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1. Introduction     

In group decision making, different experts often think about the same problem in quite 
different ways. They frequently have different opinions for decision making about the same 
situation. Using a Bayesian network structure for optimizing problems, different experts 
who work as a group for projects may have different solutions for indentifying the causal 
relationships among variables in the BN model and quantifying graphical models with 
numerical probabilities. For example, expert-1 may state that “making a decision in situation 
A causes situation B and making a decision in situation B causes situation C”. But expert-2 
may state that “making a decision in situation B causes situation A and making a decision in 
situation A causes situation C”. Even in a simple case of decision making, the expert 
knowledge obtained from different experts is quite different. It is typically not possible to 
avoid contradictions among different expert’s solutions in group decision making.    
In this article, we propose a practical framework and a methodology for transforming expert 
knowledge or final group decision making statements into a set of qualitative statements 
and probability inequality constraints for inference in a Bayesian Network. First, we need to 
identify a set of alternatives on which the experts have opinions and then consider the 
problem of constructing a group preference ranking. If such a group preference ranking can 
be created, then one could utilize the alternative at the top of the ranked list the alternative 
preferred by the group. Second, after we obtain the most preferred alternative or statement 
such as “A causes B and then B causes C” from the group decision making, we propose a 
formal method to transform knowledge, represented by a set of qualitative statements, into 
an a priori distribution for Bayesian probabilistic models. The mathematical equation for 
Bayesian inference is derived based on knowledge obtained from the final group decision 
statements. The set of model parameters, consistent with the statements, and the 
distribution of models in the structure-dependent parameter space are presented. We also 
propose a simplified method for constructing the “a priori” model distribution. Each 
statement obtained from the experts is used to constrain the model space to the subspace 
which is consistent with the statement provided. Finally, we present qualitative knowledge 
models and then show a complete formalism of how to translate a set of qualitative 
statements into probability inequality constraints. Several cases of Bayesian influence are 
classified and the probability inequality constraints presented in each case are described.  
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This article is organized as follows: Section 2 presents more detail about the background of 
Bayesian networks and some perspectives of qualitative causal relationships in the Bayesian 
approach. Section 3 addresses the method of constructing a group preference ranking and 
group decision making from the individual preferences obtained from the experts 
performing group work. Section 4 addresses the methods to transform a final solution or 
expert knowledge into an “a priori” distribution for Bayesian probabilistic models in more 
detail. Section 5 describes the method used to translate a set of qualitative statements into 
probability inequality constraints and presents different cases of influences in BN model. 
Section 6 presents a conclusion and discusses some perspectives and ideas for future work. 

 
2. Background 

This section is intended to describe the background of Bayesian networks and some 
perspectives of qualitative causal relationships in the Bayesian approach. Bayesian networks 
(also called belief networks, Bayesian belief networks, causal probabilistic networks, or 
causal networks) are acyclic directed graphs in which nodes represent random variables and 
arcs represent direct probabilistic dependencies among the nodes (Pearl, 1988). Bayesian 
networks are a popular class of graphical probabilistic models for research and application 
in the field of artificial intelligence. They are motivated by Bayes’ theorem (Bayes, 1763) and 
are used to represent a joint probability distribution over a set of variables. This joint 
probability distribution can be used to calculate the probabilities for any configuration of the 
variables. In Bayesian inference, the conditional probabilities for the values of a set of 
unconstrained variables are calculated given fixed values of another set of variables, which 
are called observations or evidence. Bayesian models have been widely used for efficient 
probabilistic inference and reasoning (Pearl, 1988: Lauritzen & Spiegelhalter, 1988) and 
numerous algorithms for learning the Bayesian network structure and parameters from data 
have been proposed (Heckerman, 1994: Heckerman, 1996: Friedman & Goldszmidt, 1999). 
The causal structure and the numerical parameters of a Bayesian network can be obtained 
using two distinct approaches (Cheng, et al., 2001: Nipat & Wichian, 2009). First, they can be 
obtained from an expert. Second, they can also be learned from a dataset or data residing in 
a database. The structure of a Bayesian network is simply a representation of 
independencies in the data and the numerical values are a representation of the joint 
probability distributions that can be inferred from the data (Singh & Valtorta, 1995: Spirtes 
& Meek, 1995). In practice, some combination of these two approaches is typically used. For 
example, the causal structure of a model is acquired from an expert, while the numerical 
parameters of the model are learned from the data in a database. 
For realistic problems, the database is often very sparse and hardly sufficient to select one 
adequate model. This is considered as model uncertainty. Selecting one single model can 
lead to strongly biased inference results. On the other hand, in science and industry, there is 
an enormous amount of qualitative knowledge available. This knowledge is often 
represented in terms of qualitative causal relationships between two or more entities. For 
example, in the statement: “smoking increases the risk of lung cancer,” the two entities: 
smoking and lung cancer are related to each other. Moreover, the smoking entity positively 
influences the lung cancer entity since lung cancer risk is increased in the case of smoking. It 
is therefore desirable to make use of this body of evidence in probability inference 
modeling. 

 

3. Group Preference Ranking and Group Decision 

In this section, we present the first step which is identifying the group solution for a BN 
model of the proposed framework (see Fig. 1). We describe several methods for experts to 
make decisions for identifying the relationship between variables in a Bayesian network 
model and arriving at a final BN solution representing the group.  
The general case is one in which we have a group of experts and a set of alternatives, for 
example “A activates B and B activates C”, “B activates A and A activates C”, and “C 
activates A and A activates B”, on which the experts have opinions. We assume that each 
expert has a preference ranking on the set of alternatives. That is, using these preferences, 
each expert can order the alternatives in a list such that if alternative A activates B, and B 
activates C are in the list, then the experts have an agreement with that alternative. A set of 
individual preference rankings, one for each expert in the group, is called a group 
preference schedule. One goal of the first portion of our proposed practical framework is to 
consider the problem of constructing a group preference ranking from the individual 
preferences (that is, from the group preference schedule). If such a group preference ranking 
can be created, then one could call the alternative at the top of the group list the alternative 
selected by the group of experts. However, such a group ranking may not be possible, and 
moreover, even if it is possible, the alternative at the top of the list may not be one that 
would win the majority selection in an election among all options. Thus the second goal of 
our work in the first step is to consider other possible ways of picking the most preferred 
choice, especially if none of the alternatives would receive a majority selection in an election 
among all alternatives. We will identify the properties of the decision process that 
corresponds to our ideas about the characteristics such decision processes should have. 
Example 1. Suppose that we have a group of three experts, labeled expert-1, expert-2, and 
expert-3, and a set of three variables, labeled A, B, and C. For this example, assume the 
individual preference rankings are as follows: 
 

Expert-1: ABC ; Expert-2: BCA ; Expert-3: CAB 
 

Using pairwise comparisons and a simple-majority rule, we see that both expert-1 and 
expert-3 agree that “A causes B”, and therefore, because the vote is 2 to 1, the group should 
agree with “A causes B”. Therefore, on the basis of this information, we would propose that 
the group preference ranking should be “A causes B and then B causes C; (ABC)”. 
However, both expert-2 and expert-3 agree with “C causes A”, and therefore the group 
should agree with “C causes A”. We conclude that the proposed group preference ranking 
in this example is not transitive: The experts agree with ABCA. This cyclic, or 
intransitive, behavior is normally considered unacceptable for a preference ranking. We 
conclude that even in this simple situation, the majority rule decision process can lead to 
unacceptable preference rankings. The intransitive phenomena do occur when the number 
of variables and alternatives increase. That is for many groups and sets of preferences, the 
group preferences determined by the pairwise majority rule voting are intransitive. What 
are some ways to cope with the results of this example? 
Let’s consider again the simple situation of three experts and three alternatives. Then each 
expert has 6 different preference rankings-that is, 6 ways in which the 3 alternatives can be 
listed: 3 choices for the alternative listed first, 2 choices for the alternative listed second, and 
1 choice for the alternative listed last. Because there are 6 experts, there are 6 x 6 x 6 = 216 
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This article is organized as follows: Section 2 presents more detail about the background of 
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example, in the statement: “smoking increases the risk of lung cancer,” the two entities: 
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is therefore desirable to make use of this body of evidence in probability inference 
modeling. 
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model of the proposed framework (see Fig. 1). We describe several methods for experts to 
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expert has a preference ranking on the set of alternatives. That is, using these preferences, 
each expert can order the alternatives in a list such that if alternative A activates B, and B 
activates C are in the list, then the experts have an agreement with that alternative. A set of 
individual preference rankings, one for each expert in the group, is called a group 
preference schedule. One goal of the first portion of our proposed practical framework is to 
consider the problem of constructing a group preference ranking from the individual 
preferences (that is, from the group preference schedule). If such a group preference ranking 
can be created, then one could call the alternative at the top of the group list the alternative 
selected by the group of experts. However, such a group ranking may not be possible, and 
moreover, even if it is possible, the alternative at the top of the list may not be one that 
would win the majority selection in an election among all options. Thus the second goal of 
our work in the first step is to consider other possible ways of picking the most preferred 
choice, especially if none of the alternatives would receive a majority selection in an election 
among all alternatives. We will identify the properties of the decision process that 
corresponds to our ideas about the characteristics such decision processes should have. 
Example 1. Suppose that we have a group of three experts, labeled expert-1, expert-2, and 
expert-3, and a set of three variables, labeled A, B, and C. For this example, assume the 
individual preference rankings are as follows: 
 

Expert-1: ABC ; Expert-2: BCA ; Expert-3: CAB 
 

Using pairwise comparisons and a simple-majority rule, we see that both expert-1 and 
expert-3 agree that “A causes B”, and therefore, because the vote is 2 to 1, the group should 
agree with “A causes B”. Therefore, on the basis of this information, we would propose that 
the group preference ranking should be “A causes B and then B causes C; (ABC)”. 
However, both expert-2 and expert-3 agree with “C causes A”, and therefore the group 
should agree with “C causes A”. We conclude that the proposed group preference ranking 
in this example is not transitive: The experts agree with ABCA. This cyclic, or 
intransitive, behavior is normally considered unacceptable for a preference ranking. We 
conclude that even in this simple situation, the majority rule decision process can lead to 
unacceptable preference rankings. The intransitive phenomena do occur when the number 
of variables and alternatives increase. That is for many groups and sets of preferences, the 
group preferences determined by the pairwise majority rule voting are intransitive. What 
are some ways to cope with the results of this example? 
Let’s consider again the simple situation of three experts and three alternatives. Then each 
expert has 6 different preference rankings-that is, 6 ways in which the 3 alternatives can be 
listed: 3 choices for the alternative listed first, 2 choices for the alternative listed second, and 
1 choice for the alternative listed last. Because there are 6 experts, there are 6 x 6 x 6 = 216 
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different preference schedules for the group. The likelihood of intransitive group 
preferences depends on how the experts select their individual preference rankings. For 
instance, if we know that two of the experts have the same preference ranking, then that 
preference ranking will be the preference ranking for the group, and intransitivity will not 
occur. As another example, if two experts have alternative Z as the top choice, then 
intransitive group preferences will never occur. However, intransitive group preferences 
can still occur if experts select their individual preferences at random. This situation is more 
complicated but it is not considered in this article because we assume that the experts use 
their own experience to make their own decisions. They will not make a decision at random. 
In light of this discussion about the difficulties encountered with simple-majority voting, we 
look for other ways to achieve our primary goal of finding ways for groups to make decisions. 
We introduce the concept of sequential voting or selection: a sequence of votes where at each 
vote, a choice is to be made between two alternatives. In any situation with an odd number of 
experts, this process always yields a result, and this result can be taken as a most preferred 
alternative. However, as we show in an example below, this method also has problems.    
Example 2. Suppose that the relationship between variables is to be identified by first 
considering, for example, A and B and then considering the impact on the last variable.  
Expert-1 considers A and B first and states that B causes A and then A causes C: BAC. 
Expert-2 considers A and C first and state that A causes C and then C causes B: ACB. 
Expert-3 considers B and C first and state that C causes B and then B causes A: CBA.  
The results in this example show that we are in the unfortunate situation of having a group 
preference that depends on the sequence in which the selections were taken.         
We have illustrated some of the problems with simple-majority rule and sequential selecting 
decision processes. We turn next to another approach to the problem: assigning points to a 
pair of variables of each order on the basis of their relative rankings and defining a group 
preference ranking by adding the points assigned to each alternative by all experts.     
Example 3. We will illustrate the technique by considering five experts and four variables 
(See Table 1). Each expert makes a series of decisions at each order-level. For example, 
expert-1 makes a decision that “making a decision in situation A causes situation C” in a 
first order level, C causes B in a second order level, and B causes D in a third order level. 
Each expert assigns 3 point to the first order level, 2 point to the second order level, and so 
on. For a specific alternative, add the points assigned by all experts. The alternative with the 
most points is the most preferred, the alternative with the second largest number of points is 
the second most preferred, and so on. This method is known as the Borda count group 
decision process (María & Jose, 2007). We observe that this decision process has an implicit 
relative strength of preferences. The relative strengths of all preferences are the same. 
 

Order Expert-1 Expert-2 Expert-3 Expert-4 Expert-5 Points 
1 AC DA BA CB AC 3 
2 CB AC AC BD CD 2 
3 BD CB CD DA DB 1 

Table 1. A group of five experts and four alternatives 
 
The group preference ranking is obtained by adding the points assigned to each alternative 
(AC: 10 points, CB: 6 points, DA: 4 points, BD: 3 points, BA: 3 points, CD: 3 
points, DB: 1 points). 

 

We conclude that the group preference ranking is A causes C, C causes B, and B causes D. 
The alternative DA has 4 points but it is not included because A is a parent node in the 
first order level so that D cannot cause A.   
By considering a few examples, we have identified shortcomings of some common decision 
processes in group decision making. With the last technique, problems are still possible to 
occur when two alternatives at the same level have the same score. However, this section 
proposes several techniques in the decision process to produce a group preference ranking 
and a final group solution.  
 

 
Fig. 1. A practical framework 

 
4. Methods 

In this section, we describe a methodology to use qualitative expert knowledge obtained 
from the previous step for inferencing in a Bayesian network. We proceed from the decision-
making assumptions and the general equation for Bayesian inference based on final group 
decision making statements obtained from the experts to a detailed method to transform 
knowledge, represented by a set of qualitative statements, into an a priori distribution for 
Bayesian probabilistic models. 
For simplicity, let’s consider a simple case of decision making in which the body of expert 
knowledge ω consists of a single statement ω = “making a decision in situation A causes 
situation B”. We know that there are 2 random events or variables A and B, which we 
assume are binary, and we need to consider the set of all possible Bayesian models on A and 
B. The set of possible model structures are described in the following categories: 1) S1: A and 
B have no causal relationship between them, 2) S2: A and B have some causal relationship 
between them but the direction of influence cannot be identified, 3) S3: A causes B, and 4) S4: 
B causes A. “making a decision in situation A causes situation B” directly states a causal 
influence of A on B. We use the statement “A activates B” to constrain the space of 
structures: P(S3|ω) = 1; P(Sn|ω)=0, n=1,2,4). The ω is represented as a qualitative statement 
described by the expert, A causes B. The graph structure (S3) encodes the probability 
distribution  
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                                                            P(A,B) = P(B|A)P(A)                                                           (1) 
 

No further information on P(A) is available; however, P(B|A) can be further constrained. 
The corresponding Conditional Probability Table (CPT) is shown in Table 2. 
 

A P(B=1)|A 
0 θ0 
1 θ1 

Table 2. Conditional probability table 
 
The values of the conditional probabilities from the components of the parameter vector θ = 
(θ0, θ1) of the model class with structure S3. θ0 is the probability of B is active when A is not 
active. θ1 is the probability of B is active when A is active. From the statement, we now can 
infer that the probability of B is active when A is active is higher than the same probability 
with A inactive. The P(B|A) when P(A) is available is higher than the P(B|A) when P(A) is 
not available. The inequality relationship is obtained as follows: 
 
                                        P(B=1|A=1) ≥ P(B=1|A=0), θ1 ≥ θ0                      (2) 

 

Hence, the set of model parameters consistent with that statement is given by 
 
                                   Θ3 = {(θ0, θ1)| 0 ≤ θ0 ≤ 1 Λ θ0 ≤ θ1 ≤ 1}                             (3) 
 
and the distribution of models in the structure-dependent parameter space becomes 
 
                                 

 (4) 
 
 
A Bayesian model m represents the joint probability distribution of a set of variables X = X1, 
X2, X3,…, XD. The model is defined by a graph structure, which determines the structures of 
the conditional probabilities between variables, and a parameter vector θ, the components of 
which define the entries of the corresponding conditional probability tables (CPTs). Hence, a 
Bayesian network can be written as m = {s, θ}. Given some observations or evidence E, 
reflected by fixed measured values of a subset of variables, the conditional probability given 
the evidence in light of the model is described as P(X|E, m).  
The full Bayesian network model does not attempt to approximate the true underlying 
distribution. Instead, all available information is used in an optimal way to perform 
inference, without taking one single model for granted. To formalize this statement for our 
purposes, let us classify the set of available information into an available set of data D and a 
body of nonnumeric expert knowledge ω. The probability distribution of model m is given 
by 
  

                                                                                                  (5)                
 

 

The first parameter value D of P(D, ω) is the likelihood of the data given the model, which is 
not directly affected by nonnumeric expert knowledge ω, the second parameter value ω 
denotes the model a priori, whose task is to reflect the background knowledge. For 
simplicity, the numerator P(D, ω) of P(m|D, ω)  will be omitted from the equation (5). The 
term P(D|m) contains the constraints of the model space by the data, and the term P(m|ω) 
contains the constraints imposed by the expert knowledge. Hence, given some observation 
or evidence E, the conditional distribution of the remaining variable X is performed by 
integrating over the models. 
 

P(X|E, D, ω) = ∫ P(X|E, m)P(m|D, ω)dm                                         (6)                   
                                           = ∫ P(X|E, m)P(D|m)P(m|ω)dm                                (7) 

 
In this article, we consider the case of no available quantitative data; D is assigned a null 
value. The term D and P(D|m) will be omitted from equation (6) and (7). Even in this case, it 
is still possible to perform a proper Bayesian inference. 
 

                     P(X|E, ω) = ∫ P(X|E, m) P(m|ω)dm                                             (8) 
 

Now, the inference is based on the general information (contained in ω) obtained from 
experts, and the specific information provided by the measurement E. In order to determine 
P(m|ω), we need a formalism to translate the qualitative expert knowledge  into an a priori 
distribution over Bayesian models. The following notations are adopted for a Bayesian 
model class. A Bayesian model is determined by a graph structures and by the parameter 
vector θ needed to specify the conditional probability distributions given that structure. The 
parameter vector θ is referred to by one specific CPT configuration. A Bayesian model class 
is then given by 1) a discrete set of model structures S = {s1, s2, s3, …, sK} and for each 
structure sk, a set of CPT configurations Θk. The set of member Bayesian models m Є M of 
that class is then given by m = {(sk, θ)|k Є {1, …, K}, θ Є Θk}. The model distribution is 
shown in (9). 
 
 

(9) 
                          

 
 
In (9), the set of allowed structures is determined by means of ω, followed by the 
distributions of the corresponding CPT configurations. The model’s a posterior probability 
P(m|ω) is calculated as shown in (9). Inference is carried out by integrating over the 
structure space and the structure-dependent parameter space. 
 
        

       (10) 
 
It is common to express nonnumeric expert knowledge in terms of qualitative statements 
about a relationship between entities. The ω is represented as a list of such qualitative 
statements. The following information is essential to determine the model a priori (10): First, 
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                                                            P(A,B) = P(B|A)P(A)                                                           (1) 
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A P(B=1)|A 
0 θ0 
1 θ1 

Table 2. Conditional probability table 
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 (4) 
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each entity which is referenced in at least one statement throughout the listed is assigned to 
one variable Xi. Second, each relationship between a pair of variables constrains the 
likelihood of an edge between these variables being presented. Last, the quality of the 
statement such as activates or inactivates affects the distribution over CPT entries θ given 
the structure. The statement can be used to shape the joint distribution over the class of all 
possible Bayesian models over the set of variables obtained from ω in the general case. 
We propose a simplified method for constructing the a priori model distribution. Each 
statement is used to constrain the model space to that subspace which is consistent with that 
statement. In other words, if a statement describes a relationship between two variables, 
only structures sk which contain the corresponding edge are assigned a nonzero probability 
P(sk|ω). Likewise, only parameter values on that structure, which are consistent with the 
contents of that statement, are assigned a nonzero probability P(θ|sk, ω). If no further 
information is available, the distribution remains constant in the space of consistent models. 
Having derived the Bayesian model class (s3, Θ3) consistent with the statement, we can now 
perform inference by using an equation (10). Under the condition of A is set to active (E = {A 
= 1}), let us ask what is the probability of having B active. We can determine this by 
integrating over all models with nonzero probability and averaging their respective 
inferences, which can be done analytically in this simple case. 
 
                                                                                         

                                   
 (11) 

 
 
 
 
where ω = 2 is the normalizing factor in the parameter space of θ = (θ0 , θ1) such that 
                                   

(12) 
 
It is worth noting that, as long as simple inequalities are considered as statements, the 
problem remains analytically tractable even in higher dimensions. In general, integration 
during Bayesian inference can become intractable using analytical methods. 
 
5. Probabilistic Representation of a Qualitative Expert Knowledge Model 

The model from the previous section is derived to provide a full formalism of how to 
translate a set of qualitative statements into probability inequality constraints. Several 
qualitative models have been proposed in the context of qualitative probabilistic networks. 
Qualitative knowledge models describe the process of transforming qualitative statements 
into a set of probability constraints. The proposed Bayesian inference method outlined 
above is independent of the qualitative knowledge model. The model’s a posterior 
probability is independent of the set of qualitative statements used, once the set of 
probabilistic inequality constraints which are translated from qualitative statements is 
determined. Three existing qualitative models are the Wellman approach (Wellman, 1990) 
the Neufeld approach (Neufeld, 1990), and the orders of magnitude approach (Cerquides & 

 

Lopez, 1998). In this article, we utilize the Wellman approach, where qualitative expert 
knowledge involves influential effects from parent variables to child variables which are 
classified according to the number of inputs from parent to child and their interaction. For 
reasons of simplicity, binary-valued variables are used in our examples. The values of a 
variable or node defined as “present” and “absent” or “active” and “inactive” are 
represented as logical values “1” and “0” (as synonyms A and A). For multinomial 
variables, similar definitions can be applied. 
Qualitative influences with directions can be defined based on the number of influences 
imposed from parent to child. There are three cases of influences, namely, single influence, 
joint influence, and mixed joint influence. In addition, there are recurrent statements and 
conflicting statements. The first issue can be solved by using a Dynamic Bayesian Network 
(DBN) (Murphy, 2002: Premchaiswadi & Jongsawat, 2010) and the second issue can be 
solved by adopting a voting scheme. The definitions of influence presented in this article are 
refined based on the QPN in (Wellman, 1990). They are used to translate the qualitative 
expert statements into a set of constraints in the parameter space which can be used to 
model the parameter distribution given the structure. For a more general understanding of 
the explanation in this section, we assume that we obtained a set of final group decision 
making statements, transformed them into a set of qualitative statements, and explained 
those using different case studies in each criterion of probability inequality constraints for 
inference in a Bayesian Network. The BN model of each case study in each criterion is 
shown in Fig. 2. 
 

 
 
Fig. 2A. Example of 
single positive and 
negative influence. 

 

 
 
Fig. 2B. Example of plain synergy 
influence. Reliability, future income, and 
age synergically influence credit 
worthiness. 

 

 
 
Fig. 2C. Example of mixed 
joint influence. Debt and 
future income influence on 
credit worthiness. 

Fig. 2. The BN of each case study in each criterion 

 
5.1 Single Influence 
In the statement, “investing in project A increases the profit of the entire project in such 
good economic situations,” investing in project A is the parent node which has a single 
positive influence on child node the profit of the entire project.  
 

 
 
In another statement, “investing in project A reduces the profit of the entire project in such a 
severe economic crisis,” investing in project A is the parent node which imposes a single 
negative influence on child node the profit of the entire project. 
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The graphical representation of the above qualitative statements from an expert is shown in 
Fig. 2A. 

 
5.2 Joint Influence 
Let us consider credit worthiness of individual causes. Several risk factors have been 
identified for credit worthiness. According to the Thai credit bureau report, the three most 
prominent risk factors are reliability, future income, and age. The chance of getting credit 
worthiness increases as an individual gets higher future income, age, and reliability. This 
knowledge about credit worthiness factors can be encoded by a qualitative causality model. 
According to the statements, the main risk factors that influence credit worthiness by 
positive synergy as shown in Fig. 2B. 
The joint influence of these three factors together is more significant than individual 
influences from any of these factors alone. We can represent this synergy by the inequalities    
 

             
 
and                         
 

 
 

If we assume these risk factors pair wise symmetric, we can further derive the following 
inequalities: 
 

 
 
where CW, R, FI, and A stands for Credit Worthiness, Reliability, Future Income, and Age. 
Note that often but not always, the combined influence refers to the sum of independent 
influences from each parent node to each child node. Assume that parent nodes R and FI 
impose negative individual influence on child node CW, then the knowledge model can be 
defined as  
 

 
 
5.2 Mixed Joint Influence  
Generally, the extraction of a probability model is not well defined if the joint affect on a 
child is formed by a mixture of positive and negative individual influences from its parents. 

 

Therefore, we adopted the following scheme: If there are mixed influences from several 
parent nodes on a child node, and no additional information is given, then these are treated 
as independent and with equal influential strength.  
For example, future income imposes a positive single influence on credit worthiness and 
debt imposes a negative single influence on credit worthiness, then the joint influence can be 
represented by    

 
 

A credit worthiness case study for a mixed joint influence is shown in Fig. 2C. 
Once formulated, we can use a Monte Carlo sampling procedure to make sure that all 
inequalities are satisfied for valid models. Any additional structure can be brought into the 
CPT of the corresponding structure as soon as the dependencies between influences are 
made explicit by further qualitative statements.  

 
6. Conclusion and Future Work 

In this paper, we presented several techniques in the decision process to produce a group 
preference ranking and a final group solution. After that we established mathematical 
equations for Bayesian inference based on a final group solution obtained from experts. We 
also described in detail a method to transform knowledge, represented by a set of 
qualitative statements, into an “a priori” distribution for Bayesian probabilistic models. The 
set of model parameters consistent with the statements and the distribution of models in the 
structure-dependent parameter space were presented. A simplified method for constructing 
the “a priori” model distribution was proposed. Each statement was used to constrain the 
model space to a subspace which is consistent with the statements. Next, we provided a full 
formalism of how to translate a set of qualitative statements into probability inequality 
constraints. Several cases of Bayesian influence were classified and the probability 
inequality constraints presented in each case are described.  
For future research, we intend to construct multiple objective decision-making methods and 
its applications based on the concepts proposed in this article. We will apply the concepts to 
a specific case study using a set of group decision making statements and report the 
simulation results. 
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