dis-
crete Time Markov Chain modelling to estimate the reliability, performance and security of a
given system by examining the number of visits and times spent in that module calculated
from a transitional probability matrix (Sharma & Trivedi, 2005). The probabilities within this
matrix are affected by the architecture as different structures and behaviour would lead to
the variation in time spent in each modules and the number of visits to specific modules re-
quired to finish processing. As such the matrix links compositional features of the system with
he models used to estimate its individual qualities, in this case: reliability, performance and
security.
The main limitation of the transitional probability matrix is that it does not provide an expla-
nation of how design decisions affect the distributions comprising the matrix. Achieving such
form of representation is, nonetheless, possible as shown by the SAABNet framework (van
Gurp, 2003, p. 71). At the foundation of SAABNet is a Bayesian Belief Network or BBN which
combines probabilistic and factual knowledge about the system features and understanding
of its qualities into a single informational resource.
The nature of BBN notation has the power to include information from models, simulations
and surveys of domain experts as well as records of architectural changes that have taken
place in a given system or across multiple systems. Once assembled, the BBN can be used to
determine which combination of factors is most likely to lead to a higher level of a desired
quality while at the same time give the designer some idea regarding the effects the change
in factors may have on other non-functional system qualities. Resultantly, the SAABNet can
be employed to support both the QDAD and MDAD approaches mentioned earlier in this
chapter. The SAABNet network and the corollary issues are discussed in further detail in
Section 4.

3. Heuristic-based Optimisation Framework

As mentioned in the previous section, the design optimisation framework proposed to ad-
dress the shortcomings of methods presented in Table 1 is focused around the iterative pro-
cess borrowed from the field of control theory. The core of the framework is based on the

www.intechopen.com

Bayesian Network114

conventional control feedback loop which exists with the intent of providing a mechanism
for continuous adjustment of the system behaviour based on changes detected in the set of
control variables. Leaney et al. (2004) proposed an extension of this approach into the field
of design optimisation with the design process itself being the system under control. Further
advances in the fields of architectural refinement (Denford et al., 2004) and heuristic encoding
(Maxwell et al., 2006) spurred a development of a more detailed version of the framework; its
current state shown in Figure 2.

Fig. 2. General view of Heuristic-based Architecture Optimisation framework (Maxwell et al,
2005).

The Heuristic-based Architecture Optimisation (HAO) framework proposed by Maxwell et al.
represents a combination of both constructive and local search methods of solution of approxi-
mation. It uses constructive heuristics to change the design of the system during optimisation
while relying heavily on a guidance strategy to establish the neighbourhood of solutions for a
current state of system design and select the appropriate change heuristic.
Specifically, it possesses the following features:

iteration The search for an optimal solution is conducted by iterating through a series of
design candidates generated from the application of specific design heuristics.

memory The change heuristics, are, in essence, an abstract codification of specific transfor-
mations (Maxwell, 2007, p. 73). As such their sequential application may lead to com-
pound effects that can provide important insights into properties of the system being
designed. Hence, the HAO process records all generated solutions in the Solution Pool
with the intent of allowing the designer to analyse and study properties of the architec-
ture.

non-parametrised view of design Use of heuristics also allows the HAO framework to adopt
a holistic view of architectural design without the need for an intermediate step of de-
composition into a limited set of mutable parameters.

www.intechopen.com

Guiding complex design optimisation using Bayesian Networks 115

functional preservation The framework also ensures, through the use of Architectural Refine-
ment Verification (Denford et al., 2004), that in the process of design generation none of
the design’s functional properties are affected in a negative way.

generality Domain-specific heuristics and quantitative metric evaluators can be used to sup-
port optimisation of systems from a multitude of domains.

decision support Finally, at its core, the HAO framework is oriented at organising and sup-
porting the activities performed by the system designer during a search for a new de-
sign candidate

In its form, the HAO framework attempts to incorporate all the best features of the optimi-
sation frameworks described in Section 2 whilst also exhibiting and addressing the short-
comings of those frameworks. For example, the proposed use of heuristics relates to the
generality achieved by the refactoring approach described in (Grunske et al., 2005) and non-
parametrised view of design is an extension of evolutionary chromosome-based search pro-
posed in (Gokhale, 2004). Furthermore, the modular structure evident in the proposed frame-
work was chosen to ensure that the modules could advance with a degree of independence.
Thus, the framework can take advantages of different, possibly domain specific, libraries of
heuristics as well as a range of externally defined quality evaluators.
The ultimate aim of the process is to find a solution that represents an optimal compromise
on competing system qualities. To achieve a positive outcome the process requires priming,
which includes obtaining a set of potential design changes encoded as heuristics (Maxwell
et al., 2005), providing a baseline design, and a set of goals and constraints. Effectively, the
goals and constraints must contain the following: the expression of desired non-functional
qualities that should be present in the solution and the minimal levels to which these qualities
must be achieved for a given solution to be considered valid.
The original design is then evaluated to establish a baseline measurements with respect to
optimisation goals. Once assessed, the baseline design and its associated characteristics are
placed into the Solution Pool, which is used establish a historical context that may be used by
the designer to study the evolvability characteristics of the system (Rowe et al., 1998).
Consequently, the baseline design information is used by the Optimisation Guidance compo-
nent to generate information regarding the type of change that is most likely to render positive
results. This information is then applied within the Heuristic Selection module to find viable
candidates from the options available in the Heuristic Library.
Following selection, the identified heuristics are applied the Architectural Refinement Verifica-
tion is used to confirm the candidate designs preserve functional characteristics of the original
architecture. Finally, the candidates are evaluated and the results are provided back to the
Optimisation Guidance component for further analysis.
The role of Optimisation Guidance is to determine the best possible alternative architecture in
the current solution pool and which combination of heuristics, when applied, would produce
an outcome closest to the desired system form. To achieve this, the guidance mechanism
uses a combination of Bayesian principles and Hybrid Simulation to form a new view of the
system from the viewpoint of potential evolutionary changes directed at achieving the goals
of optimisation process. The specifics of guidance composition and operations are described
in the coming sections of this chapter.

www.intechopen.com

Bayesian Network116

4. Guidance Mechanism Theory and Application

The core operations of the Optimisation Guidance component are performed using a Bayesian
Belief Network (BBN) representation of causal links between change heuristics and system
qualities. A BBN can be viewed as a directed acyclic graph in which the nodes represent variables,
or assertive propositions, and edges describe the presence and direction of influences which
exist between connected nodes (Pearl, 1986, p. 358). The relationship where one variable A
influences another variable B, denoted by the existence of a directed arc linking a node A to
another node B, carries a nomenclature of A being a parent of B and, conversely, B being a child
of A.
Each node in the graph can assume a number of known states according to an associated
Conditional Probability Distribution (CPD). The CPD of each node defines the probabilistic
features, states, of the node with respect to the combinations of states of its parents. Thus,
a Bayesian Belief Network is a graph representation of a joint-probability model. This rep-
resentation is obtained through the decomposition of the original model into a product of
conditional probabilities for each of the comprising nodes (Pearl, 1986, p. 359). This definition
is expressed formally in the Equation 1 below:

P(x1, ..., xn) = ∏
i

P(xi|Si) (1)

where:
x1, ..., xn are variables present in the graph
Si is set of parents for variable xi

P(xi|Si) is conditional probability for variable xi

The main advantage of this decomposition is that it enables the construction of a BBN to be
undertaken in a modular format. Since the overall model does not have to be defined in its
entirety it can be built gradually through repeated application of a simple process focusing
on each individual variable xi (Haddawy, 1999). The natural restriction of scale that results
from such localisation means that the process can be based on human judgement to obtain
qualitative relationships perceived to be significant in the context of the problem.
Generally, the process of BBN construction can be split into two phases: identification of vari-
ables and elaboration of their interrelationships. This breakdown means that in building a
Bayesian network model, one can first focus on specifying the qualitative structure of the do-
main and then focus on quantifying the influences. When this process is finished, a complete
BBN is guaranteed to be a complete specification of a joint probability distribution. This spec-
ification is subject, however, to the possible shortcomings in the awareness and judgement
regarding the specifics of the domain. As a result, once completed a BBN should be verified
and validated and only then can it provide a useful mechanism for probabilistic inference.
This, in turn, led to the frequent use of BBNs for modelling domain knowledge and imple-
mentation of probabilistic reasoning capabilities in Decision Support Systems (Tsamardinos
et al., 2006).
In recent years the concept of Bayesian Belief Networks has played a pivotal role in several
attempts undertaken by researchers to represent knowledge about the non-functional qualities
of systems. SAABNet or Software Architecture Assessment Belief Network, developed by van
Gurp & Bosch (2000), was created with the aim of helping the designer perform qualitative
assessment during the architecture design process. SAABNet utilitsed a static Bayesian Belief
Network to describe the interrelationships between design qualities.

www.intechopen.com

Guiding complex design optimisation using Bayesian Networks 117

The interdependencies between various nodes described by Gurp and Bosch are defined
within a framework similar to the Factor-Criteria-Metric model descirbed by McCall (1994,
p. 1086). Figure 3 shows an example of a single slice of through the SAABNet model. The
slice shows all the quality factors influenced directly, or indirectly, by "implementation lan-
guage".
The belief network structure at the core of SAABNet is comprised of three types of nodes:

Architectural Characteristic nodes (AC) represent various system characteristics and their
interdependencies, eg. component granularity which in SAABNet is shown as depen-
dent on implementation language and architectural style. The states for the nodes of
this type are expressed in terms of specific measurements for features, such as “C++”
and “Java” for the node named implementation_language or “high” and “low” for the
dynamic_binding variable.

Quality Criteria nodes (QC) represent composing features of the external quality factors.
Due to their higher level of abstraction the QC nodes are assigned states that are quali-
tative and measurable in the context of the system. For example vertical_complexity can
assume state “high” and “low” and testability can be “good” or “bad”.

Quality Factor nodes (QF) represent external quality requirements such as reusability and
complexity. All of the QF nodes are given qualitative states such as “good” and “bad”
that are meant to reflect the level of desired qualities that the system is perceived to
possess.

Fig. 3. An example slice thought the SAABNet described by van Gurp (2003, p. 73)

SAABNet was intended by van Gurp & Bosch to assist designers in identifying which system
properties were most likely to effect their desired system qualities. In this way it would allow

www.intechopen.com

Bayesian Network118

them to select the goals they deemed desirable and, using the properties of the BBN, identifty
specific levels, or values, of system parameters needed to meet those goals. For example,
should the architect be faced with the task of increasing the configurability and understandability
of the system, then it is possible to use SAABNet to obtain an advisory set of measurements for
architectural characteristics. In this case interface and component granularity could be identified
as a likely characteristic to contribute towards achieving the desired qualities.
Additionally, SAABNet can provide the designer with information about variables that will
need special attention during the development process. This special attention is identified,
and warranted, by the variables possessing a large number of dependency relationships. Fur-
thermore, by examining the links between various nodes in SAABNet, the designer can iden-
tify possible conflicts and trade-offs which exist in the architecture. All of these applications
can provide valuable aid to a process of complex system optimisation.
Fundamentally, SAABNet represents an attempt to construct a persistent and reusable be-
lief model of influences between architectural characteristics, their combinations, and quality
requirements. Certain parallels can be drawn between SAABNet and the SAU framework
proposed by Folmer & Bosch and, in their motivation and focus, the two can be said to be
related with SAABNet representing an attempt to take advantage of the representative and
reasoning capabilities provided by BBNs.
Naturally, the success of this approach is rooted in the assumption that the non-functional
factors contributing to the overall quality of the system can be defined in a generally applicable
manner. However, finding a general definition for scalability, a common quality requirement
in many system designs, might omit the nuances specific to the given problem with disastrous
consequences.
One way of dealing with the generic nature of qualities is to use qualitative descriptions of
measurements, using terms such as ‘high’/‘low’ and ‘present’/‘absent’. Although somewhat
vague in their descriptive power, the chosen names for states of qualitative variables featured
in the resultant BBNs are useful in a decision-making process. The contrasting binary nature
of their states helps to leverage the possibly incomplete empirical view of the system qualities
and the facilitate the process of quality fulfilment (van Gurp, 2003, p. 81).

4.1 System Identification

The use of belief networks with a static structure in the context of system analysis, and even in
optimisation, has shown some promise. Notably, BBNs can facilitate exploration of the causal
relationships that exist between the system structure, the decisions that led to its formulation
and the qualities affected by its form. The mathematical properties of BBNs, inherited by the
described networks, allow the designer to explore, albeit to a limited extent, the effects of
hypothetical design changes on the qualities exhibited by the system.
However, the networks do not address the problem stemming from the variations in the
strengths of existing relationships, or the formation of new ones that may take place over
time in different problem domains. Furthermore, the assignment of states, nodes and actual
topology within the network is uniformly manual and leads to a very high cost that must be
incurred during network construction. Due to the heavy involvement of personnel in this net-
work construction phase, the resultant networks may be affected by the failings of individuals
and political issues. Nevertheless, the Bayesian approach presents a number of avenues for
addressing these issues.
Specifically, it is possible to reduce the residual effects of human errors and political bias by
attempting to encode the assumptions held by system stakeholders in a simulation model

www.intechopen.com

Guiding complex design optimisation using Bayesian Networks 119

which is then used to produce output suitable for BBN construction. This is possible because
the relationships between a system and its non-functional qualities is one of emergence. That
is the features of the system interact to achieve its non-functional properties. Hence, in terms
relevant to the implementation of an optimisation process, it can be said that a computer-based
system design can serve as both the subject and the objective of optimisation. Its elements are
used in evaluation of its fitness and present the context for choice and application of a solution
strategy.
Due to these characteristics of a system architecture, the task of optimising it to achieve greater
levels of system qualities relies heavily on knowing the specifics of how the qualities exhibited
by the system link with the particulars of its features. As a result, the implementation of
architectural optimisation guidance can be postulated as a problem comprised of two parts:

System Identification - It is necessary to recognise that any system (computer-based or oth-
erwise) is a result of interactions of the elements composing it. The interactions result
from the choice of components and their structural arrangement. Hence, to guide the
optimisation process it is first necessary to identify the form for the system that takes
into account the choices and interactions that lead to its exhibited qualities.

System Analysis - The guidance methodology must incorporate knowledge that would al-
low the designer to examine the set of features exhibited by the identified system form,
determine the factors that have the greatest influence and elicit a strategy for changing
the source system architecture.

The problem of system identification can be described as one aimed at deriving a parameter-
based mathematical description of the system. This is an example of a white-box model.
In other words, a model that is a completely transparent construct built using the well-
known foundational assumptions regarding system features, which in this case refers to non-
functional qualities. Such description can be as simple as a set of polynomial functions or
a genetic representation which depends on presence of components or structures within the
system.
This potential variety of forms gives rise to a more general system identification question:

What is the representation of a systems’ design state suitable for guiding the archi-
tectural optimisation of a system that is complex in its composition and interac-
tions with its environment?

Developing the answer to this question requires a model that takes into account two major
factors. Specifically, what a systems is and how it came into its current arrangement.
According to the definitions provided by Bunge (1979), a system can be represented as a set
of non-propositional functions. Such form implies that the functions can not be evaluated to
true or false given their domain alone and successful interpretation requires understanding
the relationships that exist between the system and the design context. This, in turn, requires
that the process of design itself must somehow be evident in the representation of the system
created to answer the question stated above. The problem, however, is that system design is
motivated by changes in the environment existing outside the boundaries of the system.
Seen from the optimisation guidance point of view, the design process is a series of decisions
taken based on understanding the properties of all relevant artefacts, short-term and strategic
goals and constraints regarding potentially applicable changes to the system. Consider a series
of decisions such as this to be (Peterka, 1981, p. 9):

www.intechopen.com

Bayesian Network120

D0, D1, D2, ..., Dn (2)

Each element in the series (2) represents a designer’s choice from a number of options. This
choice is made under a degree of uncertainty regarding the true potential implications of the
decision. At time 0, the very first decision is based on original goals and assumptions and
introduces new information regarding system properties. This means that in its most general
form a single decision can be decomposed into inputs u and outputs y:

Dt = {ut, yt} (3)

In the above, ut represents a set of values, for example specific choices of components or struc-
ture, imposed by the designer at time t onto the system. Whereas yt represents the results of
combining the inputs with the existing system context. It is the outputs set yt that contains
the resultant and emergent qualities of the system. These qualities, just like the outputs them-
selves, can only have their values influenced indirectly, through preceding design choices.
However, the outputs are not restricted to qualities and can include other information such as
measurements and forecasts that can serve an important role in future decisions.
Based on a combination of (2) and (3), the overall design process can be represented as a series
of sets of inputs and outputs like so:

u1, y1, u2, y2, . . . , ut−1, yt−1, ut, yt, . . . (4)

Given (4), the series of decisions between some two points in time i and j with i < j can be
shortened to the simpler form:

D
j
i = {yj, uj, D

j−1
i } (5)

Within this new representation, if the value for index i is omitted then it can be assumed that
Dj represents a set of all decisions from the first to the one taken at j.

Dt = {D1, D2, . . . , Dt−1, Dt} (6)

For a designer to make optimal decisions as part of the design process they need to decide in
advance which of the available heuristics is optimal in the context of the design problem. To
accomplish this, they must be able to forecast, before the input ut+1 is applied, what possible
values the future elements in the input-output series (4) can take, for at least some of the dis-
tinct design choices available at time t. To determine this, the designer needs the conditional
probability distribution:

p(Dt+N
t+1 |Dt) (7)

At this point the chain rule, shown below as (8), can be applied to produce the expanded
equation shown in (9).

p(xn, xn−1, . . . , x1) =
n

∏
k=2

p(xk|xk−1, . . . , x1) · p(x1) (8)

p(Dt+N
t+1 |Dt) =

t+N

∏
i=t+1

p(Di|D
i−1) (9)

The equation (9) can be further expanded by making use of the basic relation stated as in (10)
to obtain the following substitution for the product expression shown on the right side of (9):

www.intechopen.com

Guiding complex design optimisation using Bayesian Networks 121

p(a, b|c) = p(a|b, c)p(b|c) (10)

p(Di|D
i−1) = p(yi, ui|D

i−1) = p(yi|ui, Di−1) · p(ui|D
i−1) (11)

This, in turn, through substitution into (9), leads to the following expanded form:

p(Dt+N
t+1 |Dt) =

t+N

∏
i=t+1

p(yi|ui, Di−1) · p(ui|D
i−1) (12)

The factors in (12) have the following interpretation. The conditional probability distribu-
tion, as shown in (13), describes in general terms the transformation by which the input ui is
determined on the basis of the known past history of the decision process.

p(ui|D
i−1) (13)

The other factor, i.e. the set of conditional probability distributions, shown in (14), describe
how the output yi is a result of past history of the decision process Di−1 and the last choice of
inputs ui at each instance i.

p(yi|ui, Di−1) (14)

The set of conditional probability distributions shown in (14) is, in effect, the general descrip-
tion of the system as a compound result of the decisions which lead to its composition at point
i. Hence, the requirement for the definition of a model for systems’ design state posed earlier in
this section can be fulfilled by finding a set of conditional probability distributions (14) over a finite
set of parameters for the time period required. In effect, the conditional probability distribution links
the elements of the proposed change to the fulfilment of design goals thus aiding the designer
in devising an appropriate design strategy under uncertainty.
Importantly, the product of the conditional probability distribution (14) featured in (12) re-
sembles closely the definition of the underlying model for Bayesian Belief Network presented
in Equation 1. The formulae and nomenclature introduced in this section provide positive
assessment as to the viability of the guidance approach based on use of BBNs for quality
modelling. However, the analysis of existing BBN approaches discussed at the beginning of
this section highlights the importance of the network construction process to the viability of
BBNs as guidance tools supporting an architectural optimisation process. Consequently, the
features of the BBNs relevant to their construction need to be examined.
As mentioned before, the key feature of BBNs is the localisation they afford, in other words, the
fact that they provide a method for decomposing a probability distribution into a set of local
distributions. The semantics of independence associated with the network topology specifies
how to combine these local distributions to obtain the complete joint probability distribution
(Equation 1) over all the input variables represented by the nodes in the network.
This has two important consequences:

1. When specifying a joint probability distribution as a table of values, the required a num-
ber of values increases exponentially with the number of variables. In systems in which
interactions among the input variables are sparse, Bayesian networks drastically reduce
the number of values required to be considered simultaneously.

www.intechopen.com

Bayesian Network122

2. The separation of qualitative representation of the influences between variables from
the numeric quantification of the strengths of the influences has a significant advantage
for knowledge engineering.

These structural and semantic features of BBNs are conducive to their construction and effec-
tiveness, even in the presence of limited about of data. Specifically, the advantage mentioned
in point 2 above is the greatest contributing factor to the simplicity of the BBN construction
process. The process itself is broken down into two parts.
The first phase involves careful consideration of relevant concepts in the domain of the prob-
lem that is being modelled. In the domain of system optimisation this amounts to encoding of
variations in inputs affected by the designer. These variations must also be accompanied by a
recording of corresponding changes in the outputs that emerge as a result of the designer’s de-
cision. Upon completion of variable identification, the next step in BBN construction involves
the assignment of dependencies between the variables. This assignment is accompanied by
conditional probability information. After these two phases the resultant network is tested to
verify that it matches the existing knowledge of the modelled domain.
Furthermore, the focus on domain-specific decisions, afforded by the use of Bayesian network
technology, can, when applied within the context of system design optimisation, be inter-
preted in a dual way. The first one, as evident from work done by van Gurp, involves build-
ing one large network to represent the system design state in the most complete way possible.
This is a complex and arduous task which incurs heavy validation and verification require-
ments for its outcomes. Even when this is completed, there is no guarantee that the resultant
BBN structure would be able to withstand the test of time as the technological and business
elements of the context evolve. For large systems, this is impracticable from an engineering
standpoint.
Instead, the problem of BBN construction can be solved by adopting one of the available net-
work discovery algorithms. These algorithms have been created to allow the structure of a
Bayesian network to be learned from a sufficiently large set of observational data (Tsamardi-
nos et al., 2003). One such approach is the Min-Max Hill-Climbing (MMHC) algorithm
(Tsamardinos et al., 2006). The MMHC algorithm was chosen for implementation in the pro-
posed guidance mechanism due to its effectiveness and simplicity of application.
The inclusion of the MMHC algorithm as part of the proposed guidance methodology in-
troduces an additional problem concerning the availability of observational data. Within the
context of a complex design problem such data may need to include specific values for vari-
ables representing quality measurements correlated with specific system and design states.
Obtaining such data may not always be possible even if is the designer has access to variety
of sources such as interviews, historical records, design documentation and system telemetry.
To address this, the proposed methodology includes multi-paradigm simulation described in
greater detail in Section 4.2.1.
However, in complex systems it is possible that different unknown dynamic relationships can
lead to the same topographic configuration of the resultant Bayesian Belief Network. Hence
the application of the proposed method takes place in a context where two distinct elements
are present: the reality of the situation being analysed and a set of possible candidate models
which can be produced from the available data set. The problem of ensuring that the identified
model is the actual, or a very close, depiction of the qualitative relationships present in the
system can only be handled by submitting it to the evaluation by the system’s stakeholders
and the designer.

www.intechopen.com

Guiding complex design optimisation using Bayesian Networks 123

4.2 Guidance Components and Model

The proposed guidance methodology relies on two supporting concepts: multi-paradigm, or
hybrid simulation (Section 4.2.1), and automatic discovery of causal relationships between a
system’s characteristics and its qualities (Section 4.2.2). The role of the former is to provide the
designer with a facility capable of modelling the current, as well as possible, structural and
behavioural characteristics of the system. The latter of the two is necessary to ensure that data
collected during the successive runs of the modelling and exploration phase are aggregated
into a meaningful representation of causalities. In this case a BBN is used to understand the
causal relationships and to identify the drivers behind the specific non-functional qualities of
the system.

Fig. 4. The formulation process resulting in the production of guidance data.

The interaction between elements described above is depicted in Figure 4. Two elements (Hy-
brid Simulation and BBN Discovery Algorithm) are employed to produce a, best-effort, compre-
hensive understanding of the system with respect to the requirements and constraints im-
posed upon the designer. This interaction of composing elements is proposed as one that
would help to ensure that no factor is omitted from exploration and analysis of system’s de-
sign state. The exception being where the designer explicitly wishes to ignore certain factors.
Within such an approach it is necessary to ensure that the simulation of the system is flexible
enough to represent the ramifications of possibly very large and complex changes both on
system structure and on the outside elements such as users or external processes.

4.2.1 Hybrid Simulation

The practice of exploring quality characteristics of Computer-Based Systems through con-
struction and execution of various type of simulations is well established, as was shown in
the overview of research presented in Section 2. However, the diversity of specific features
that are combined to attain individual qualities in any given system demands creation of a
portfolio of simulations, each targeting a single or a group of related qualities. The process of
creating and maintaining such a portfolio becomes a task in itself. A task that is made difficult
by issues of maintaining consistency throughout the various simulation models comprising
the portfolio and creating ways to combine their outputs to construct a context describing the

www.intechopen.com

Bayesian Network124

non-functional qualities of the system and, as a result, provide effective analysis and decision
support.
Therefore, in the context of a design optimisation guidance that aims to improve a variety of
possible interrelated qualities exhibited by a complex CBS, it is desirable for the designer to be
able to construct a single simulation model. Doing so would address the problems of main-
taining consistency across multiple models as well as difficulties in combining their outputs.
However, to be successful, this single, all-encompassing model must be rigorous enough to
provide a faithful representation of a complex system while remaining flexible enough to facil-
itate exploration of relationships between emergent system qualities and the effects of possible
design changes.
In order to achieve this flexibility the simulation must be able to deal with concepts from three
major paradigms which currently dominate the field of simulation modelling (Borshchev &
Filippov, 2004):

• System Dynamics (SD) - Required to be able to represent the effects of policy introduc-
tion or modification at the highest levels of abstraction, as well as the analysis of trends
and other system properties-of-the-whole (Forrester, 1991, p. 22).

• Discrete Events (DE) - Required to understand the issues associated with utilisation of
various resources available to the system, as well as the effects of various scheduling
decisions.

• Agent-Based (AB) - This paradigm allows the simulation of elements which can only
be meaningfully represented as active objects with individual, purposeful behaviour
(Borshchev, 2005, p. 8).

Borshchev et al. (Borshchev, 2005; Borshchev & Filippov, 2004) has proposed combining the
modelling paradigms mentioned above. The proposed combination places a special empha-
sis on the use of Agent-Based modelling to accentuate both its flexibility and pragmatism in
situations where complete information about the system may be unavailable. Additionally,
the AB approach facilitates the exploration of the emergence of global system properties. It
achieves this by examining the interactions of various system elements over time, a character-
istic which can be successfully employed to support the process of causal discovery described
in Section 4.2.2.
The multi-paradigm, hybrid simulation, approach (Borshchev & Filippov, 2004) possesses
both abstract characteristics (system dynamics, discrete events) and pragmatic behavioural
properties (agents). Combined together these approaches provide a modelling paradigm that
has been shown to be flexible and powerful enough to address the simulation and optimisa-
tion needs of problems ranging from supply chain management (Almeder & Preusser, 2007)
to enterprise IT cost analysis (Popkov et al., 2006).
The overall aim of the proposed optimisation guidance method is to provide a recommenda-
tion on a list of changes considered by the designer. To achieve this, it relies on a simulation
model of the original system. This model has to be robust enough to allow exploration of
pre-defined usage scenarios targeted, for example, at exploring the scalability of the system.
It is possible that multiple runs of the simulation will be required in order to obtain a better
understanding of the causal relationships between various observed system factors and its
overall qualities. Eventually, the framework will be able to output a large set of aggregated
data combining information on the effects of variations in system factors on the system qual-
ities measurements. This resultant set of data will serve as an input for the automatic casual
discovery algorithm.

www.intechopen.com

Guiding complex design optimisation using Bayesian Networks 125

4.2.2 Bayesian Belief Network Discovery

In Figure 4 the causal discovery mechanism of the proposed design optimisation guidance
method is represented by the “BBN discovery algorithm” entity. This refers to an automatic
way of constructing the topology of a Bayesian Belief Network from a large set of observa-
tional data.
The BBN elucidated from the simulation output data is used as a Causal Quality Model of the
system being subjected to design optimisation. In this capacity, the function of the resultant
BBN with respect to the designer is somewhat similar to that of a Decision Support System.
Its aim is to show the designer which factors within the system have the greatest measure of
effect on the system qualities specified as acquisition concerns. Further, it aims to show how
these, and other, qualities may be affected by possible design changes.
To achieve this, the BBN encapsulates the main inference relationships present in the system
design with respect to the emergent qualities. These qualities, as previously discussed, may
serve as the goals or the constraints of the overall optimisation process. Semantically, the BBN
used to provide optimisation guidance is built with the same underlying principal node types
as used by van Gurp (2003) (Section 4), which, in turn, stem from the Factor-Criteria-Metric
structures defined by McCall (1994). Specifically, there are three distinct groups of nodes:

simple characteristics These nodes describe the observed characteristics of the system
known to be relevant to the goals of the system optimisation.

complex characteristics Members of this group represent the knowledge of how the simple
characteristics combine into more complex ones which in turn produce cumulative ef-
fect onto the system qualities.

system qualities Final layer of nodes which is created to compose the inference structure
about the non-functional system characteristics pursued by the optimisation process.

It is the explicit responsibility of the designer to define which specific features of the simula-
tion model should be processed and included as part of the data set that will be used as an
input to the BBN learning algorithm. However, faced with such a task the designer may find
it difficult to decide which of the features are relevant. Nevertheless, some direction can be
provided in this difficult task. Specifically, the BBN that is likely to produce the best guidance
should include nodes from two major groups: principal and auxiliary.
The principal network nodes are necessary to represent the core inference structure required to
control the direction of the optimisation process. This group of nodes should include charac-
teristics of the system that can change based on the available selection of design modification
heuristics and the system qualities stated as goals of the optimisation. For example, if the
designer is required to optimise scalability of a given system then the network should contain
as many nodes as possible describing the issues affecting system scalability in that context.
A typical auxiliary network node should be determined based on the principles of a narrow
quality focus. The auxiliary nodes are necessary primarily to ensure that the constraints of
the optimisation are properly addressed within the process. Depending on the conditions
imposed by the problem these constraints may be classified as hard or soft. Hard constraints
ensure that the changes to the system design during optimisation do not dramatically reduce a
known quality of the system. Whereas soft constraints are there to show what effects a certain
course of action will have on qualities not expressly sought after as optimisation goals.
Since each node in a BBN represents a variable, which may assume a value according to the
associated conditional probability distribution, it is not possible to express general relation-
ships within the system without enumerating all the potential states every node may assume

www.intechopen.com

Bayesian Network126

in advance. This may make the task of creating auxiliary nodes difficult as it will most likely
be based upon static domain expertise. However, the BBN discovery process employes a
construct called a Markov Blanket (MB) (Tsamardinos et al., 2003), which helps to remove
attributes that do not affect the nodes of interest and, therefore, are unnecessary.
Discovering the structure of a Bayesian network from a set of data has emerged as a major
focus for research. It has been of particular interest since when source data can be represented
by a time series, the edges in the graph of a Bayesian network can be used to infer likely causal
relations (Spirtes et al., 2000). The actual algorithm used to discover the presence and orienta-
tion of links between the variables featured in the BBN at the core of the guidance framework
is the Max-Min Hill-Climbing (MMHC) algorithm developed by Tsamardinos et al. (2006).
This MMHC algorithm draws upon a variety of ideas from search-and-score and local learn-
ing techniques, such as Markov Blanket discovery, to construct the skeleton of a Bayesian
network corresponding to the source data and then perform a Bayesian-scoring greedy hill-
climbing search to orient the edges within the graph. One of the most attractive features of the
MMHC algorithm is that it has been proven to work well with the highly dimensional data
sets showing that it can deal well with situations where non-functional qualities are a result of
interactions between a large number of factors. Furthermore, research has shown (Tsamardi-
nos et al., 2006, p. 30) this algorithm exhibits good scalability and accuracy when applied to
learn converging sparse networks.
However, the Direct Acyclical Graph (DAG) of the BBN produced as a result of MMHC appli-
cation does not represent the complete Causal Quality Model. Additional calculations must be
performed to establish the probability distributions in the network. Specifically, to determine
for each variable X that has a set of states Sx the probability of X being in the state s ∈ Sx for
each combination of states of its parents Px. In order to perform this calculation an additional
algorithm was developed to combine the source data from the simulation with the structural
information obtained from the application of MMHC algorithm. The Section 4.3 provides a
description of an example showing application of the proposed methodology to a small-scale
decision scenario.

4.2.3 Guidance Methodology Synthesis

The ultimate goal of combining the elements depicted in Figure 4 is to obtain the Causal Qual-
ity Model (CQM). What the CQM effectively represents is a new, analytical view of the system
that should be constructed and used in tandem with the traditionally accepted views repre-
senting static structure, processes, data and physical deployment.
Hence, the synthesis of this view should rely on the available architectural, environmental
and contextual information. Specifically, to construct this view the following information is
needed:

1. A set of goals and constraints: obtained from functional and non-functional require-
ments, business drivers, future plans and budgeting both in terms of time and money.

2. Information about system structure combined with elements deemed relevant in view
of goals and constrains, these elements may include back-office workflows and cus-
tomer behaviour. Simulation time can also be a very important factor and should be
included as a special consideration based on the goals of optimisation.

3. Feature and metric selection must be made to identify nodes for the BBN (based on the
feature and goal information), the actual structure of the DAG will be elicited using an
algorithm.

www.intechopen.com

Guiding complex design optimisation using Bayesian Networks 127

4. Possible variation in characteristics of the system being optimised can also be added
as part of the simulation. In this case the successive runs of simulation can be used to
explore how these degrees of freedom affect the goals specified in 2.

The next section (Section 4.3) explores the issues of implementation in the context of a simple
problem in order to focus on the specific of the guidance methodology and not the complexi-
ties of the optimisation problem.

4.3 Example

One of the major critiques that can be made about the examples of the BBN applications de-
scribed in Section 4 is that, in both cases, the assignment of probability values for nodes af-
fected by multiple parents is based on conglomeration of a priori knowledge held by domain
experts. Although networks constructed using such information have been shown to be useful
analytical tools when applied to system architectures (Trendowicz & Punter, 2003; van Gurp
& Bosch, 2000), they are nonetheless exposed to the possibility of errors that can be introduced
when domain experts from multiple fields are asked to quantify the combined influences ef-
fecting a specific node. The example presented in this section aims to explore the way by
which the proposed architectural optimisation guidance methodology aims to address this
issue in its use of Bayesian networks.
This example itself focuses on how specific knowledge about system qualities such as Relia-
bility and Performance (shown in Table 2) can be used in combination with known details of
user behaviour to reason about possible avenues for design optimisation aiming to increase
the overall Usability of the system.

quality P(good) P(bad)

reliability 0.99 0.01

performance 0.86 0.14

Table 2. Likelihood values for Reliability and Performance

To this end, the process of model construction was started by creating a state machine describ-
ing an individual system user as an Agent1. The resultant User Agent is shown in Figure 5.
This simplified version is based on data accumulated in system logs that track some aspects
of behaviour exhibited by individual system users. As such this data represents only the most
basic, meaningful, use-case scenario for the services offered by the system. In short, the agent
represents a typical user of the search and reservation services.
Several things should be noted about the described state transitions. Firstly, transitions lead-
ing to the “Leave" state on the diagram represent instances of agents discontinuing the use of
service due to poor reliability. The execution of these transitions leading to this node is con-
trolled by a set of functions which combine the probability value associated with Reliability
(Table 2) and the current state of the agent. Specifically, the “Leave” state can be reached from
three instances of a choice function, or branch element node, marked by the letter ‘B’. When
reached, the choice functions uses probability information to determine whether the specific
instance of User Agent experiences unreliable system behaviour and if, in fact, such an occur-
rence is observed the function immediately activates the transition to the “Leave” state. At

1 All hybrid models used in this and other chapters of this thesis were done using AnyLogicTM modelling
tool (http://www.xjtek.com/).

www.intechopen.com

Bayesian Network128

Fig. 5. Behavior Description for Useability Agent

this point the instance of the User Agent terminates operation and the system can be said to
have been unusable due to ‘bad’ Reliability.
Likewise, the same choice functions also control the activation of arcs leading back to the orig-
inating node. These arcs represent retries due to poor performance. In the case of observing
‘bad’ Performance the User Agent will attempt to retry the current operation, the number of
times that this will be attempted depends on the previous state of the agent. This is done with
the intention of reflecting the observation that users attempting to make a reservation usually
attempt more retries than the users performing searches. However, even if a given instance of
the User Agent observes both ‘good’ Performance and Reliability it may still end up in the “Un-
satisfied” state, which also exists to represent the group of system users who do not progress
towards reservation.
In the context of this simple model, the measure of system Usability was determined by the
likelihood of a User Agent reaching “Satisfied” state. To obtain observations for this measure
a simulation of the behaviour exhibited by a population of 1000 User Agents was created and
executed until all agents reach one of the terminating states: “Leave”, “Unsatisfied” or “Sat-
isfied”. After several runs of the simulation were completed, the following numeric results
were produced:

www.intechopen.com

Guiding complex design optimisation using Bayesian Networks 129

• Rt number of repeat requests due to timeouts = 222

• Rs number successful requests = 1332

• Rc number total countable requests = 1387

• useability at good performance (1 − Rt/Rc) = 0.84

• U f failures due to the unreliable behaviour of the system = 41

• Ut number of User agents = 1000

• useability at good reliability (1 − U f /Ut) = 0.959

A small clarification must be made to the figures above concerning countable requests. Due
to the nature of the User agent behaviour some requests made by a specific User, even if
successful, may still lead to the User abandoning the system and terminating operation by
entering the “Leave” state.
The values listed above can be used to calculate the combined likelihood values, which de-
scribe the effect various states of Reliability and Performance have on Usability (Table 3). The
values in Table 3 have been calculated by multiplying the values shown in the list of Usabil-
ity values shown in the list above. This conditional probability information is shown in its
marginalised form in the BBN depicting the structural relationships between qualities shown
in Figure 6. Naturally, the specific values of ‘good’ for each of the qualities in question corre-
sponds to a range of actual values for the metrics contributing to the evaluation of the corre-
sponding quality.

reliability good bad

performance good bad good bad

useable 0.80556 0.15344 0.03444 0.00659

not 0.19444 0.84656 0.96556 0.99341

Table 3. Likelihood values for Usability

Fig. 6. The example BBN composed of Performance, Reliability and Usability nodes.

In this example only the Agent Based simulation paradigm was used to ensure simplicity
and verifiability of simulation results by inspection. However, even at this level, the example

www.intechopen.com

Bayesian Network130

shows that the knowledge of the specific system and context characteristics can be used to ob-
tain, via simulation, numerical representation of the influences exerted by these characteristics
onto the emergent system qualities. Specifically, the information about user behaviour, when
combined with known system behaviour, reliability and performance, contributed towards
the creation of the model for the emergent quality of usablility.

4.4 Guidance Data Interpretation and Analysis

The resultant Causal Quality Model can be used for analysis in three distinct ways:

1. The structure it exhibits can be analysed.

2. The conditional probabilities at each node can be used to explore the strength of inter-
relationships between system qualities.

3. The underlying joint probability function can be used to propagate some observational
evidence through the network.

The uses of these techniques individually, or in combination, can be classified into two groups:
diagnostic and predictive. Although the belief network examined in the example above (Section
4.3) is simple in composition, this is merely a result of the limited amount of input information
used to create the hybrid simulation that provided the learning data for the MMHC algorithm.
It is therefore possible that, in the context of an optimisation problem applied to a complex
system, the designer will have to draw upon a number of disparate information sources de-
scribing both the technical characteristics and the operational qualities of the system.
Given this potential breadth of information, a Causal Quality Model, like the one depicted
in Figure 6, could be used as a diagnostic tool to uncover the presence and strength of re-
lationships between qualities and their contributing factors. Knowledge regarding the exis-
tence and effects of these relationships can then be exploited to guide the choice of design
change heuristics to either remove or strengthen some relationships or increase the likelihood
of higher measurement for some qualities of interest.

Fig. 7. The example BBN composed of Performance, Reliability and Usability nodes with evi-
dence set for Performance and Reliability nodes.

As mentioned above, a Causal Quality Model can be used in a predictive capacity. In order
to do this, the designer must provide evidence for one or more nodes of the BNN. In other

www.intechopen.com

Guiding complex design optimisation using Bayesian Networks 131

words, set the likelihood value for a specific state to 100%. This can be done in two ways:
by manipulating either the parent or the child nodes in the causal interaction. A version of
the former, as applied to the example BBN (Figure 6), is shown in Figure 7, while the latter is
depicted in Figure 8.
In a case when the evidence regarding the states of parent nodes in a causal interaction is
provided the Causal Quality Model can be used to determine the likely observed state of the
child nodes. The Figure 7 shows the likelihood of 81% for the “Usability” variable to be in a
state marked as ‘good’ when the variables for “Performance” and “Reliability” are observed
to be within the bounds of what is considered ‘good’ for both of those qualities. This infor-
mation can serve as a starting point for predicting changes that can advance the qualitative
boundaries of the system.

Fig. 8. The example BBN composed of Performance, Reliability and Usability nodes with evi-
dence set for Usability node and calculated posterior probabilities.

However, when it comes to consideration of system qualities it may be more interesting to
consider the negative case. Figure 8 depicts the posterior probabilities of observations for
system’s “Performance” and “Reliability” given evidence that “Usability” is observed to be
‘bad’. It can be seen that, for low values of “Usability”, while measure for “Performance”
drops considerably, the measure for “Reliability” shows little change: only 2%. Based on these
results the designer can conclude that under the current configuration, and based on known
user behaviour patterns, the “Usability” of the system is highly sensitive to the “Reliability” of
the system. The combined information of the original BBN and the results of setting evidence
shown in Figures 7 and 8 give the designer a new perspective on the possible direction of
potential design modifications.
Overall, the diagnostic and predictive uses for the Causal Quality Model can provide a valu-
able insight into the aspects of the problem and their relationship to the design change op-
tions made available to the designer. As a result, it is possible for the designer to understand
clearly which system features contribute to the overall qualities of the system. Furthermore,
the designer is able to identify which changes to those system features are most likely to ren-
der beneficial improvements in the system qualities, the goals of the optimisation process.
This clarity also provides the designer with a new from of system representation, one which
may prove useful both in decision making and as a communication tool capable of relating
technical concepts to the non-technical stakeholders of the system.

www.intechopen.com

Bayesian Network132

5. Conclusion and Future work

The design optimisation guidance methodology aims to aid the designer in directing the over-
all system optimisation process. One of the major difficulties of providing such guidance is
the nature by which this optimisation process is advanced. Specifically, the designer is essen-
tially incapable of affecting the qualities directly. Instead, he or she is forced to consider a set
of choices targeting the specific features of the design contributing towards achievement of
desirable system qualities. As a result, since a single choice could affect multiple qualities,
this introduces a requirement for guidance to provide the designer with understanding of the
causal relationships existing in the system.
Achieving this involves the study of assumptions held by the designer and other stakehold-
ers, the relevance of existing knowledge and the accuracy of possible predictions. The fusion
of simulation modelling and the BBNs can serve as tool of such study as its aim is to provide
a tangible link between the way in which the system is structured and its observed levels of
quality. Additionally, by combining the hybrid simulation model with BBN discovery algo-
rithm we managed to obtain a much more repeatable output that is validated against encoded
assumptions and is less prone to human error.
However, the method’s success relies greatly on validity of the model and clarity of the BBN
representation. To this end we have found that the simulation model should be built in an
incremental manner using a variety of information sources and explicit encoding of assump-
tions help by the participants. Consequently, the extracted BBN plays a dual role both as a
guidance tool and a model verification tool as the conditional probabilities it displays can
quickly highlight inconsistencies within the model.
The results presented herein warrant further investigation along four major axis:

• further research is needed to help the designer with choice of quality factors and criteria
that contribute to the nodes of the CQM;

• a taxonomy of simulation primitives needs to be developed to aid the designer with
construction of hybrid simulation models;

• additional research is needed to examine how various BBN discovery algorithms per-
form on the types of simulation output produced by models of systems from different
domains;

• studies should be conducted into the various stochastic methods of optimisation such
as Cross-Entropy (Caserata & Nodar, 2005) that could be implemented based on the
outcomes of BBN use for qualitative applied over a succession of system development
cycles.

Finally, the development of this approach to guidance should be used to construct a fully
fledged decision support and optimisation framework described in Section 3.

6. References

Almeder, C. & Preusser, M. (2007). A hybrid simulation optimization approach for supply
chains, Proceedings EUROSIM 2007, Ljubljana, Slovenia.

Borshchev, A. (2005). System dynamics and applied agent based modeling, In Proceedings of
International System Dynamics Conference, Boston, MA.

Borshchev, A. & Filippov, A. (2004). From system dynamics and discrete event to practical
agent based modeling: Reasons, techniques, tools, In Proceedings of The 22nd Interna-
tional Conference of the System Dynamics Society, Oxford, England.

www.intechopen.com

Guiding complex design optimisation using Bayesian Networks 133

Bosch, J. & Bengtsson, P.-O. (2001). Assessing optimal software architecture maintainability,
Proceedings of the Fifth European Conference on Software Maintenance and Reengineering,
IEEE Computer Society, p. 168.

Bucci, G. & Maio, D. (Sep 1982). Merging performance and cost-benefit analysis in computer
system evaluation, IEEE Computer 15(9): 23–31.

Bucci, G. & Streeter, D. N. (1979). A methodology for the design of distributed information
systems, Commun. ACM 22(4): 233–245.

Bunge, M. (1979). Treatise on Basic Philosophy: Volume 4: Ontology II: A World of Systems, 1st ed.
edn, Springer.

Caserata, M. & Nodar, M. C. (2005). A Cross-Entropy Based Algorithm for Combinatorial
Optimization Problems, European Journal of Operational Research .

Chen, H.-M., Kazman, R. & Garg, A. (2005). Bitam: An engineering-principled method for
managing misalignments between business and it architectures, Science of Computer
Programming 57(1): 5–26.

Coit, D. & Konak, A. (2006). Multiple weighted objectives heuristic for the redundancy allo-
cation problem, Reliability, IEEE Transactions on 55(3): 551–558.

Coit, D. W. (2001). Cold-standby redundancy optimization for nonrepairable systems, IIE
Transactions 33(6): 471–478.
URL: http://www.springerlink.com/content/q96wkpuqme2fe3ju

Coit, D. W. & Smith, A. E. (1996). Reliability optimization of series-parallel systems using a
genetic algorithm, IEEE Transactions on Reliability 45: 254–260.

Denford, M., Leaney, J. & O’Neill, T. (2004). Non-functional refinement of computer based
systems architecture, Engineering of Computer-Based Systems, 2004. Proceedings. 11th
IEEE International Conference and Workshop on the.

Diaconescu, A. & Murphy, J. (2005). Automating the performance management of component-
based enterprise systems through the use of redundancy, ASE, pp. 44–53.

Folmer, E. & Bosch, J. (2005). Case studies on analyzing software architectures for usability,
EUROMICRO ’05: Proceedings of the 31st EUROMICRO Conference on Software Engi-
neering and Advanced Applications, IEEE Computer Society, Washington, DC, USA,
pp. 206–213.

Forrester, J. W. (1991). The Systemic Basis of Policy Making in the 1990s, Sloan School of Manage-
ment, MIT, Boston, MA, chapter System Dynamics and the Lessons of 35 Years.

Gokhale, S. S. (2004). Cost constrained reliabilty maximization of software systems, Reliability
and Maintainability, 2004 Annual Symposium - RAMS pp. 195–200.

Grunske, L. (2003). Transformational patterns for the improvement of safety properties in ar-
chitectural specification, Proceedings of The 2nd Nordic Conference on Pattern Languages
of Programs (VikingPLoP 03).

Grunske, L. (2006). Identifying "good" architectural design alternatives with multi-objective
optimization strategies, ICSE ’06: Proceedings of the 28th international conference on Soft-
ware engineering, ACM, New York, NY, USA, pp. 849–852.

Grunske, L., Geiger, L., Zündorf, A., Van Eetvelde, N., Gorp, P. V. & Varro, D. (2005). Model-
driven Software Development - Volume II of Research and Practice in Software Engineering,
Springer, chapter Using Graph Transformation for Practical Model Driven Software
Engineering.

Haddawy, P. (1999). An overview of some recent developments in bayesian problem solving
techniques, AI Magazine Special Issue on Uncertainty in AI.

www.intechopen.com

Bayesian Network134

Kazman, R., Barbacci, M., Klein, M., Carrière, S. J. & Woods, S. G. (1999). Experience with
performing architecture tradeoff analysis, ICSE ’99: Proceedings of the 21st international
conference on Software engineering, IEEE Computer Society Press, Los Alamitos, CA,
USA, pp. 54–63.

Leaney, J., Denford, M. & O’Neill, T. (2004). Enabling optimisation in the design of complex
computer based systems, ECBS ’04: Proceedings of the 11th IEEE International Confer-
ence and Workshop on Engineering of Computer-Based Systems, IEEE Computer Society,
Washington, DC, USA, p. 69.

Maxwell, C. (2007). Representing Heuristics for Architectural Optimisation, PhD thesis, University
of Technology, Sydney, Faculty of Information Technology.

Maxwell, C., O’Neill, T. & Leaney, J. (2006). A framework for understanding heuristics in
architectural optimisation, 13th Annual IEEE International Conference and Workshop on
the Engineering of Computer Based Systems (ECBS 2006), Potsdam, Germany.

Maxwell, C., Parakhine, A., Denford, M., Leaney, J. & O’Neill, T. (2005). Heuristic-based ar-
chitecture generation for complex computer systems, 12th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems (ECBS 2005).

McCall, J. A. (1994). Encyclopedia of Software Engineering, Vol. 2 O-Z, John Wiley & Sons, New
York, chapter Quality Factors, pp. 1085–1089.

MDA Guide (2003). omg/2003-06-01. Model-Driven Architecture Guide, Version 1.0.1.
Parakhine, A. (2009). Architectural Optimisation Guidance of Complex Computer-Based Systems,

PhD thesis, University of Technology, Sydney, Faculty of Information Technology.
Pearl, J. (1986). A constraint-propagation approach to probabilistic reasoning, Uncertainty in

Artificial Intelligence, Elsevier Science, North-Holland, Amsterdam, pp. 357–369.
Peterka, V. (1981). Trends and Progress in System Identification, Pergamon Press, chapter

Bayesian Approach to System Identification, pp. 239–304.
Popkov, T., Karpov, Y. & Garifullin, M. (2006). Using Simulation Modeling for IT Cost Analy-

sis, Technical report, Distributed Computing and Network Department, St.Petersburg
State Technical University, St.Petersburg, Russia.

Rowe, D., Leaney, J. & Lowe, D. (1998). Defining systems evolvability - a taxonomy of change,
International Conference and Workshop: Engineering of Computer-Based Systems (ECBS
’98).

Sharma, V. S. & Trivedi, K. S. (2005). Architecture based analysis of performance, reliability
and security of software systems, WOSP ’05: Proceedings of the 5th international work-
shop on Software and performance, ACM Press, New York, NY, USA, pp. 217–227.

Spirtes, P., Glymour, C. & Scheines, R. (2000). Causation, Prediction, and Search, The MIT Press.
Trendowicz, A. & Punter, T. (2003). Applying bayesian belief networks for early software

quality modeling, IESE-Report No. 117.03/E . Fraunhofer IESE.
Tsamardinos, I., Aliferis, C. F. & Statnikov, A. (2003). Algorithms for large scale markov blan-

ket discovery, The 16th International FLAIRS Conference, St. Augustine, Florida, USA.
Tsamardinos, I., Brown, L. E. & Aliferis, C. F. (2006). The max-min hill-climbing bayesian

network structure learning algorithm, Machine Learning 65(1): 31–78.
van Gurp, J. (2003). On The Design & Preservation of Software Systems, PhD thesis, Rijksuniver-

siteit Groningen.
van Gurp, J. & Bosch, J. (2000). Automating software architecture assessment, In Proceedings of

Nordic Workshop on Programming and Software Development Environment Research 2000
(NWPER 2000), Lillehammer, Norway.

www.intechopen.com

Bayesian Network

Edited by Ahmed Rebai

ISBN 978-953-307-124-4

Hard cover, 432 pages

Publisher Sciyo

Published online 18, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Bayesian networks are a very general and powerful tool that can be used for a large number of problems

involving uncertainty: reasoning, learning, planning and perception. They provide a language that supports

efficient algorithms for the automatic construction of expert systems in several different contexts. The range of

applications of Bayesian networks currently extends over almost all fields including engineering, biology and

medicine, information and communication technologies and finance. This book is a collection of original

contributions to the methodology and applications of Bayesian networks. It contains recent developments in

the field and illustrates, on a sample of applications, the power of Bayesian networks in dealing the modeling of

complex systems. Readers that are not familiar with this tool, but have some technical background, will find in

this book all necessary theoretical and practical information on how to use and implement Bayesian networks

in their own work. There is no doubt that this book constitutes a valuable resource for engineers, researchers,

students and all those who are interested in discovering and experiencing the potential of this major tool of the

century.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

John Leaney and Artem Parakhine (2010). Guiding Complex Design Optimisation Using Bayesian Networks,

Bayesian Network, Ahmed Rebai (Ed.), ISBN: 978-953-307-124-4, InTech, Available from:

http://www.intechopen.com/books/bayesian-network/guiding-complex-design-optimisation-using-bayesian-

networks

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

