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1. Introduction

Bayesian networks are a popular class of graphical probabilistic models for researches and
applications in the field of Artificial Intelligence. Bayesian network are built on Bayes’
theorem (16) and allow to represent a joint probability distribution over a set of variables in
the network. In Bayesian probabilistic inference, the joint distribution over the set of variables
in a Bayesian network can be used to calculate the probabilities of any configuration of these
variables given fixed values of another set of variables, called observations or evidence.
Bayesian networks have been widely used for efficient probabilistic inference and data
mining in many fields, such as computational biology and computer vision (17; 18).

Before we can generate useful prediction and reasoning by Bayesian networks, it is re-
quired to construct these network models from any resources. Over decades, enormous
algorithms have been proposed to construct (we use construct and model interchangeably
in this chapter) these Bayesian networks. These methods can be roughly classified into two
categories: i) top-down modeling methods and ii) reverse-engineering methods. Top-down
modeling methods seek for direct solutions to Bayesian network structure and parameter
assignments from any prior knowledge resources and domain experts. Currently, this class
of methods usually recruits both probability elicitation procedures from domain experts (23)
and quantitative knowledge engineering process to disclose the Bayesian network structure
and parameters. The advantages of this type of methods are the direct assignment of the
parameters and structures from domain knowledge and experts without computational com-
plications. However, in most domains, these methods encounter practical obstacles due to the
actual availability of quantitative information and to the limitation of an expert knowledge.
In contrast, reverse-engineering approaches utilize machine learning algorithms to train
(learn) Bayesian network structure and parameters from a collection of past observations.
This process belongs to unsupervised learning in machine learning theory. The advantage
of this class approaches is that, a training machine can automatically determine a best
Bayesian network model with structure and parameters which optimally fits to the training
data under the judgments of an object function or scoring function. (in stead of manually
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evaluation in top-down methods). This score function is often the posterior probability
function of a Bayesian network structure and parameters given the training data. The learned
single best model is called Maximum-a-Posterior (MAP) estimation which is computed from
data likelihood and prior distribution. In the last twenty to ten years, reverse-engineering
approaches have become mainstream researches in the field of Bayesian network modeling.
Fruitful results have been achieved, especially in the efficient learning of Bayesian network
structure and parameters with (in-) complete data (4; 19–21).

However, a major problem of Bayesian network learning in most existing algorithms is
the demands on a large amount of training samples to achieve good generalization perfor-
mance. The generalization performance of a learned Bayesian network largely depends on
the amount of training dataset and the quality of the prior provided to the learning process.
Specially, if training data is scarce, it becomes crucial to use various forms of prior knowledge
to improve the accuracy of learned models and avoid overfitting. Moreover, although the
maximum a posteriori estimation, i.e., the selection of a single best Bayesian network model
from the data by learning, is useful for the case of large data sets, independence assumptions
among the network variables often make this single model vulnerable to overfitting. In
realistic problems, the data basis is often very sparse and hardly sufficient to select one
adequate model, i.e., there is considerable model uncertainty. In fact, selecting one single
Bayesian model can then lead to strongly biased inference results. Therefore, it is preferable
to adopt full Bayesian approaches, such as model averaging, to incorporate these model
uncertainties.

2. Overview

2.1 Advanced Bayesian Network Modeling and Inference from Consistent and Inconsistent

Prior Knowledge

As the first part of our methodology, we propose novel methods to make use of prior
qualitative knowledge in a domain to construct Bayesian networks and generate quantitative
probability predictions from these models. These algorithms stem from the observations
that in many domains, enormous amounts of priori qualitative knowledge have been
accumulated by original studies. This type of knowledge is often represented in terms of
qualitative relational statements between two or more entities. For example, in biomedical
domain, such a statement can be smoking increases the risk of lung cancer. In this statement,
two entities are smoking and lung cancer and these two entities are connected to each other
through a directed and functional relation: increase. The semantics encoded in this statement
is: smoking positively influences lung cancer so that the probability and risk of lung cancer
is increased under the condition of smoking. In genomics research, a common knowledge
about biological molecular interactions would be a transcript factor binds to a gene and
up-regulate this gene’s expression level in a cell. In computer vision, qualitative statement
can be among action units. For instance, "cheek raiser" tends to happen with "lip corner
puller", when smiling. In this statement, cheek raiser increases the occurrence probability of
lip corner puller. Similar qualitative statements can be found in many other domains, such as
economy, politics, science and engineering indicating that our proposed methods have great
promises in these fields. In fact, these inequality constraints have been proposed and used
in qualitative probabilistic inference process, such as qualitative probabilistic network (25).
However, due to the lacks of quantitative measurements in these qualitative knowledge and
constraints, they have been ignored in the quantitative modeling of Bayesian networks.
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In our top-down Bayesian inference method, we designed a knowledge model which
captures the entities and their relationships in the statement. Various qualitative relations
are mapped into mathematically meaningful constraints and inequalities over the Bayesian
network structure and parameter space. Due to their qualitativeness, these constraints even-
tually define a prior distribution in the model space, i.e. model uncertainty. These constraints
reduce the set of all possible Bayesian models to those which are consistent with the set
of statements considered. This class of consistent models is used to perform full Bayesian
inference which can be approximated by Monte Carlo methods, i.e. the quantitative inference
and reasoning can be calculated in each of the Bayesian model and these quantitative results
are averaged and weighted by the model posterior probability. This is even analytically
tractable for smaller networks and statement sets.

Notably, qualitative knowledge are often inconsistent, i.e. there may exist contradict-
ing qualitative statements on entities and/or their relations which eventually affect the model
uncertainty in the constructed Bayesian network model space. Therefore, it is imperative
to develop methods for reconciling inconsistent qualitative knowledge and for modeling
Bayesian networks and performing quantitative prediction. To this end, we further propose
a novel framework for performing quantitative Bayesian inference with model averaging
based on the inconsistent qualitative statements as a coherent extension of framework of
quantitative Bayesian inference based on a set of consistent hypotheses introduced above (33).
Our method interprets the qualitative statements by a vector of knowledge features whose
structure can be represented by a hierarchical Bayesian network. The prior probability for
each qualitative knowledge component is calculated as the joint probability distribution over
the features and can be decomposed into the production of the conditional probabilities of the
knowledge features. These knowledge components define multiple Bayesian model classes
in the hyperspace. Within each class, a set of constraints on the ground Bayesian model space
can be generated. Therefore, the distribution of the ground model space can be decomposed
into a set of weighted distributions determined by each model class. This framework is used
to perform full Bayesian inference which can be approximated by Monte Carlo methods, but
is analytically tractable for smaller networks and statement sets.

2.2 Related Works

In discrete model, qualitative causal knowledge have been utilized for abstract probabilistic
graphical models, i.e. qualitative probabilistic network (QPN) (6) and reasoning algorithms
in QPN have been proposed (5; 9). These algorithms perform qualitative inference with sign
propagation in stead of quantitative predictions and neither inconsistent hypotheses could be
dealt with.

2.3 Advanced Bayesian Network Learning with Integration of Prior Knowledge and Sparse

data

As the second part of the methodology section, we introduce our latest algorithm develop-
ments in learning Bayesian network models. In this method, Bayesian network learning accu-
racy is drastically improved by integrating generic qualitative domain knowledge with train-
ing data. We use the knowledge model designed in section 3.1 to translate the causality in
qualitative domain knowledge into a set of constraints over structural and parameter space.
For parameter learning, we recruit a sampling approach to recover the prior belief distribu-
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tion in parameter space out of the constraints. We then propose a novel Bayesian parameter
score function which integrates this informative prior as soft regulation with the quantitative
data statistics. In this way, the parameter posterior distribution is combinatorial regulated by
both quantitative data and prior knowledge. In the conventional Bayesian network learning
algorithm, MAP estimation usually employs Dirichlet priori to further regulate the statisti-
cal counts from the data. However, as discussed above, it is often impossible to determine
the correct hyperparameters of this prior distribution which may result bias in the MAP esti-
mation. Our algorithm resolves this issue by establishing an informative prior from domain
qualitative knowledge. This informative prior provides the learning machine a correctly de-
fined model subspace to seek for global maximum. By combining each possible prior pseudo
counts in this subspace with data statistical counts, we can explore multiple local maximum
estimates and determine the global maximum by model selection scheme. Thus, we avoid
trapping in the local maximum. This method is particular useful in accurate learning of a
Bayesian network under sparse training data. These algorithms can be naturally extended to
BN structural learning which is under active developments.

2.4 Related Works

Researches have proposed a number of algorithms to learn Bayesian network parameters by
utilizing various forms of prior knowledge, such as dirichlet function (28; 29). In (30–32),
parameter learning schemes for various graphical models incorporating parameter sharing
constraints are proposed. These algorithms provide efficient solutions for parameter learning
with parameter sharing constraints, i.e. parameter equality in one multinomial conditional
distribution. If a parameter satisfy the constraints, it obeys the dirichlet distribution with
certain normalizer. Otherwise, the prior distribution is zero. A closed form normalization
solution is derived in case of parameter sharing constraints. Moreover, some simple forms of
inequalities within one conditional distribution are proposed (32). In this case, no closed-form
solution is possible. Though, in (30–32), constrained parameter learning problem is treated
as a constraint optimization problem and efficient algorithms are developed, the forms of
the constraints are limited to either parameter sharing or inequality constraints within one
conditional distribution, such as P(A|B)>P(A|B). More generic and important inequality
constraints, such as P(A|B)>P(A|B) is not addressed by their methods.

In (35) and (37), methods are proposed to deals with the inequality constraints in pa-
rameter learning. A penalty term is designed to regulate the likelihood which is derived from
the monotonic influence with form of P(A|B)>P(A|B). The violation term can only penalize
the likelihood when the learned local maximum violates the constraints in the sign, but it can
not distinguish a set of all possible local maximums obeying the constraints. So, final solution
is not necessary a global maximum. (Eq.8 in (35) and Eq.9 in (37)). This is a serious problem
in case of learning with very sparse data. In this case, although ML estimation may output an
estimate obeying the sign of the constraints, this ML estimation is highly probable incorrect
due to the amount of data. In this case, neither (35) nor (37) could use prior statistics to
correct the estimation. As stated in (37), a soft Bayesian prior which regulates the ML term
is desired. A similar iterative approach with penalty function was introduced in (36). The
method in (42), however, includes constraints beyond the monotonicity constraints.

In (38), an averaging scheme is proposed. This method is only feasible up to 5/6 par-
ents. (39) proposed a similar idea to ours independently. A method which uses a soft
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Bayesian prior to regulate the ML score and introduce the concept of model uncertainty in
the MAP estimation. The empirical Bayes and maximum posterior estimate in (39) and
QMAPFBA,QMAPFMA in my paper are comparable. However, (39) indirectly translates the
prior knowledge into an intractable integration which has to be approximated. The dirichlet
hyperparameters is replaced by another hyperparameter (Eq.14 in (39)). Their initial idea is
to assign some confidence to constraints. (Eq.7 in (39)). But it may be easier and more efficient
to handle this issue in the knowledge level than score level (34). Comparatively, we work
directly on the parameter space through sampling and obtain the dirichlet hyperparameters
directly. Thus, we believe our method can be more efficient and feasible than their method.

3. Methods

In this section, we formally propose our top-down Bayesian network modeling algorithm,
i.e. Bayesian inference with only consistent and inconsistent qualitative prior knowledge.
Next, we introduce our advanced Bayesian network learning algorithm by integrating both
qualitative prior knowledge and data.

3.1 Probabilistic Representation of a Qualitative Knowledge Model

Several qualitative models have been proposed in the context of Qualitative Probabilistic Net-
works (QPN). Qualitative knowledge models describe the process of transforming the qualita-
tive statements into a set of probability constraints. The proposed Bayesian inference method
outlined above is independent of the qualitative knowledge model, i.e. the model posterior
probability is independent of the set of qualitative statements used, once the set of proba-
bilistic inequality constraints which are translated from qualitative statements is given. Three
existing qualitative models are the Wellman approach (25), the Neufeld approach (22) and the
orders of magnitude approach (27). Here we follow the Wellman approach, where qualitative
knowledge involves influential effects from parent nodes to child nodes which are classified
according to the number of inputs from parents to child and their synergy. For the sake of
simplicity, we restrict our discussion to binary-valued nodes. Logic "1" and "0" values of a
node are defined as "present" and "absent" or "active" and "inactive", as synonyms, A and A.
For multinomial nodes, similar definitions can be applied.

3.1.1 Structural Qualitative Knowledge Model

The qualitative knowledge contained in the statements are describing two aspects of a belief
network, i.e. structure and parameter. The structural knowledge of a simple network consist-
ing node B and node A can be described with two first-order logic predicates:

Depend(A, B) = 0/1

In f luence(A, B) = 0/1 (1)

which describe whether A and B are dependent and whether the influence direction is from A
to B; Depend and Influence are denoted by Dp and I as well as, the set of structural knowledge
features is denoted by Π={Dp,I}.

3.1.2 Parameter Qualitative Knowledge Model

Under each structure feature, we extend the QPN model with two sets of dependent features,
i.e. baseline qualitative knowledge features, Σ and extended qualitative knowledge features,
Ψ. These two feature sets are used to describe the qualitative parameter knowledge.
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3.1.2.1 Baseline Qualitative Knowledge Model

In QPN, a set of features define the basic properties of qualitative causal influences and their
synergy classified by the number of inputs from parents to child which are refined in this
paper and are referred to as Baseline Qualitative Knowledge Model. Baseline features transform
qualitative statements into a primitive set of constraints on model parameter space. We dis-
cuss three cases of influences, namely single influence, joint influence and mixed joint in-
fluence. In addition, we discussed the qualitative influence derived from recurrent and/or
conflicting statements. The definitions of the influences in our work are originated and re-
fined based on the qualitative probabilistic network in (25) which enables us to translate the
qualitative statements into a set of constraints in the parameter space which can be used to
model the parameter distribution given the structure.
I. Single Influence
Definition 3.1 If a child node B has a parent node A and the parent imposes a isolated influ-
ence on the child, then qualitative influence between parent and child is referred to as single
influence. Single influence can be further classified into single positive influence and single
negative influence.
Definition 3.2 If presence of parent node A renders presence of child node B more likely,
then the parent node is said to have a single positive influence on the child node. This can be
represented by the inequality

Pr(B|A) ≥ Pr(B|A) (2)

Definition 3.3 If presence of parent node A renders presence of child node B less likely, then
parent node is said to have a single negative influence on child node. This can be represented
by the inequality

Pr(B|A) ≤ Pr(B|A) (3)

II. Joint Influence
Definition 3.4 If a child node B has more than one parent node and all parents influence
the child in a joint way, then these influences between parents and child are referred to as joint
influence. This joint influence can be either synergic (cooperative) or antagonistic (competitive)
and the individual influences from the parents to the child can be either positive or negative.
Definition 3.5 If a joint influence from two or more parent nodes generates a combined influ-
ential effect larger than the single effect from each individual parent, then the joint influence
is referred to as plain synergic joint influence or plain synergy.
Assume that parent nodes A and B impose positive individual influences on child node C,
then the knowledge model can be defined as

Pr(C|A, B) ≥

{

Pr(C|A, B)
Pr(C|A, B)

}

≥ Pr(C|A, B) (4)

Definition 3.6 If joint influences from two or more parent nodes generate an combined influ-
ential effect larger than the sum of each single effect from an individual parent, then the joint
influence is referred to as additive synergic joint influence or additive synergy.(24)
Assume in case that parent nodes A and B impose a positive individual influence on child
node C, then we define

Pr(C|A, B) ≥ Pr(C|A, B)+ Pr(C|A, B) ≥

{

Pr(C|A, B)
Pr(C|A, B)

}

≥ Pr(C|A, B) (5)
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Similar rules can be applied to the case where A and B impose a negative individual influence
on child node C. Comparing Eq. 5 with Eq. 4, we can conclude that additive synergy is a suffi-
cient condition for plain synergy and plain synergy is a necessary but not sufficient condition for
additive synergy. Therefore, if multiple parents demonstrate additive synergy, it is sufficient to
judge that this influence is also plain synergy, but not vice-versa.
It is important to distinguish between plain synergy and additive synergy since they represent
distinct semantic scenarios in a domain. For example, A is a protein and B is a kinase which
phosphorylates protein A and produces the phosphorylated protein C. Because of the nature
of this protein-protein interaction, neither B nor A alone can significantly increase the presence
of C, but both together can drastically increase the presence of C which is greater than the sum
of C in case of either A or B present. In this example A and B exhibit additive synergy and it
is sufficiently to conclude that A and B has plain synergy as well.
Definition 3.7 If the joint influences from two or more parent nodes generate a combined
influential effect less than the single effect from individual parent, then the joint influence is
referred to as antagonistic joint influence or antagonism.
Assume that parent nodes A and B have independent positive single influences on child node
C, the antagonistic influence of A and B can be represented by

Pr(C|A, B) ≤ Pr(C|A, B) ≤

{

Pr(C|A, B)
Pr(C|A, B)

}

(6)

Similar rules can be applied to the case where A and B imposes a negative individual influence
on child node C.
III. Mixed Joint Influence

In case that the joint effect on a child is formed by a mixture of positive and negative indi-
vidual influences from its parents, the extraction of a probability model is not well-defined in
general. Hence, we adopt the following scheme: If there are mixed influences from several
parent nodes to a child node, and no additional information is given, then they are treated as
independent and with equal influential strength. Assume that parent node A imposes positive
single influence on child node C and parent node B imposes negative single influence on child
node C, then the joint influence can be represented by

Pr(C|A, B) ≥ Pr(C|A, B); Pr(C|A, B) ≥ Pr(C|A, B);

Pr(C|A, B) ≥ Pr(C|A, B); Pr(C|A, B) ≥ Pr(C|A, B) (7)

Any additional structure can be brought into the CPT of the corresponding collider structure
as soon as dependencies between influences are made explicit by further qualitative state-
ments.

3.1.3 Extended Qualitative Knowledge Model

The extended qualitative knowledge model defines relative and absolute properties of proba-
bility configurations in qualitative causal influences and synergy from the baseline model. It
includes the probabilistic ratio and relative difference between any number of configurations
in a qualitative causal influence and the absolute probabilistic bound of any configuration in
a causal influence. These extended features impose further restriction on the set of constraints
generated by baseline model, therefore, restrain the uncertainty in Bayesian model space so
that more accurate generalization can be achieved.
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The extended qualitative knowledge features can be consistently represented by a linear in-
equality. In the case that node B impose single influence on node A, there are two probabilistic
configurations. The linear constraints can then be written as

Pr(B|A) ≥,≤ R × Pr(B|A) + ∆; Pr(B|A) ∈ [Bdmin, Bdmax]; Pr(B|A) ∈ [Bd′min, Bd′max] (8)

which R is Influence Ratio, ∆ is Influence Difference and Bd, Bd’ denote bound. In some cases,
baseline and extended qualitative knowledge information are provided by the qualitative
statements simultaneously. However, in most cases, extended knowledge features are not
fully provided in the qualitative statements. In these cases, only baseline knowledge model
will be used to generate constraints in model space to perform inference by model averaging.
Once the qualitative knowledge is translated by the feature set {Π(Dp, I), Λ(Σ, Ψ(R, ∆, Bd))}
according to Eq. 1 to Eq. 8, the distribution of ground models is defined by this knowledge.
Once formulated, the Monte Carlo sampling procedure will make sure that all inequalities are
satisfied for valid models.

3.1.4 Hierarchical Knowledge Model for Inconsistent Statements

The dependent qualitative knowledge feature set can be represented by a hierarchical
Bayesian network (HBN) (3). Within a knowledge HBN, the structural feature Π and pa-
rameter feature Λ are two first-level composite nodes. Π can be further decomposed into
two leaf nodes Dp and I. The parameter feature Λ contains two second-level composite
nodes, i.e. the baseline knowledge features Σ and extended knowledge features Ψ which
consists of three leaf nodes R, ∆ and Bd. Thus qualitative knowledge Ω can be described as
Ω = {Π(Dp, I), Λ(Σ, Ψ(R, ∆, Bd))}, where Σ = (SP, SN, PlSyn, AdSyn, Ant, MxSyn). The
hierarchical knowledge model is shown in Figure 1(a) and a tree hierarchy in Figure 1(b). The
equivalent Bayesian network is shown in Figure 1(c).
Hierarchical Bayesian Networks encode conditional probability dependencies in the same
way as standard Bayesian Networks. The prior probability of a qualitative knowledge Ω

can be written as a joint probability of {Π, Λ} and can be decomposed according to the de-
pendency between each component features as follows.

Pr(Ω) = Pr(Π)Pr(Σ|Π)Pr(Ψ|Σ) (9)

where Pr(Ψ|Σ) = Pr(R|Σ)Pr(∆|Σ)Pr(Bd|Σ), Pr(Π) = Pr(Dp)Pr(I|Dp) and Pr(Σ|Π) =
Pr(Σ|I). The conditional probabilities of qualitative knowledge features can be calculated
by counting the weighted occurrences given a set of inconsistent statements. The weight of
knowledge features equals to the credibility of their knowledge sources which may be evalu-
ated by a domain expert or determined by the source impact factor. If no further information on
the weights is available, they are set to 1. In this case, the conditional probability of features is
computed only by occurrence count. For example, we assume a set of qualitative statements,

S̃ = {S1, S2, S3}, about smoking and lung cancer are observed: 1) The risk is more than 10 times
greater for smokers to get lung cancer than no-smokers. 2) Men who smoke two packs a day increase
their risk more than 25 times compared with non-smokers. 3) There is not significant evidence to prove
that smoking directly cause lung cancer, however, clinical data suggest that lung cancer is related to
smoking. The statements can be represented by a vector of features which is shown in Figure 2.
The conditional probability of the features can be calculated straightforwardly by

Pr(I|Dp) = (w1 + w2)/wa Pr(I|Dp) = (w3)/wa

Pr(r1|Σ = SP) = w1/wb Pr(r2|Σ = SP) = (w1 + w2)/wb
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(a) HBN (b) Tree (c) BN

Fig. 1. Hierarchical Bayesian Network on Qualitative Knowledge

Fig. 2. Feature-vector of Statements

where wa = w1 + w2 + w3, wb = 2w1 + w2, Pr(Dp) = 1, Pr(SP|I) = 1, r1 = [10, 25] and
r2 = [25, ∞]. One notion is that the knowledge features Ψ = {R, ∆, Bd} in Figure 1(a) are
continuous-valued and therefore, can be transformed to discrete attributes by dynamically
defining new discrete attributes that partition the continuous feature value into a discrete set
of intervals. In the above example, the continuous feature R in S1 has value range [10, ∞]
and a continuous value range [25, ∞] in S2. The continuous ranges can be partitioned into
two discrete intervals: r1 = [10, 25] and r2 = [25, ∞], therefore, the qualitative knowledge

Ω̃ = {Ω1, Ω2, Ω3} can be transformed from S̃ = {S1, S2, S3} with discrete-valued features.

3.1.4.1 Qualitative Knowledge Integration

Once we have calculated the conditional probabilities of knowledge features, the prior prob-
ability of qualitative knowledge can be computed according to Eq. 9. Thus the inconsistent
knowledge components are ready to be reconciled. The qualitative knowledge transformed

from the feature vector of statements in Figure 2 can be described by Ω̃:

Ω1 = {1, 1, SP, [10, 25], ∅, ∅} Ω2 = {1, 1, SP, [25, ∞], ∅, ∅} Ω3 = {1, 0, ∅, ∅, ∅, ∅}
(10)

where Ωk={Dpk, Ik, Σk, Rk, ∆k, Bdk}. If the weights of statements are set to 1, the knowledge
prior probability is calculated, then we have Pr(Ω1)=2/9, Pr(Ω2)=4/9 and Pr(Ω3)=1/3.

Pr(Ω1) = Pr(Dp)Pr(I|Dp)Pr(SP|I)Pr(r1|SP) = 2/9

Pr(Ω2) = Pr(Dp)Pr(I|Dp)Pr(SP|I)Pr(r2|SP) = 4/9

Pr(Ω3) = Pr(Dp)Pr(I|Dp) = 1/3 (11)

The integrated qualitative knowledge thus preserved the uncertainty from each knowledge
component. Each qualitative knowledge component Ωk defines a model class with a set of
constraints on the ground model space which is generated by its features. The model class
and its constraints are used for modeling Bayesian networks and performing quantitative
inference.
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3.2 Bayesian Inference with Consistent Qualitative Knowledge

3.2.1 Bayesian Modeling and Inference

A Bayesian model m represents the joint probability distribution of a set of variables X =
X1, X2, ..., XD (19). The model is defined by a graph structure s, which defines the structures
of the conditional probabilities between variables, and a parameter vector θ, the components
of which define the entries of the corresponding conditional probability tables (CPTs). Hence,
a Bayesian network can be written as m = {s, θ}. If we believe that one single model m
reflects the true underlying distribution, we can perform inference based on this model. Given
some observations or "evidence" E, reflected by fixed measured values of a subset of variables,
Xq = E, we wish to derive the distribution of the remaining variables X ∈ X\Xq. It is provided
by their conditional probability given the evidence in light of the model, Pr(X|E, m), which
can be efficiently evaluated by known methods.(26)
In contrast, the full Bayesian framework does not attempt to approximate one true underlying
distribution. Instead, all available information is used in an optimal way to perform inference,
without taking one single model for granted. To formalize this statement for our purposes,
let us classify the set of available information into an available set of data, D, and a body of
non-numeric knowledge, Ω. The a posteriori distribution of models m is then given by

Pr(m|D, Ω) =
Pr(D|m) Pr(m|Ω)

Pr(D, Ω)
. (12)

The first term in the numerator of eq. (12) is the likelihood of the data given the model, which
is not directly affected by non-numeric knowledge Ω, the second term denotes the model
prior, whose task is to reflect the background knowledge. We obtain

Pr(m|D, Ω) =
1

Z
Pr(D|m) Pr(m|Ω), (13)

where Z is a normalization factor which will be omitted from the equations for simplicity.
The first term contains the constraints of the model space by the data, and the second term
the constraints imposed by the background knowledge. In the full Bayesian approach, we
can perform inference by model averaging. Now, given some observation or evidence E, the
(averaged) conditional distribution of the remaining variable X is performed by integrating
over the models:

Pr(X|E, D, Ω) =
∫

Pr(X|E, m)Pr(m|D, Ω)dm =
∫

Pr(X|E, m)Pr(D|m)Pr(m|Ω)dm (14)

3.2.2 Bayesian Network Inference with Qualitative Knowledge

In this paper we consider the extreme case of no available quantitative data, D = ∅. Even in
this case, it is still possible to perform proper Bayesian inference,

Pr(X|E, Ω) =
∫

Pr(X|E, m)Pr(m|Ω)dm. (15)

Now the inference is based on the general background information contained in Ω alone, and
the specific information provided by the measurements E. This is reflected by the fact that
inference results are conditioned on both quantities in eq. (15).
In order to determine Pr(m|Ω), we need a formalism to translate a body of qualitative knowl-
edge into an a priori distribution over Bayesian models. For this we adopt the following no-
tation for a Bayesian model class. A Bayesian model is determined by a graph structure s and
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by the parameter vector θ needed to specify the conditional probability distributions given

that structure. We refer to θ as one specific CPT configuration. A Bayesian model class M̃ is

then given by (i) a discrete set of model structures S̃ = {s1, s2, . . . , sK}, and (ii) for each struc-
ture sk a (eventually continuous) set of CPT configurations Θk. The set of member Bayesian

models m ∈ M̃ of that class is then given by m = {(sk, θ)|k ∈ {1, . . . , K}, θ ∈ Θk}. The model
distribution now reads

Pr(m|Ω) = Pr(sk, θ|Ω) =
Pr(θ|sk, Ω)Pr(sk|Ω)

∑
K
a=1

∫
Θa

Pr(θ|sa, Ω)dθPr(sa|Ω)
. (16)

In eq. (16), first the set of allowed structures is determined by means of Ω, followed by the
distributions of the corresponding CPT configurations. Then, we calculate the model’s poste-
rior probability Pr(m|Ω) in eq. 16. Inference is carried out by integrating over the structure
space and the structure-dependent parameter space:

Pr(X|E, Ω) =
K

∑
k=1

∫

Θk

Pr(X|E, sk, θ)Pr(sk, θ|Ω)dθ. (17)

It is very common to express non-numeric knowledge in terms of qualitative statements about
a relationship between entities. Here we assume Ω to be represented as a list of such qualita-
tive statements. In this form, the information can be used in a convenient way to determine
the model prior, eq. (16): (i) Each entity which is referenced in at least one statement through-
out the list is assigned to one variable Xi. (ii) Each relationship between a pair of variables
constrains the likelihood of an edge between these variables being present. (iii) The quality of
that statement (e.g., "activates", "inactivates") affects the distribution over CPT entries θ given
the structures. In the most general case, the statement can be used to shape the joint distri-
bution over the class of all possible Bayesian models over the set of variables obtained from
Ω.
Here we propose a simplified but easy-to-handle way for constructing the prior model distri-
bution. We use each statement to constrain the model space to that subspace which is consis-
tent with that statement. In other words, if a statement describes a relationship between two
variables, only structures sk which contain the corresponding edge are assigned a nonzero
probability Pr(sk|Ω). Likewise, only parameter values on that structure, which are consis-
tent with the contents of that statement, are assigned a nonzero probability Pr(θ|sk, Ω). If no
further information is available, the distribution is constant in the space of consistent models.

3.3 Bayesian Inference with Inconsistent Qualitative Knowledge

In this section, we propose a novel approach to make use of a set of inconsistent qualitative
statements and their prior belief distribution as background knowledge for Bayesian model-
ing and quantitative inference.
A Bayesian model m represents the joint probability distribution of a set of variables X =
{x1, x2, ..., xN} (1). The model is defined by a graph structure s and a parameter vector θ,
i.e. m = {s, θ}. In full Bayesian framework, all available information is used in an optimal
way to perform inference by taking model uncertainty into account. Let us classify the set of
available information into an available set of training data D and a set of inconsistent qualita-

tive background knowledge Ω̃ = {Ω1, . . . , ΩK} on a constant set of variables. The posterior
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distribution of models m is then given by

Pr(m|D, Ω̃) =
Pr(D|m, Ω̃)Pr(m|Ω̃)Pr(Ω̃)

Pr(D, Ω̃)
(18)

The first term in the numerator of Eq. 18 is the likelihood of the data given the model. The
second term denotes the model prior which reflects the inconsistent set of background knowl-
edge and the last term is the prior belief of the knowledge set. Now, inference in the presence
of evidence is performed by building the expectation across models:

Pr(X|D, E, Ω̃) =
∫

dmPr(X|E, m)Pr(D|m, Ω̃)Pr(m|Ω̃)Pr(Ω̃) (19)

In this paper we consider the extreme case of no available quantitative data, D = ∅.

Pr(X|E, Ω̃) =
∫

dmPr(X|E, m)Pr(m|Ω̃)Pr(Ω̃) (20)

In this case, model prior distribution Pr(m|Ω̃) is determined soly by the inconsistent back-

ground knowledge set Ω̃. Each independent qualitative knowledge component, Ωk ∈ Ω̃,

uniquely defines a model class, Mk, with a vector of features, i.e. M̃ = {M1, . . . , MK}. The
features are translated into a set of constraints which determine the distribution of the ground
models within each model class.
First of all, the probability of a model class given the inconsistent knowledge set is written as

Pr(Mk|Ω̃) =
K

∑
i=1

Pr(Mk|Ωi)Pr(Ωi|Ω̃) = Pr(Ωk) (21)

where {Pr(Mk|Ωi) = 1, i = k} and {Pr(Mk|Ωi) = 0, i �= k} since the k-th model class is
uniquely defined by Ωk and is independent to the other knowledge component. Secondly, the
probability of a ground Bayesian model sample m in the k-th model class given the inconsistent
knowledge set is

Pr(m ∈ Mk|Ω̃) = Pr(m|Mk)Pr(Mk|Ω̃) (22)

Thus, the inference on X given evidence E and inconsistent knowledge set Ω̃ in Eq. 20 can be
written as

Pr(X|E, Ω̃) = ∑
k

∫

m
dmPr(X|m, E)Pr(m|Mk)Pr(Ωk)

where Pr(m|Ω̃) = ∑k Pr(m ∈ Mk|Ω̃) and we assume the inconsistent knowledge set to be

true, i.e. Pr(Ω̃) = 1. Therefore, the inference is calculated by firstly integrating over the
structure space and the structure-dependent parameter space of a ground Bayesian model
from a model class according to the constraints and performing such integration iteratively
over all possible model classes with the prior distribution. The integration in Eq. 23 is non-
trivial to compute, however, Monte Carlo methods can be used to approximate the inference.

3.3.1 ASIA Benchmark Model

The ASIA network (10) is a popular toy belief model for testing Bayesian algorithms. The
structure and parameter of actual ASIA network is shown in Figure 3.
For demonstration, we consider the inconsistent qualitative statements with regarding to sin-
gle edge between Smoking and Lung Cancer, as well as the collider structure of Lung Cancer,
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Bronchitis and Dyspnea. The method applies to all of the entities and their relations in the
ASIA network. 1. Although nonsmokers can get lung cancer, the risk is about 10 times greater
for smokers. (http://www.netdoctor.co.uk);2. The lifetime risk of developing lung cancer in smokers
is approximately 10%.(http://www.chestx-ray.com/Smoke/Smoke.html);3. Men who smoke two packs
a day increase their risk more than 25 times compared with non-smokers.(http://www.quit-smoking-
stop.com/lung-cancer.html)4. Lifetime smoker has a lung cancer risk 20 to 30 times that of a non-
smoker(http://www.cdc.gov/genomics/hugenet/ejournal/OGGSmoke.htm)5. Only 15% of smokers ul-
timately develop lung cancer(http://www.cdc.gov/genomics/hugenet/ejournal/OGGSmoke.htm);6. The
mechanisms of cancer are not known. It is NOT possible to conclusively attribute a cause to effects
whose mechanisms are not fully understood.(http://www.forces.org/evidence/evid/lung.htm);7. It is es-
timated that 60% of lung cancer patients have some dyspnea at the time of diagnosis rising to 90%
prior to death.(http://www.lungcancer.org/health_care/focus_on_ic/ symptom/dyspnea.htm)8. Muers
et al. noted that breathlessness was a complaint at presentation in 60% of 289 patients with non-
small-cell lung cancer. Just prior to death nearly 90% of these patients experienced dyspnea. (2);9.
At least 60% of stage 4 lung cancer victims report dyspnea.(http://www.lungdiseasefocus.com/lung-
cancer/palliative-care.php);10. Significantly more patients with CLD than LC experienced breathless-
ness in the final year (94% CLD vs 78% LC, P < 0.001) and final week (91% CLD vs 69% LC, P <

0.001) of life. (7);11. 95% of patients with chronic bronchitis and emphysema reported Dyspnea. (8)
Each statement is analyzed by the hierarchical knowledge model in Figure 1(a) and the ex-
tracted features are summarized in Figure 3(c). In this statement set, the first six statements
represent the relation between (tobacco)smoking and lung cancer. {S1, . . . , S5} describe a sin-
gle positive (SP) influence from smoking to lung cancer with inconsistent knowledge features
of the ratio (R) and bound (Bd). However, statement S6 declares a contradicting knowledge
suggesting that smoking is not the cause of lung cancer. {S7, . . . , S11} describe the syner-
gic influence from lung cancer and bronchitis to dyspnea. Without further information, it
can be represented by plain synergy with positive individual influence. The knowledge on the
extended features in Eq. 7 of the conditional probability distribution of this collider struc-
ture is not available, however, the knowledge on the extended features of the marginalized
conditional probability space are provided in these statements. For simplicity, we assume
the weight of every qualitative statement equals to 1, i.e. {wi = 1, i = 1, . . . , 11}. Due
to the parameter independency (1), we can compute the conditional probability of each lo-
cal structure independently. For each local structure, we calculate the conditional probabil-
ity of knowledge features by counting its occurrence frequency. For the local structure of
smoking and lung cancer in the ASIA network, the prior probability of the knowledge fea-
tures can be calculated as Pr(Dp)=5/6, Pr(I|Dp)=1, Pr(I|Dp)=1, Pr(SP|I)=1, Pr(r1|SP)=1/5,
Pr(r2|SP)=1/5, Pr(r3|SP)=2/5, Pr(r4|SP)=1/5, Pr(b1|SP)=1/2 and Pr(b2|SP)=1/2 where
r1 = [9, 11], r2 = [20, 25], r3 = [25, 30] and r4 = [30, ∞]; b1 = [9%, 11%] and b2 = [14%, 16%].
The continuous-valued feature R and Bd are discretized into |R| = 4 and |Bd| = 2 discrete-
value intervals respectively. Based on the features and their prior belief, a set of qualitative

knowledge Ω̃ = {Ω1, . . . , Ω16} is formed in Figure 3(d).

3.3.1.1 ASIA Model Monte Carlo Sampling

Given the integrated qualitative knowledge set Ω̃ with prior probabilities, we now construct
the Bayesian model class and the distribution on ground model space within each class. For
demonstration purposes, we assume the partial structure and its parameters, i.e. {α, γ, λ, f },
to be known as in Figure 3(b). Therefore the uncertainty of ASIA model space is restricted
to the uncertainty of the local structure and parameter space on Smoking and Lung Can-
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cer which can be described by Pr(m|Mk) and Pr(Mk) defined by {Ωk|k = 1, . . . , 9}, i.e.
{Mk(Ωk)|k = 1, . . . , 9}, as well as the uncertainty of the local space on Lung Cancer, Bron-
chitis and Dyspnea which can be jointly determined by three types of model class, i.e. the root-
dimension model class defined by Ω10, the marginal-dimension model classes of lung cancer
and dyspnea defined by {Ωi|i = 11, . . . , 14} and the marginal-dimension model classes of
bronchitis and dyspnea defined by {Ωj|j = 15, 16}. Thus, there are total eight possible com-
bination of these model classes, i.e. {Mk(Ω10, Ωi, Ωj)|k = 10, . . . , 17; i = 11, . . . , 14; j = 15, 16}
and each combination virtually forms a complete model class which defines the set of con-
straints on the structure and parameter space of ground Bayesian model for the local collider
structure of lung cancer, bronchitis and dyspnea. The prior probability of each combination,
Pr(Mk) is the product of the prior probability of its independent components, i.e.

Pr(Mk) = Pr(Ω10)Pr(Ωi)Pr(Ωj) (23)

For each local structure, we perform 10,000 sampling iterations. In each iteration, we select
a model class Mk randomly based on the prior probability of the model class, i.e Pr(Mk). In
each selected model class, we randomly choose 3 samples of ground Bayesian model m, whose
structure and parameter space is consistent with the class constraints Pr(m|Mk) as shown in
Figure 1(a). In this way, for the local structure of smoking and lung cancer, the prior babil-
ity of the model class is equivalent to its knowledge component, i.e. Pr(Mk)=Pr(Ωk). We
generate total N=30,000 ground model samples from model classes {Mk(Ωk)|k = 1, . . . , 9}
defined by Ωk in Figure 3(d). The ground model samples are shown in Figure 4(a). For
the local collider structure of lung cancer, bronchitis and dyspnea, we generate N=30,000
ground model samples from the combination of model classes defined in Eq. 23 based on
{Ωk|k = 10, . . . , 16} in Figure 3(d). The marginal conditional probability samples are shown
in Figure 4(b) and 4(c). Without further information on lung cancer, bronchitis and dysp-
nea, we can set their prior probabilities to be 1/2. By taking average over the models in Fig-
ure 4(a) to 4(c), we can calculate the mean value for the conditional probability of lung cancer
given smoking, i.e. β1=0.1255, β0=0.006, and of Dyspnea given lung cancer and Bronchitis,
i.e. ξ0=0.2725, ξ1=0.9053, ξ2=0.5495 and ξ3=0.968. Note that since the 9th model class defined
by Ω9 for the structure of lung cancer and smoking, i.e. M9(Ω9), contains no edge between
the nodes, the parameter of this model class is null.

3.3.1.2 ASIA Model Inference

For each of the model sample, according to Eq. 23, we perform inferences in silico on the
likelihood of a patient having lung cancer (Lc) given information about the patient’s smok-
ing status and clinical evidences including observation of X-ray, Dyspnea, and Bronchitis,
i.e. Xobs = {Sm, Xr, Dy, Br}. The convergence of these prediction under a set of evidences

Ẽ = {E1, E2, E3, E4, E5, E6} are shown in Figure 4(d). The true prediction values with param-

eters in Figure 3(b) under the evidence set Ẽ are listed below in Figure 5. The presence of
bronchitis could explain away the probability of lung cancer and the presence of smoking
increases the risk of getting lung cancer.

3.3.2 Breast Cancer Bone Metastasis Prediction

We apply our framework to integrate a set of inconsistent qualitative hypotheses about the
molecular interactions between Smad proteins of the TGFβ signaling pathway in breast can-
cer bone metastasis network. From recent studies (11–15), a set of qualitative statements on
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(a) ASIA Network
Structure

(b) ASIA Network Param-
eter

(c) Feature-vector of State-
ments

(d) Integrated Qualitative
Knowledge with Prior
Probability

Fig. 3. ASIA Belief Network and Qualitative Statements and Knowledge in ASIA network
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Fig. 4. ASIA Model Sampling and Inference

molecular interactions in the breast cancer bone metastasis network can be extracted. A Dy-
namic Bayesian model can be constructed based on this set of statements as shown in Fig. 6(a)
and the quantitative prediction with forward belief propagation based on a set of consistent
qualitative hypotheses has been introduced in (33).
In this section, we consider the inconsistent qualitative statements with regard to the mech-
anism of Smad7 in blockade of the TGFβ signals. In (14), the qualitative statements can be
extracted as S1: Smad7 directly binds to the activated type I TGF-β receptor and inhibits phosphoryla-
tion of the R-Smads.;S2: Smad6 acts in a different way as Smad7. It competes with the activated Smad1
for binding to Smad4.; In (15), the qualitative statements can be extracted as S3: The inhibitory
activity of Smad6 and Smad7 is thought to result from an ability to interfere with receptor interaction
and phosphorylation of the receptor-regulated Smads.;S4: However, their inhibitory activity might also
result from their ability to form a complex with receptor-activated Smads.;Similar statements can be
extracted from (13) as S5: I-Smads (Smad6,7) interact with type I receptors activated by type II recep-
tors.;S6: I-Smads have also been reported to compete with Co-Smad (Smad4) for formation of complexes
with R-Smads (Smad2/3).
This set of statements represent the molecular interactions between I-Smad (Smad7), R-Smad
(Smad2/3) and Co-Smad (Smad4). {S1, S3, S5} report the interaction between Smad7, type
I TGFβ-receptor (TβRI) and Smad2/3. {S4, S6} describe the interaction between Smad7 and
Smad4 to form a complex whereas S2 provides contradicting information. Each statement is
analyzed by the hierarchical knowledge model in Figure 1(a) and the extracted features are
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Fig. 5. Inference Results on ASIA Network

summarized in Figure 7(a). For simplicity, we assume the weight of every qualitative state-
ment equals to 1, i.e. {wi = 1, i = 1, . . . , 6}. Due to the parameter independency (1), we
can compute the conditional probability of each local structure by counting the occurrence
frequency of the knowledge features independently. For the local structure of Smad7, TβRI
and Smad2/3, the prior probability of the knowledge features can be calculated as Pr(Dp)=1,
Pr(I|Dp)=1, Pr(I|Dp)=1. For the local structure of Smad7, Smad4 and phosphorylated-
Smad2/3 (Smad2/3-p), Pr(Dp)=2/3, Pr(Dp)=1/3, Pr(I|Dp)=1, Pr(I|Dp)=1. Based on the

features and their prior belief, a set of qualitative knowledge Ω̃ is formed in Figure 7(b). In
this experiment, the extended features of the inconsistent knowledge are not available.
We now construct the Bayesian model class and the distribution on ground model space
within each class. The uncertainty of the TGFβ-Smad BCBM model space is restricted to the
uncertainty of the local structure and parameter space on Smad7, TβRI and Smad4 which is
defined by {Ω1,Ω2} in Figure 7(b). The model classes can be expressed as {Mk(Ωk)|k=1,2} and
the prior probability of each model class equals to the prior probability of the knowledge, i.e.
Pr(Mk)=Pr(Ωk). We perform 10,000 sampling interactions. In each iteration, we select a model
class Mk randomly based on the prior probability Pr(Mk). In each model class, we randomly
generate 3 samples of the ground Bayesian model m by Monte Carlo method, whose structure
and parameter space is consistent with the class constraints Pr(m|Mk) as defined by Eq. 1 to
Eq. 7. Therefore, we obtain N=30,000 ground models from the model classes. By taking aver-
age over the ground models, we can calculate the mean value for the conditional probability
of the complex Smad4-Smad2/3-p given Smad7, Smad4 and Smad2/3-p. Note that since M1

contains no edges between Smad7 and Smad4-Smad2/3-p, the parameter of this model class
is null.
Each ground model is a Dynamic Bayesian network (DBN) which can be unrolled over time
to form a series of 2TBNs (4). The prediction on the probability of bone metastasis given a set
of evidences Ei ∈ {E1, E2, E3} in each model class, i.e. the integral in Eq. 23, can be calculated
by integrating the predictions over all DBN models which is equivalent to compute firstly the
mean DBN model with averaged parameters and then perform prediction on this mean DBN
model (33). The simulation results and the observed bone metastasis probability in (11) are
shown in Fig. 6(b) and Fig. 6(c).

3.3.3 Conclusion

In this paper, we proposed a hierarchical Bayesian model for modeling the semantics of the
qualitative knowledge with a vector of features. The inconsistent knowledge components are
integrated by calculating a prior distribution. The integrated qualitative knowledge set is used
as prior background knowledge in modeling Bayesian networks and performing quantitative
inference. We benchmarked our method with the ASIA network and applied our method
to a real-world problem and simulation results suggest that our methods can reconcile the
inconsistent qualitative uncertainty and produce reasonable quantitative prediction based on
the inconsistent knowledge set.
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(a) Signaling Pathway
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(b) Simulation Results (c) Observation

Fig. 6. Integrated TGFβ-Smad BCBM Network and Prediction

(a) Feature-vector of Statements

(b) Integrated Qualitative Knowledge with Prior Probability

Fig. 7. Qualitative Statements and Knowledge in TGFβ-Smad BCBM Network

3.4 Bayesian Network Learning with Informative Prior Qualitative Knowledge

We propose a framework for Bayes net parameter learning with generic prior knowledge.
In this study, we use the knowledge model in section 3.1 to translate the qualitative domain
knowledge into a set of inequality parameter constraints. We reconstruct the parameter pri-
ori distribution ( i.e. priori pseudo counts) from these constraints. We then propose a novel
Bayesian parameter score function which integrates this prior distribution with the quantita-
tive data statistics. In this way, the parameter posterior distribution is combinatorially regu-
lated by both quantitative data and prior knowledge.

3.4.1 Qualitative Constraints and Sampling

In general, qualitative domain knowledge can define various constraints over conditional
probabilities in a BN. As described in last section, most of these constraints can be represented
by a linear regression function f (θijk) ≤ c, ∀i, j, k (c is a scaler), where θijk is the conditional
probability of the state of i-th node being k, given its j-th parent configuration. In particular,
one type of constraints can be derived from this function. Cross-distribution Constraints defines
the relative relation between a pair of parameters over different conditions. If two parameters
in a constraint share the same node index i and value k, but different parent configuration j,
the constraint is called cross-distribution constraint. This constraints can be usually derived
from causality in the qualitative knowledge.

θijk ≤,≥ θij′k∀j �= j′ (24)

Given the constraints defined by f, we can withdraw samples of parameter which are consis-
tent with the constraints, e.g. in Eq. 24, by accept-reject sampling. Since sampling can be done
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at each node, it is relatively reasonable for demonstration. But node with more parent nodes,
Gibbs sampling and simulated annealing can be used.

3.4.2 Qualitative Bayesian Parameter Score (QBPS)

In this study, we assume the data distribution is multinomial and prior is Dirichlet. The pos-
terior probability of the parameter given the data in standard MAP estimation can be written
as

logPr(θ|G, D) = log Pr(D|θ, G) + log Pr(θ|G)− c = log{α
n

∏
i=1

qi

∏
j=1

ri

∏
k=1

θ
Nijk+N′

ijk−1

ijk } (25)

where θ denotes the parameters in a Bayes net and G is the network’s structure. i, j, k is defined
as section 3.4.1. The first term in Eq. 25 represent the data statistics which is followed by the
Dirichlet prior distribution with hyperparameter N′

ijk (1). α is a normalizer. In standard MAP

method, N′
ijk is usually set to a very small and equal number which results in non-informative

prior.
We propose a posterior probability which employs the informative prior constraints (f) in
the last section. In previous methods (35–37), f is imposed into the posterior probability
as an penalty term. The MAP estimation is transformed to constrained optimization prob-
lem. However, the violation term f in these cases can only penalize the likelihood when the
learned local maximum violates the constraints in the sign, but it can not distinguish a set
of all possible local maximums obeying the constraints. So, final solution is not necessary a
global maximum (37). Therefore, it is desired to use prior constraints (such as Eq. 24) as soft
regulations to the posterior probability in Eq. 25. We name this MAP-like score function as
Qualitative Bayesian Parameter Score (QBPS).

log Pr(θ|G, D, Ω) = log Pr(D|θ, G) + log Pr(θ|G, Ω)− c (26)

The difference between Eq. 26 and Eq. 25 is the addition of Ω to the posterior probability in
Eq. 25. The first term in Eq. 26 is the data statistics as in the standard MAP estimation. The
second term Pr(θ|G, Ω) represent the parameter’s prior distribution given prior knowledge
Ω. Ω can represent any forms of generic prior constraints over the parameter space, such as
Eq. 24. In conventional approaches, Pr(θ|G) can be any probability function, such as Gaussian
or Dirichlet distribution function with pre-defined hyperparameters. In case of multinomial
data, Pr(θ|G) oftenly take the form of beta distribution due to the conjugate distribution prop-
erty. Thus, the problem is to fuse the prior knowledge Ω and its associated constraints (f) over
parameter space with the beta distribution Pr(θ|G) which results in the constrained beta dis-
tribution Pr(θ|G, Ω).
In general, we can either i) fit the beta distribution into the constrained parameter space by
estimating the hyperparameters of Dirichlet distribution given a vector of constrained param-
eter samples θl

ijk (43). These samples can be obtained based on the accept-reject sampling. In

this case, we only select one local maximum prior model (one instance of hyperparameter) to
substitute the uncertainty in the (priori) parameter space (all possible instances of hyperpa-
rameter) or ii) admit the model uncertainty and utilize conjugate property of beta distribution
to reconstruct the (priori) parameter space distribution based on all constrained parameter
samples. In this case, we have

Pr(θ|Ω, G) = α
n

∏
i=1

qi

∏
j=1

ri

∏
k=1

θl
ijk

Ml
ijk ∀l = 1, ..., L (27)
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where θl
ijk is an instance of constrained prior parameter sample and Ml

ijk denotes the num-

ber of ’success’ cases of this instance (Xi=k, Πi=j|θl
ijk) exists in the past A (A is an arbitrary

number) samples. It is equal to

Ml
ijk = A × Prl(Xi = k, Πi = j|Ω) (28)

Together, the QBPS score can be written as

Pr(θ|G, D, Ω) = α
n

∏
i=1

qi

∏
j=1

ri

∏
k=1

θl
ijk

Nijk+Ml
ijk ∀l = 1, ..., L (29)

where Nijk is the number of occurrence in the training date for the ith node to have a value of
k and for its parent to have a value of j and L is the total number of priori parameter samples
from accept-reject sampling. (L is a large number) Thus, the local maximum estimation of a
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Fig. 8. Parameter Learning in Toy Network: The network contains two binary nodes. A is
an activator parent of B. X,Y-axles represent conditional probability P(B|A) and P(B|A) re-
spectively; Z-axis is equal to the negative value of posterior statistical counts [-(Nijk+Ml

ijk)] in

Eq. 29.

QBPS score equals to

θ̂l
ijk =

Nijk + γN0Prl(Xi = k, Πi = j|Ω)

∑
K
k=1 Nijk + γN0Prl(Xi = k, Πi = j|Ω)

(30)

where N0 is equal to the number of total data samples. Now, we further assume that A and
N0 has a ratio γ, i.e. A = γ × N0. From Eq. 30, we can see that ratio γ actually specified
the belief-ratio between data statistics and prior knowledge statistics. If γ=0, we neglect the
statistics from the prior knowledge and only trust the statistics in the data, thus, our estimation
in Eq. 30 converges to ML results; If γ=+∞, we neglect the statistics in the data and only
trust the prior knowledge, the results converge to the previously mentioned constraint-based
probabilistic inference in (Dynamic) Bayesian inference [9,10]. If 0<γ<+∞, the QBPS score is
softly regulated by both data statistics and the prior knowledge and constraints in the domain.
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Since the estimation in Eq.8 is a joint effect from both inequality constraints in qualitative prior
knowledge and data observation, we name it as Qualitative Maximum a Posterior (QMAP)
estimation.

3.4.3 QMAP Estimation

1. QMAP Estimation with Full Bayesian Approach
As we have shown, we can reconstruct the priori parameter distribution from prior con-
straints. Each priori parameter sample θl

ijk together with the given structure (G) define a prior

network ml . Each priori ml can be mapped to a posteriori. Thus, the final posterior probability
of all Bayesian network models is defined over this class of prior networks ml in terms of a
set QBPS scores (Eq. 29). Our final goal is to predict future observations on variable X from
the training data (D) and priori constraints Ω. Given BN structure (G), this prediction can be
calculated as integration over the parameter space weighted by its posterior probability.

Pr(X|G, D, Ω) =
∫

θ
Pr(X|θ, G)Pr(θ|G, Ω, D)dθ (31)

The posterior probability of the parameter given data and qualitative prior knowledge, i.e.
Pr(θ|G, Ω, D), is in-turn an integration over all possible prior models (m) in the class defined
by Ω, thus, we can extend Eq. 31 as

Pr(X|G, D, Ω) =
∫

θ
Pr(X|θ, G)

∫

m

Pr(D|θ, G)Pr(θ|G, m)Pr(m|Ω)

Pr(D)
dmdθ (32)

Pr(m|Ω) in Eq 32 is equal to 1 since all the valid prior models (m) are consistent with the prior
constraints Ω.
The outer integration can be approximated by its local maximum if we assume the QBPS curve

for each model is peaky, then we can write the inference as Pr(X|θ̂, G). With full Bayesian
approach, final QMAP estimation of the parameter can be optimized by integrating the set
of local QBPS maximums over the prior network space, i.e. selecting the QMAP estimation
which maximize the integrated QBPS score.

θ̂ = argmaxθ

{∫

m

Pr(D|θ, G)Pr(θ|G, m)Pr(m|Ω)

Pr(D)
dm

}
= argmaxθ





1

L

L

∑
l=1

α ∏
ijk

θ
Nijk+Ml

ijk

ijk




(33)

Note that each prior network ml uniquely associate with a pseudo prior statistical count Ml
ijk.

The prior network space is discrete. By taking the derivative of Eq. 33 wrt θijk, we obtain the
constrained QMAP estimation with full Bayesian approach as

θ̂QMAP,FBA =
1

L

{
L

∑
l=1

Nijk + Ml
ijk

∑k Nijk + Ml
ijk

}
(34)

2. QMAP with Frequentist Maximization Approach
On the other hand, the final QMAP estimation can be obtained by frequentist maximum ap-
proach to select one single best estimate from the parameter posteriori space. In this way, we
could pick up the maximum from a set of local maximums.

θ̂QMAP,FMA = argmax{l}

{
Nijk + Ml

ijk

∑k Nijk + Ml
ijk

}
(35)
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An example plot of posterior statistical counts in Eq. 29 is shown in Fig. 8. In case of ML
learning, the Ml

ijk is equal to zero for all i,j,k. In case of MAP learning, we simulated a typical

scenario, where the dirichlet parameters are set equally to a scalar. In this case, the dirchlet pa-
rameters tends to smooth the posterior score by adding equal amount of pseudo counts for all
i,j,k. The smoothed posterior favors to the uniformly distribution in this case. By setting these
prior pseudo counts to 1, conventional MAP methods try to minimize this biased smooth ef-
fect. However, the bias remains significant when the training data is relative small. In Fig. 8(g)
and 8(h), we show that our proposed QMAP methods augment the posterior distribution by
reconstructing the prior from the qualitative knowledge and each prior distribution sample
Ml

ijk is combined with the data statistics to regulates posterior counts on equal opportunities.

In this way, we can explore the multiple local maximums sit in the posterior space so that we
ensure to select the global maximum.

3.5 Experiments

3.5.1 Experiment Design

We evaluate our proposed parameter learning methods using a realistic AU recognition data.
We test our algorithm in following learning conditions: a) In extreme case, we assume there
are no available training data and we use only generic qualitative domain knowledge which
are derived from causality in a BN to estimate the parameter. b) In standard case, we do not
employ any domain knowledge which is eventually equivalent to ML estimation. c) In an
fusion case, we use both training data and generic qualitative domain knowledge to learn the
parameter. We compare our results to standard ML and MAP estimation results.

3.5.2 Facial Action Unit Recognition

In this section, we apply our method to facial action unit (AU) recognition. The Facial Action
Coding System (FACS) (40) is the most commonly used system for facial behavior analysis.
Based on FACS, facial behaviors can be decomposed into a set of AUs, each of which is related
to the contraction of a specific set of facial muscles. An automatic AU recognition system
has many applications. Current AU recognition methods tend to perform AU recognition
individually, ignoring their relationships with other AUs. Due to the underlying physiology
and the facial anatomy, AUs often move in a coordinated and synchronized manner in order to
produce a meaningful expression. To represent the dependencies among AUs, Tong et al (41)
proposed to use Bayesian Network to capture the relationships among AUs. Following their
work, we propose to use the same BN model to capture the relationships among the 14 most
common AUs as shown in Figure 9(a), where the larger circular nodes in the model represent
AUs while the smaller nodes represent their image measurements. They have demonstrated
that the BN model is superior to the state of the arts AU recognition method. But to use
the model, they need a large amount of training data, which is often hard to acquire. We
will show that we can achieve comparable results using only a fraction of their training data.
Using the model, we extract constraints based on the following rules provided by domain
experts: 1. Marginal Constraint: In spontaneous cases, some AUs rarely occur. One example
for this case is AU27, and the rule is P(AU27 = 1)≤P(AU27 = 0), where 1 means presence
and 0 means absence. 2. Causality-derived Cross-distribution Constraint: As shown in Figure
4, every link between two AU nodes has a sign provided by the domain expert. The + sign
denotes positive influence,which means two AU nodes have co-occurrence relationship, while
a negative sign denotes negative influence, which means the two AU nodes have mutual
exclusive relationship. Considering an AU node AUi has only one parent node AUj, if the
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sign of the link is positive, we have P(AUi = 1|AUj = 0)≤P(AUi = 1|AUj = 1), e.g. P(AU1 =
1|AU2 = 0)≤P(AU1 = 1|AU2 = 1); if the sign of the link is negative, then we can get P(AUi =
1|AUj = 1)≤P(AUi = 1|AUj = 0), e.g. P(AU6 = 1|AU27 = 1)≤P(AU6 = 1|AU27 = 0). If an AU

node AUi has more than one AU parent nodes, AUP denote all the parent nodes with positive
links, and AUN denote all the parent nodes with negative links. Then we get P(AUi = 1|AUP

= 0,AUN = 1)≤P(AUi = 1|AUP = 1,AUN = 0), e.g. P(AU15 = 1|AU24 = 0,AU25 = 1)≤P(AU15
= 1|AU24 = 1,AU25 = 0). 3. Range Constraint: If an AU node AUi has more than one parent
nodes AUP , and all of them with positive influence, then P(AUi = 1|AUP = 1)≥0.8. If an AU
node AUi has more than one parent nodes AUN , and all of them with negative influence, then
P(AUi = 1|AUN = 1)≤0.2.
Please note the above constraints are due to either facial anatomy or due to certain facial
patterns. They are generic enough to be applied to different databases and to different indi-
viduals.

3.5.3 Integrative Learning with domain knowledge and data

The 8000 images used in experiments are collected from Cohn and Kanades DFAT-504. In each
simulation run, we randomly select 0 to 5000 samples out of 8000 samples for training and we
repeat learning task for 20 times. Training data are used for learning the parameters in the AU
BN (Figure 9(a)). After the learning, we select 1000 untouched samples for testing. Testing
data are used to perform AU recognition through inference given learned BN. We assume the
training data is complete. In the first part, we show the learning results in K-L divergence on
the AU subnetwork in Figure 9(a). In the second part, we show the real classification results.
We apply ML and QMAP estimation with qualitative domain knowledge defined above to
learning the parameters in the AU subnetwork. The K-L divergence is shown in Figure 9(b).
The x-axis and the y-axis denote training sample size and K-L divergence respectively. The
K-L result is actually the mean K-L divergence which is calculated by averaging the param-
eter learning results over all randomly selected training samples under each specific sample
size. We can see that: i) QMAP with γ=1 performs significantly better than ML estimation
under every training data size. More specifically, the K-L divergence for ML estimation with
3 training sample is decreased from 2.21 to 0.24 for QMAP with γ=1. Even at 5000 train-
ing samples, the K-L divergence for ML estimation is decreased from 0.04 to close to 0 for
QMAP estimation; On the other hand, we can evaluate the results by counting how many
training samples are required to achieve specific desired K-L divergence level for ML, MAP
and QMAP method respectively. At 3 training sample, K-L divergence for QMAP estimation
is 0.24. In order to obtain equivalent or better K-L divergence level, ML estimation needs 200
samples. At 5000 training sample, K-L divergence for ML estimation is 0.04 which can be
achieved by QMAP with 10 samples. These results are extremely encouraging, as using our
methods with domain-specific yet generic qualitative constraints, and with a small number
of manually labeled data (10), we can achieve similar learning accuracy to the ML estimation
with full training dataset (5000).
The encouraging learning results of our QMAP method shed light over the usage of generic
qualitative domain knowledge in learning task. Therefore, in this section, we explore an ex-
treme case of parameter learning by ignoring all training data sample but only employing
the set of qualitative constraints (same set of constraints defined above) to learn the AU sub-
network parameters. In this case, the data statistics counts in Eq. 30 is zero due to lack of
training data. The parameter estimation is only determined by priori pseudo counts given
the qualitative knowledge. The K-L divergence in this case is 0.0308 which is lower than K-L
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(a) AU Recognition
Network
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Fig. 9. Comparison of AU recognition network parameter learning results from ML and
QMAP respectively. a) AU Recognition Network with AU nodes and measurement nodes; b)
K-L divergence measurement of parameter learning in AU network based on training dataset
with various sample size. Comparison of AU recognition skill using the BN learned from
ML and QMAP respectively. We compare QMAP to standard ML skills. c) AU Recognition
Network; d) AU Recognition skill score at 200 training samples on AU nodes;

divergence of ML learning with full training data (5000 training samples). Meanwhile, this
K-L divergence level corresponds to that of QMAP learning with γ=1 at 25 data samples.

3.5.4 Classification

In this section, we want to study the performance of the proposed learning methods by us-
ing such learned BN model for AU classification. For AU classification, we need feed the
BN model with AU measurements computed from Gabor Wavelet jets. Given the AU mea-
surements, we want to infer the true states of each AU using the model parameters learnt
with our method. Specifically, we want to study the AU recognition performance under dif-
ferent amount of training data including the extreme case of using no training data at all,
and compare the classification results with those in (36). We perform classification based
on the learned AU network from ML and our proposed QMAP approach in section 3.5.3).
For demonstration, we select the learned AU network parameter under training dataset with
representative sample size: 0, 20, 100, 200, 300 and 500. After learning, we randomly select
1000 untouched data samples for classification test. Figure 9(c) shows the AU recognition
results. The x-axis represent the training data size for learning AU network parameters (in
case of 0 training size, no training data but only qualitative prior knowledge is used for AU
network parameter estimation) and y-axis denotes the true skill score (the difference between
true positive rate and false positive) respectively. The true skill is calculated by averaging all
AU nodes’ skill score. We can see from Figure 9(c), the true skill score for QMAP with various
belief-ratio (γ) is significantly better than the skill score for ML estimation under nearly all
training data sample size except for QMAP with γ=0.01. In particular, even at sparse train-
ing data (20 samples), the average true skill score for all AU nodes increases from 0.6229 for
ML estimation to 0.6866 for QMAP with γ=1, to 0.6655 for QMAP with γ=0.1, to 0.6512 for
QMAP with γ=0.01 and to 0.6322 for QMAP with γ=0.001; At 100 training samples, true skill
score further enhances from 0.6644 for ML estimation to 0.6940 for QMAP with γ=1, to 0.6928
for QMAP with γ=0.1, to 0.6668 for QMAP with γ=0.01 and 0.6677 for QMAP with γ=0.001.
While training sample size grows to 200, 300, and 500 samples, the true skill score from QMAP
with γ=1.0 is equal to 0.6916, 0.6957 and 0.6942 respectively and tends to converge. In the
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same case, ML estimation shows consistently lower classification ability than QMAP. Please
note that, using full training dataset (7000 samples for training and 1000 samples for testing),
true skill score for ML estimation converge at 0.6883 (shown as the black dashed line in Fig-
ure. 9(c)). From the above results, we can conclude that i) our proposed QMAP estimation
by integrating domain-specific yet very generic qualitative prior constraints with quantitative
training data significantly improves the AU recognition results comparing to ML estimation
at all sample size spanning from sparse data to rich data. This observation is particularly true
with γ=1; ii) Our proposed QMAP estimations (with different γ) needs much fewer training
samples for AU network to achieve equivalent and even better AU recognition results than
ML estimation. iii) Comparing the true skill score of QMAP estimation to the score of ML es-
timation with full training dataset, we can see that, with a much smaller number of manually
labeled data (around 35 samples) ,QMAP with γ=1 can already achieve much better AU recog-
nition results than ML estimation with full training dataset (7000 samples). While decreasing
the weight on prior knowledge to γ=0.1, QMAP requires from 80 to 250 training samples to
achieve better AU classification results than ML estimation with full training dataset. When
γ reduces to 0.01, QMAP needs around 300 samples to outperform ML estimation with full
training dataset. This number keeps increasing while γ reduces. When γ=0.001, the true skill
score of QMAP tends to converge with ML estimation. Therefore, in practice, we shall put
a larger weight on qualitative prior knowledge as long as our knowledge are valid in a do-
main. The above observation is also consistent with our K-L measurements in Figure 9(b).
In summary, we demonstrate that by our approach, qualitative prior constraints can be in-
tegrated into standard BN parameter learning to achieve significantly improved prediction
results. Next, we want to compare our results with a well developed method in AU recogni-
tion (36). To this end, we compare the true skill score of our QMAP at 200 training samples to
the skill score of Constrained-ML (CML) estimation (Figure4(b) in (36)) at 300 training sam-
ples. The true skill of each AU node of our QMAP is plot with optimized γ is shown in 9(d).
Firstly, we can see that our QMAP approach significantly improves the true skill on AU node
number 5, 9, 15, 23 and 24. Slightly improve the skill on AU node 1, 7, 17. The rest skill is
equivalent to ML estimation. Comparatively, our method boost the skills on those AU nodes
(6, 23, 12, 25, 17, 24, 9, 4) whose skill score is worse than ML estimation in (36).
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