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1. Introduction

Bayesian networks (BN) are a family of probabilistic graphical models representing a joint
distribution for a set of random variables. Conditional dependencies between these variables
are symbolized by a Directed Acyclic Graph (DAG). Two classical approaches are often
encountered when automatically determining an appropriate graphical structure from a
database of cases. The first one consists in the detection of (in)dependencies between the
variables (Cheng et al., 2002; Spirtes et al., 2001). The second one uses a scoring metric
(Chickering, 2002a). But neither the first nor the second are really satisfactory. The first
one uses statistical tests which are not reliable enough when in presence of small datasets.
If numerous variables are required, it is the computing time that highly increases. Even if
score-based methods require relatively less computation, their disadvantage lies in that the
searcher is often confronted with the presence of many local optima within the search space
of candidate DAGs. Finally, in the case of the automatic determination of the appropriate
graphical structure of a BN, it was shown that the search space is huge (Robinson, 1976) and
that is a NP-hard problem (Chickering et al., 1994) for a scoring approach.

In this field of research, evolutionary methods such as Genetic Algorithms (GA) (De Jong,
2006) have already been used in various forms (Acid & de Campos, 2003; Larrañaga et al.,
1996; Muruzábal & Cotta, 2004; Van Dijk, Thierens & Van Der Gaag, 2003; Wong et al., 1999;
2002). Among these works, two lines of research are interesting. The first idea is to effectively
reduce the search space using the notion of equivalence class (Pearl, 1988). In (Van Dijk,
Thierens & Van Der Gaag, 2003) for example the authors have tried to implement a genetic
algorithm over the partial directed acyclic graph space in hope to benefit from the resulting
non-redundancy, without noticeable effect. Our idea is to take advantage both from the
(relative) simplicity of the DAG space in terms of manipulation and fitness calculation and
the unicity of the equivalence classes’ representations.

One major difficulty when tackling the problem of structure learning with scoring methods –
evolutionary methods included – is to avoid the premature convergence of the population to
a local optimum. When using a genetic algorithm, local optima avoidance is often ensured by
preserving some genetic diversity. However, the latter often leads to slow convergence and
difficulties in tuning the GA parameters.
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To overcome these problems, we designed a general genetic algorithm based upon dedicated
operators: mutation, crossover but also a mutual information-driven repair operator which
ensures the closeness of the previous. Various strategies were then tested in order to find a
balance between speed of convergence and avoidance of local optima. We focus particularly
onto two of these: a new adaptive scheme to the mutation rate on one hand and sequential
niching techniques on the other.

The remaining of the chapter is structured as follows: in the second section we will define
the problem, ended by a brief state of the art. In the third section, we will show how an
evolutionary approach is well suited to this kind of problem. After briefly recalling the theory
of genetic algorithms, we will describe the representation of a Bayesian network adapted to
genetic algorithms and all the needed operators necessary to take in account the inherent
constraints to Bayesian networks. In the fourth section the various strategies will then be
developed: adaptive scheme to the mutation rate on one hand and niching techniques on the
other hand. The fifth section will describe the test protocol and the results obtained compared
to other classical algorithms. A study of the behavior of the used strategies will also be given.
And finally, the sixth section will present an application of these algorithms in the field of
graphic symbol recognition.

2. Problem settings and related work

2.1 Settings

A probabilistic graphical model can represent a whole of conditional relations within a field
X = {X1, X2, . . . , Xn} of random variables having each one their own field of definition.
Bayesian networks belong to a specific branch of the family of the probabilistic graphical
models and appear as a directed acryclic graph (DAG) symbolizing the various dependences
existing between the variables represented. An example of such a model is given Fig. 1.

A Bayesian network is denoted B = {G, θ}. Here, G = {X, E} is a directed acyclic graph
whose set of vertices X represents a set of random variables and its set of arcs E represents the
dependencies between these variables. The set of parameters θ holds the conditional proba-
bilities for each vertices, depending on the values taken by its parents in G. The probability
k = {P(Xk|Pa(Xk))}, where Pa(Xk) are the parents of variable Xk in G. If Xk has no parents,
then Pa(Xk) = ∅.
The main convenience of Bayesian networks is that, given the representation of conditional
independences by its structure and the set θ of local conditional distributions, we can write
the global joint probability distribution as:

P(X1, . . . , Xn) =
n

∏
k=1

P(Xk|Pa(Xk)) (1)

2.2 Field of applications of Bayesian networks

Bayesian networks are encountered in various applications like filtering junk e-mail (Sahami
et al., 1998), assistance for blind people (Lacey & MacNamara, 2000), meteorology (Cano et al.,
2004), traffic accident reconstruction (Davis, 2003), image analysis for tactical computer-aided
decision (Fennell & Wishner, 1998), market research (Jaronski et al., 2001), user assistance in
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Fig. 1. Example of a Bayesian network.

software use (Horvitz et al., 1998), fraud detection (Ezawa & Schuermann, 1995), human-
machine interaction enhancement (Allanach et al., 2004).

The growing interest, since the mid-nineties, that has been shown by the industry for Bayesian
models is growing particularly through the widespread process of interaction between man
and machine to accelerate decisions. Moreover, it should be emphasized their ability, in
combination with Bayesian statistical methods (i.e. taking into account prior probability
distribution model) to combine the knowledge derived from the observed domain with a
prior knowledge of that domain. This knowledge, subjective, is frequently the product of
the advice of a human expert on the subject. This property is valuable when it is known that
in the practical application, data acquisition is not only costly in resources and in time, but,
unfortunately, often leads to a small knowledge database.

2.3 Training the structure of a Bayesian network

Learning Bayesian network can be broken up into two phases. As a first step, the network
structure is determined, either by an expert, either automatically from observations made
over the studied domain (most often). Finally, the set of parameters θ is defined here too by
an expert or by means of an algorithm.

The problem of learning structure can be compared to the exploration of the data, i.e. the
extraction of knowledge (in our case, network topology) from a database (Krause, 1999). It
is not always possible for experts to determine the structure of a Bayesian network. In some
cases, the determination of the model can therefore be a problem to resolve. Thus, in (Yu et al.,
2002) learning the structure of a Bayesian network can be used to identify the most obvious
relationships between different genetic regulators in order to guide subsequent experiments.
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The structure is then only a part of the solution to the problem but itself a solution.

Learning the structure of a Bayesian network may need to take into account the nature of the
data provided for learning (or just the nature of the modeled domain): continuous variables
– variables can take their values in a continuous space (Cobb & Shenoy, 2006; Lauritzen &
Wermuth, 1989; Lerner et al., 2001) –, incomplete databases (Heckerman, 1995; Lauritzen,
1995). We assume in this work that the variables modeled take their values in a discrete
set, they are fully observed, there is no latent variable i.e. there is no model in the field of
non-observable variable that is the parent of two or more observed variables.

The methods used for learning the structure of a Bayesian network can be divided into two
main groups:

1. Discovery of independence relationships: these methods consist in the testing proce-
dures on allowing conditional independence to find a structure;

2. Exploration and evaluation: these methods use a score to evaluate the ability of the
graph to recreate conditional independence within the model. A search algorithm will
build a solution based on the value of the score and will make it evolve iteratively.

Without being exhaustive, belonging to the statistical test-based methods it should be noted
first the algorithm PC, changing the algorithm SGS (Spirtes et al., 2001). In this approach,
considering a graph G = {X, E, θ}), two vertices Xi and Xj from X and a subset of vertices
SXi ,Xj

∈ X/{Xi, Xj}, the vertices Xi and Xj are connected by an arc in G if there is no SXi ,Xj

such as (Xi⊥Xj|SXi ,Xj
) where ⊥ denotes the relation of conditional independence. Based

on an undirected and fully connected graph, the detection of independence allows us to
remove the corresponding arcs until the obtention the skeleton of the expected DAG. Then
follow two distinct phases: i) detection and determination of the V-structures1 of the graph
and ii) orientation of the remaining arcs. The algorithm returns a directed graph belonging
to the Markov’s equivalence class of the sought model. The orientation of the arcs, except
those of V-structures detected, does not necessarily correspond to the real causality of this
model. In parallel to the algorithm PC, another algorithm, called IC (Inductive Causation)
has been developed by the team of Judea Pearl (Pearl & Verma, 1991). This algorithm is
similar to the algorithm PC, but starts with an empty structure and links couples of variables
as soon as a conditional dependency is detected (in the sense that there is no identified
subset conditioning SXi ,Xj

such as (Xi⊥Xj|SXi ,Xj
)). The common disadvantage to the two

algorithms is the numerous tests required to detect conditional independences. Finally, the
algorithm BNPC – Bayes Net Power Constructor – (Cheng et al., 2002) uses a quantitative
analysis of mutual information between the variables in the studied field to build a structure
G. Tests of conditional independence are equivalent to determine a threshold for mutual
information (conditional or not) between couples of involved variables. In the latter case, a
work (Chickering & Meek, 2003) comes to question the reliability of BNPC.

Many algorithms, by conducting casual research, are quite similar. These algorithms propose
a gradual construction of the structure returned. However, we noticed some remaining
shortcomings. In the presence of an insufficient number of cases describing the observed
domain, the statistical tests of independence are not reliable enough. The number of tests
to be independently carried out to cover all the variables is huge. An alternative is the

1 We call V-structure, or convergence, a triplet (x, y, z) such as y depends on x and z(x → y ← z).
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use of a measure for evaluating the quality of a structure knowing the training database in
combination with a heuristic exploring a space of options.

Scoring methods use a score to evaluate the consistency of the current structure with the
probability distribution that generated the data. Thus, in (Cooper & Herskovits, 1992)
a formulation was proposed, under certain conditions, to compute the Bayesian score,
(denoted BD and corresponds in fact to the marginal likelihood we are trying to maximize
through the determination of a structure G). In (Heckerman, 1995) a variant of Bayesian
score based on an assumption of equivalency of likelihood is presented. BDe, the resulting
score, has the advantage of preventing a particular configuration of a variable Xi and of its
parents Pa(Xi) from being regarded as impossible. A variant, BDeu, initializes the prior
probability distributions of parameters according to a uniform law. In (Kayaalp & Cooper,
2002) authors have shown that under certain conditions, this algorithm was able to detect
arcs corresponding to low-weighted conditional dependencies. AIC, the Akaike Information
Criterion (Akaike, 1970) tries to avoid the learning problems related to likelihood alone.
When penalizing the complexity of the structures evaluated, the AIC criterion focuses the
simplest model being the most expressive of extracted knowledge from the base D. AIC is
not consistent with the dimension of the model, with the result that other alternatives have
emerged, for example CAIC – Consistent AIC – (Bozdogan, 1987). If the size of the database
is very small, it is generally preferable to use AICC – Akaike Information Corrected Criterion
– (Hurvich & Tsai, 1989). The MDL criterion (Rissanen, 1978; Suzuki, 1996) incorporates
a penalizing scheme for the structures which are too complex. It takes into account the
complexity of the model and the complexity of encoding data related to this model. Finally,
the BIC criterion (Bayesian Information Criterion), proposed in (Schwartz, 1978), is similar
to the AIC criterion. Properties such as equivalence, breakdown-ability of the score and
consistency are introduced. Due to its tendency to return the simplest models (Bouckaert,
1994), BIC is a metric evaluation as widely used as the BDeu score.

To efficiently go through the huge space of solutions, algorithms use heuristics. We can found
in the literature deterministic ones like K2 (Cooper & Herskovits, 1992), GES (Chickering,
2002b), KES (Nielsen et al., 2003) or stochastic ones like an application of Monte Carlo Markov
Chains methods (Madigan & York, 1995) for example. We particularly notice evolutionary
methods applied to the training of a Bayesian network structure. Initial work is presented
in (Etxeberria et al., 1997; Larrañaga et al., 1996). In this work, the structure is build using
a genetic algorithm and with or without the knowledge of a topologically correct order on
the variables of the network. In (Larrañaga et al., 1996) an evolutionary algorithm is used
to conduct research over all topologic orders and then the K2 algorithm is used to train the
model. Cotta and Muruzábal (Cotta & Muruzábal, 2002) emphasize the use of phenotypic
operators instead of genotypic ones. The first one takes into account the expression of the
individual’s allele while the latter uses a purely random selection. In (Wong et al., 1999),
structures are learned using the MDL criterion. Their algorithm, named MDLEP, does not
require a crossover operator but is based on a succession of mutation operators. An advanced
version of MDLEP named HEP (Hybrid Evolutionary Programming) was proposed (Wong
et al., 2002). Based on a hybrid technique, it limits the search space by determining in advance
a network skeleton by conducting a series of low-order tests of independence: if X and Y
are independent variables, the arcs X → Y and X ← Y can not be added by the mutation
operator. The algorithm forbids the creation of a cycle during and after the mutation. In
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(Van Dijk & Thierens, 2004; Van Dijk, Thierens & Van Der Gaag, 2003; Van Dijk, Van Der
Gaag & Thierens, 2003) a similar method was proposed. The chromosome contains all the
arcs of the network, and three alleles are defined: none, X → Y and X → Y. The algorithm
acts as Wong’s one (Wong et al., 2002) but only recombination and repair are used to make
the individuals evolve. The results presented in (Van Dijk & Thierens, 2004) are slightly
better than these obtained by HEP. A search, directly done in the equivalence graph space,
is presented in (Muruzábal & Cotta, 2004; 2007). Another approach, where the algorithm
works in the limited partially directed acyclic graph is reported in (Acid & de Campos,
2003). These are a special form of PDAG where many of these could fit the same equivalence
class. Finally, approaches such as Estimation of Distribution Algorithms (EDA) are applied
in (Mühlenbein & PaaB, 1996). In (Blanco et al., 2003), the authors have implemented two
approaches (UMDA and PBIL) to search structures over the PDAG space. These algorithms
were applied to the distribution of arcs in the adjacency matrix of the expected structure.
The results appear to support the approach PBIL. In (Romero et al., 2004), two approaches
(UMDA and MIMIC) have been applied to the topological orders space. Individuals (i.e.
topological orders candidates) are themselves evaluated with the Bayesian scoring.

3. Genetic algorithm design

Genetic algorithms are a family of computational models inspired by Darwin’s theory of Evo-
lution. Genetic algorithms encode potential solutions to a problem in a chromosome-like data
structure, exploring and exploiting the search space using dedicated operators. Their actual
form is mainly issued from the work of J.Holland (Holland, 1992) in which we can find the
general scheme of a genetic algorithm (see Algorithm. 1) called canonical GA. Throughout the
years, different strategies and operators have been developed in order to perform an efficient
search over the considered space of individuals: selection, mutation and crossing operators,
etc.

Algorithm 1 Holland’s canonical genetic algorithm (Holland, 1992)

/* Initialization */
t ← 0
Randomly and uniformly generate an initial population P0 of λ individuals and evaluate
them using a fitness function f
/* Evolution */
repeat

Select Pt for the reproduction
Build new individuals by application of the crossing operator on the beforehand selected
individuals
Apply a mutation operator to the new individuals: individuals obtained are affected to
the new population Pt+1

/* Evaluation */
Evaluate the individuals of Pt+1 using f
t ← t + 1;
/* Stop */

until a definite criterion is met
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Applied to the search for Bayesian networks structures, genetic algorithm pose two problems:

1. The constraint on the absence of circuits in the structures creates a strong link between
the different genes and alleles of a person, regardless of the chosen representation. Ide-
ally, operators should reflect this property.

2. Often, a heuristic searching over the space of solutions (genetic algorithm, greedy algo-
rithm and so on.) finds itself trapped in a local optimum. This makes it difficult to find
a balance between a technique able to avoid this problem, with the risk of overlooking
many quality solutions, and a more careful exploration with a good chance to compute
only a locally-optimal solution.

If the first item involves essentially the design of a thoughtful and evolutionary approach to
the problem, the second point characterizes an issue relating to the multimodal optimization.
For this kind of problem, there is a particular methodology: the niching.

We now proceed to a description of a genetic algorithm adapted to find a good structure for a
Bayesian network.

3.1 Representation

As our search is performed over the space of directed acyclic graphs, each invidual is
represented by an adjacency matrix. Denoting with N the number of variables in the domain,
an individual is thus described by an N × N binary matrix Adjij where one of its coefficients
aij is equal to 1 if an oriented arc going from Xi to Xj in G exists.

Whereas the traditional genetic algorithm considers chromosomes defined by a binary alpha-
bet, we chose to model the Bayesian network structure by a chain of N genes (where N is
the number of variables in the network). Each gene represents one row of the adjacency ma-
trix, that’s to say each gene corresponds to the set of parents of one variable. Although this
non-binary encoding is unusual in the domain of structure learning, it is not an uncommon
practice among genetic algorithms. In fact, this approach turns out to be especially practical
for the manipulation and evaluation of candidate solutions.

3.2 Fitness Function

We chose to use the Bayesian Information Criterion (BIC) score as the fitness function for our
algorithm:

SBIC(B, D) = log
(

L(D|B, θ
MAP)

)

−
1

2
× dim(B)× log(N) (2)

where D represents the training data, θ
MAP the MAP-estimated parameters, and dim() is the

dimension function defined by Eq. 3:

dim(B) =
n

∑
i=1

(ri − 1)× ∏
Xk∈Pa(Xk)

rk (3)

where ri is the number of possible values for Xi. The fitness function f (individual) can be
written as in Eq. 4:

f (individual) =
n

∑
k=1

fk(Xk, Pa(Xk)) (4)
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where fk is the local BIC score computed over the family of variable Xk.

The genetic algorithm takes advantage of the breakdown of the evaluation function and eval-
uates new individuals from their inception, through crossing, mutation or repair. The impact
of any change – on local – an individual’s genome shall be immediately passed on to the phe-
notype of it through the computing of the local score. The direct consequence is that the eval-
uation phase of the generated population took actually place for each individual – depending
on the changes made – as a result of changes endured by him.

3.3 Setting up the population

We choose to initialize the population of structures by the various trees (depending on the
chosen root vertex) returned by the MWST algorithm. Although these n trees are Markov-
equivalent, the initialization can generate individuals with relevant characteristics. Moreover,
since early generations, the combined action of the crossover and the mutation operators pro-
vides various and good quality individuals in order to significantly improve the convergence
time. We use the undirected tree returned by the algorithm: each individual of the popula-
tion is initialized by a tree directed from a randomly-chosen root. This mechanism introduces
some diversity in the population.

3.4 Selection of the individuals

We use a rank selection where each one of the λ individuals in the population is selected with
a probability equal to:

Pselect(individual) = 2 ×
λ + 1 − rank(individual)

λ × (λ + 1)
(5)

This strategy allows promote individuals which best suit the problem while leaving the weak-
est one the opportunity to participate to the evolution process. If the major drawback of this
method is to require a systematic classification of individuals in advance, the cost is neg-
ligible. Other common strategies have been evaluated without success: the roulette wheel
(prematured convergence), the tournament (the selection pressure remained too strong) and
the fitness scaling (Forrest, 1985; Kreinovich et al., 1993). The latter aims to allow in the first
instance to prevent the phenomenon of predominance of "super individuals" in the early gen-
erations while ensuring when the population converges, that the mid-quality individuals did
not hamper the reproduction of the best ones.

3.5 Repair operator

In order to preserve the closeness of our operators over the space of directed acyclic graphs,
we need to design a repair operator to convert those invalid graphs (typically, cyclic directed
graphs) into valid directed acyclic graphs. When one cycle is detected within a graph, the
operator suppresses the one arc in the cycle bearing the weakest mutual information. The
mutual information between two variables is defined as in (Chow & Liu, 1968):

W(XA, XB) = ∑
XA ,XB

Nab

N
× log

(

Nab × N

Na × Nb

)

(6)

Where the mutual information W(XA, XB) between two variables XA and XB is calculated
according to the number of times Nab that XA = a and XB = b, Na the number of times
XA = a and so on. The mutual information is computed once for a given database. It may
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happen that an individual has several circuits, as a result of a mutation that generated and/or
inverted several arcs. In this case, the repair is iteratively performed, starting with deleting
the shortest circuit until the entire circuit has been deleted.

3.6 Crossover Operator

A first attempt was to create a one-point crossover operator. At least, the operator used has
been developed from the model of (Vekaria & Clack, 1998). This operator is used to generate
two individuals with the particularity of defining the crossing point as a function of the quality
of the individual. The form taken by the criterion (BIC and, in general, by any decomposable
score) makes it possible to assign a local score to the set {Xi, Pa(Xi)}. Using these different lo-
cal scores we can therefore choose to generate an individual which received the best elements
of his ancestors. This operation is shown Fig. 2. This generation can be performed only if a
DAG is produced (the operator is closed). In our experiments, Pcross, the probability that an
individual is crossed with another is set to 0.8.

Fig. 2. The crossover operator and the transformation it performs over two DAGs

3.7 Mutation operator

Each node of one individual has a Pmute probability of losing or gaining one parent or to see
one of its incoming arcs reverted (ie. reversing the relationship with one parent).

3.8 Other Parameters

The five best individuals from the previous population are automatically transferred to the
next one. The rest of the population at t + 1 is composed of the S − 5 best children where S is
the size of the population.
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4. Strategies

Now, after describing our basic GA, we will present how it can be improved by i) a specific
adaptive mutation scheme and ii) an exploration strategy: the niching.

The many parameters of a GA are usually fixed by the user and, unfortunately, usually lead
to sub-optimal choices. As the amount of tests required to evaluate all the conceivable sets of
parameters will be eventually exponential, a natural approach consists in letting the different
parameters evolve along with the algorithm. (Eiben et al., 1999) defines a terminology for
self-adaptiveness which can be resumed as follows:

• Deterministic Parameter Control: the parameters are modified by a deterministic rule.

• Adaptive Parameter Control: consists in modifying the parameters using feedback from
the search.

• Self-adaptive Parameter Control: parameters are encoded in the individuals and evolve
along.

We now present three techniques. The first one, an adaptive parameter control, aims at man-
aging the mutation rate. The second one, an evolutionary method tries to avoid local optima
using a penalizing scheme. Finaly, the third one, another evolutionary method, makes many
populations evolve granting sometimes a few individuals to go from one population to an-
other.

4.1 Self-adaptive scheme of the mutation rate

As for the mutation rate, the usual approach consists in starting with a high mutation rate
and reducing it as the population converges. Indeed, as the population clusters near one
optimum, high mutation rates tend to be degrading. In this case, a self-adaptive strategy
would naturally decrease the mutation rate of individuals so that they would be more likely
to undergo the minor changes required to reach the optimum.

Other strategies have been proposed which allow the individual mutation rates to either in-
crease or decrease, such as in (Thierens, 2002). There, the mutation step of one individual
induces three differently rated mutations: greater, equal and smaller than the individual’s ac-
tual rate. The issued individual and its mutation rate are chosen accordingly to the qualitative
results of the three mutations. Unfortunately, as the mutation process is the most costly oper-
ation in our algorithm, we obviously cannot choose such a strategy. Therefore, we designed
the following adaptive policy.
We propose to conduct the search over the space of solutions by taking into account infor-
mation on the quality of later search. Our goal is to define a probability distribution which
drives the choice of the mutation operation. This distribution should reflect the performance
of the mutation operations being applied over the individuals during the previous iterations
of the search.

Let us define P(i, j, opmute) the probability that the coefficient aij of the adjacency matrix is
modified by the mutation operation opmute. The mutation decays according to the choice of i, j
and opmute. We can simplify the density of probability by conditioning a subset of {i, j, opmute}
by its complementary. This latter being activated according to a static distribution of probabil-
ity. After studying all the possible combination, we have chosen to design a process to control
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P(i|opmute, j). This one influences the choice of the source vertex knowing the destination ver-
tex and for a given mutation operation. So the mutation operator can be rewritten such as
shown by Algorithm 2.

Algorithm 2 The mutation operator scheme

for j = 1 to n do

if Pa(Xj) mute with a probability Pmute then

choose a mutation operation among these allowed on Pa(Xj)
apply opmute(i, j) with the probability P(i|opmute, j)

end if

end for

Assuming that the selection probability of Pa(Xj) is uniformly distributed and equals a given
Pmute, Eq. 7 must be verified:











∑opmute
δ
(i,j)
opmute

P(i|opmute, j) = 1

δ
(i,j)
opmute

=

{

1 if opmute(i, j) is allowed
0 else

(7)

The diversity of the individuals lay down to compute P(i|opmute, j) for each allowed opmute

and for each individual Xj. We introduce a set of coefficients denoted ζ(i, j, opmute(i, j)) where
1 ≤ i, j ≤ n and i �= j to control P(i|opmute, j). So we define:

P(i|opmute, j) =
ζ(i, j, opmute(i, j))

∑ δ
(i,j)
opmute

ζ(i, j, opmute(i, j))
(8)

During the initialization and without any prior knowledge, ζ(i, j, opmute(i, j)) follows an uni-
form distribution:

ζ(i, j, opmute(i, j)) =
1

n − 1

{

∀ 1 ≤ i, j ≤ n
∀ opmute

(9)

Finally, to avoid the predominance of a given opmute (probability set to 1) and a total lack of a
given opmute (probability set to 0) we add a constraint given by Eq. 10:

0.01 ≤ ζ(i, j, opmute(i, j)) ≤ 0.9

{

∀ 1 ≤ i, j ≤ n
∀ opmute

(10)

Now, to modify ζ(i, j, opmute(i, j)) we must take in account the quality of the mutations and
either their frequencies. After each evolution phase, the ζ(i, j, opmute(i, j)) associated to the
opmute applied at least one time are reestimated. This compute is made according to a param-
eter γ which quantifies the modification range of ζ(i, j, opmute(i, j)) and depends on ω which
is computed as the number of successful applications of opmute minus the number of detri-
mental ones in the current population. Eq. 11 gives the computation. In this relation, if we set
γ =0 the algorithm acts as the basic genetic algorithm previoulsy defined.

ζ(i, j, opmute(i, j)) =

{

min (ζ(i, j, opmute(i, j))× (1 − γ)ω , 0.9) if ω > 0
max (ζ(i, j, opmute(i, j))× (1 − γ)ω , 0.01) else

(11)

The regular update ζ(i, j, opmute(i, j)) leads to standardize the P(i|opmute, j) values and avoids
a prematured convergence of the algorithm as seen in (Glickman & Sycara, 2000) in which
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the mutation probability is strictly decreasing. Our approach is different from an EDA one:
we drive the evolution by influencing the mutation operator when an EDA makes the best
individuals features probability distribution evolve until then generated.

4.2 Niching

Niching methods appear to be a valuable choice for learning the structure of a Bayesian net-
work because they are well-adapted to multi-modal optimization problem. Two kind of nich-
ing techniques could be encountered: spatial ones and temporal ones. They all have in com-
mon the definition of a distance which is used to define the niches. In (Mahfoud, 1995), it
seemed to be expressed a global consensus about performance: spatial approach gives bet-
ter results than temporal one. But the latter is easier to implement because it consists in the
addition of a penalizing scheme to a given evolutionary method.

4.2.1 Sequential Niching

So we propose two algorithms. The first one is apparented to a sequential niching. It makes
a similar trend to that of a classic genetic algorithm (iterated cycles evaluation, selection,
crossover, mutation and replacement of individuals) except for the fact that a list of optima is
maintained. Individuals matching these optima see their fitness deteriorated to discourage
any inspection and maintenance of these individuals in the future.

The local optima, in the context of our method, correspond to the equivalence classes in the
meaning of Markov. When at least one equivalence class has been labelled as corresponding
to an optimum value of the fitness, the various individuals in the population belonging to
this optimum saw the value of their fitness deteriorated to discourage any further use of these
parts of the space of solutions. The determination of whether or not an individual belongs
to a class of equivalence of the list occurs during the evaluation phase, after generation by
crossover and mutation of the new population. The graph equivalent of each new individual
is then calculated and compared with those contained in the list of optima. If a match is
determined, then the individual sees his fitness penalized and set to at an arbitrary value
(very low, lower than the score of the empty structure).

The equivalence classes identified by the list are determined during the course of the algo-
rithm: if, after a predetermined number of iterations Iteopt, there is no improvement of the
fitness of the best individual, the algorithm retrieves the graph equivalent of the equivalence
class of it and adds it to the list.

It is important to note here that the local optima are not formally banned in the population.
The registered optima may well reappear in our population due to a crossover. The eval-
uation of these equivalence classes began, in fact until the end of a period of change. An
optimum previously memorized may well reappear at the end of the crossover operation
and the individual concerned undergo mutation allowing to explore the neighborhood of the
optimum.

The authors of (Beasley et al., 1993) carry out an evolutionary process reset after each deter-
mination of an optimum. Our algorithm continues the evolution considering the updated
list of these optima. However, by allowing the people to move in the neighborhood of the
detected optima, we seek to preserve the various building blocks hitherto found, as well as
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reducing the number of evaluations required by multiple launches of the algorithm.

At the meeting of a stopping criterion, the genetic algorithm completes its execution thus
returning the list of previously determined optima. The stopping criterion of the algorithm
can also be viewed in different ways, for example:

• After a fixed number of local optima detected.

• After a fixed number of iterations (generations).

We opt for the second option. Choosing a fixed number of local optima may, in fact,
appear to be a much more arbitrary choice as the number of iterations. Depending on the
problem under consideration and/or data learning, the number of local optima in which the
evolutionary process may vary. The algorithm returns a directed acyclic graph corresponding
to the instantiation of the graph equivalent attached to the highest score in the list of optima.

An important parameter of the algorithm is, at first glance, the threshold beyond which an
individual is identified as an optimum of the evaluation function. It is necessary to define a
value of this parameter, which we call Iteopt that is:

• Neither too small: too quickly consider an equivalence class as a local optimum slows
exploring the search space by the genetic algorithm, which focuses on many local op-
tima.

• Nor too high: loss of the benefit of the method staying too long in the same point in
space research: the local optima actually impede the progress of the research.

Experience has taught us that Iteopt value of between 15 and 25 iterations can get good results.
The value of the required parameter Iteopt seems to be fairly stable as it allows both to stay
a short time around the same optimum while allowing solutions to converge around it. The
value of the penalty imposed on equivalence classes is arbitrary. The only constraint is that
the value is lowered when assessing the optimum detected is lower than the worst possible
structure, for example: −1015.

4.2.2 Sequential and spatial niching combined

The second algorithm uses the same approach as for the sequential niching combined with
a technique used in parallels GAs to split the population. We use an island model approach
for our distributed algorithm. This model is inspired from a model used in genetic of
populations (Wright, 1964). In this model, the population is distributed to k islands. Each
island can exchange individuals with others avoiding the uniformization of the genome of
the individuals. The goals of all of this is to preserve (or to introduce) genetic diversity.

Some additional parameters are required to control this second algorithm. First, we denote
Imig the migration interval, i.e. the number of iteration of the GA between two migration
phases. Then, we use Rmig the migration rate: the rate of individuals selected for a migration.
Nisl is the number of islands and finally Isize represents the number of individuals in each
island.

In order to remember the local optima encountered by the populations, we follow the next
process:

• The population of each island evolves during Imig iterations and then transfer Rmig ×

Isize individuals.
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• Local optima detected in a given island are registered in a shared list. Then they can be
known by all the islands.

5. Evaluation and discussion

From an experimental point of view, the training of the structure of a Bayesian network con-
sists in:

• To have an input database containing examples of instantiation of the variables.

• To determine the conditional relationship between the variables of the model :

– Either from statistical tests performed on several subsets of variables.

– Either from measurements of a match between a given solution and the training
database.

• To compare the learned structures to determine the respective qualities of the different
algorithms used.

5.1 Tested methods

So that we can compare with existing methods, we used some of the most-used learning meth-
ods: the K2 algorithm, the greedy algorithm applied to the structures space, noted GS; the
greedy algorithm applied to the graph equivalent space, noted GES; the MWST algorithm,
the PC algorithm. These methods are compared to our four evolutionary algorithms learning:
the simple genetic algorithm (GA); genetic algorithm combined with a strategy of sequential
niching (GA-SN); the hybrid sequential-spatial genetic approach (GA-HN); the genetic algo-
rithm with the dynamic adaptive mutation scheme GA-AM.

5.2 The Bayesian networks used

We apply the various algorithms in search of some common structures like: Insurance (Binder
et al., 1997) consisting of 27 variables and 52 arcs; ALARM (Beinlich et al., 1989) consisting of
37 variables and 46 arcs. We use each of these networks to summarize:

• Four training data sets for each network, each one containing a number of databases of
the same size (250, 500, 1000 & 2000 samples).

• A single and large database (20000 or 30000 samples) for each network. This one is sup-
posed to be sufficiently representative of the conditional dependencies of the network
it comes from.

All these data sets are obtained by logic probabilistic sampling (Henrion, 1988): the value of
vertices with no predecessors is randomly set, according to the probability distributions of the
guenine network, and then the remaining variables are sampled following the same principle,
taking into account the values of the parent vertices. We use several training databases for a
given network and for a given number of cases, in order to reduce any bias due to sampling
error. Indeed, in the case of small databases, it is possible (and it is common) that the extracted
statistics are not exactly the conditional dependencies in the guenine network. After training
with small databases, the BIC score of the returned structures by the different methods are
computed from the large database mentioned earlier, in order to assess qualitative measures.
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5.3 Experiments

GAs: The parameters of the evolutionary algorithms are given in Table 1.
GS: This algorithm is initialized with a tree returned by the MWST method, where the root
vertex is randomly chosen.
GES: This algorithm is initialized with the empty structure.
MWST: it is initialized with a root node randomly selected (it had no effect on the score of the
structure obtained).
K2: This algorithm requires a topological order on the vertices of the graph. We used for this
purpose two types of initialization:

• The topological order of a tree returned by the MWST algorithm (method K2-T)

• A topological order random (method K2-R)

Parameter Value Remarks

Population size 150

Mutation probability 1/n

Crossover probability 0.8

Recombination scheme elitist The best solution is never lost

Stop criterion 1000 iter.

Initialisation See footnote2

Iteopt 20 For GA-SN only

γ 0.5 For GA-AM only

Imig 20 For GA-HN only

Rmig 0.1 For GA-HN only

Nisl 30 For GA-HN only

Isize 30 For GA-HN only

Table 1. Parameters used for the evolutionary algorithms.

For each instance of K2-R – i.e. for each training database considered – we are proceeding
with 5 × n random initialization for choosing only those returning the best BIC score.

Some of these values (crossover, mutation probability) are coming from some habits of the
domain (Bäck, 1993) but especially from experiments too. The choice of the iteration number
is therefore sufficient to monitor and interpret the performance of the method considered
while avoiding a number of assessments distorting the comparison of results with greedy
methods.

We evaluate the quality of the solutions with two criteria: the BIC score from one hand, and
a graphic distance measuring the number of differences between two graphs on the other
hand. The latter is defined from 4 terms: (D) the total number of different arcs between two
graphs G1 and G2, (⊕) the number of arcs existing in G1 but not in G2, (⊖) the number of
arcs existing in G2 but not in G1 and (inv) the number of arcs inverted in G1 comparing to G2.
These terms are important because, when considering two graphs of the same equivalence
class, some arcs could be inverted. This implies that the corresponding arcs are not oriented
in the corresponding PDAG. The consequence is that G1 and G2 have the same BIC score but
not the same graphic distance. To compare the results with we also give the score of the empty
structure G0 and the score of the reference network GR.
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5.4 Results for the INSURANCE network

Results are given Table 2 & Table 3. The evaluation is averaged over 30 databases. Table 2
shows the means and the standard deviations of the BIC scores. For a better seeing, values
are all divided by 10. Values labelled by † are significantly different from the best mean score
(Mann-Whitney’s test).

The results in Table 2 give an advantage to evolutionary methods. While it is impossible to
distinguish clearly the performance of the different evolutionary methods, it is interesting to
note that these latter generally outperform algorithms like GES and GS. Only the algorithm
GS has such good results as the evolutionary methods on small databases (250 and 500). We
can notice too, according to a Mann-Whitney’s test that, for large datasets, GA-SN & GA-AM
returns a structure close to the original one. Standard deviations are not very large for the
GAs, showing a relative stability of the algorithms and so, a good avoidance of local optima.

Table 3 shows the mean structural differences between the original network and these deliv-
ered by some learning algorithms. There, we can see that evolutionary methods, particularly
GA-SN, return the structures which are the closest to the original one. This network was cho-
sen because it contains numerous low-valued conditional probabilities. These are difficult to
find using small databases. So even if the BIC score is rather close to the original one, graph-
ical distances reveals some differences. First, we can see that D is rather high (the original
network GR is made with only 52 arcs, compared to D which minimum is 24.4) even if the BIC
score is very close (resp. -28353 compared to -28681). Second, as expected, D decreases when
the size of the learning database grows, mainly because of the (-) term. Third, GAs obtains the
closest models to the original in 11 cases over 16; the 5 others are provided by GES.

5.5 Results for the ALARM network

This network contains more vertices than the INSURANCE one, but less low-valued arcs. The
evaluation is averaged over 30 databases. Evolutionary algorithms obtain the best scores. But
while GES provides less qualitative solutions accordingly to the BIC score, these solutions are
closest to the original one if we consider the graphical distance. Here, a strategy consisting in
gradually building a solution seems to produce better structures than an evolutionary search.
In this case, a GA has a huge space (3 × 10237 when applying the Robinson’s formula) into
which one it enumerates solutions. If we increases the size of the population the results are
better than these provided by GES.

5.6 Behavior of the GAs

Now look at some measures in order to evaluate the behavior of our genetic algorithms.

A repair operator was designed to avoid individuals having a cycle. Statistics computed
during the tests show that the rate of individuals repaired does not seem to depend neither
on the algorithm used nor on the size of the training set. It seems to be directly related to the
complexity of the network. Thus, this rate is about 15% for the INSURANCE network and
about 7% for the ALARM network.

The mean number of iterations before the GA found the best solution returned for the
INSURANCE network is given Table 4. The data obtained for the ALARM network are the
same order of magnitude. We note here that GA-HN quickly gets the best solution. This
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Insurance
250 500 1000 2000

GA −32135 ± 290 −31200 ± 333 −29584 ± 359 −28841 ± 89†

GA-SN −31917 ± 286 −31099 ± 282 −29766 ± 492 -28681±156

GA-AM -31826±270 −31076 ± 151 −29635 ± 261 −28688 ± 165

GA-HN −31958 ± 246 -31075±255 -29428±290 −28715 ± 164

GS −32227 ± 397 −31217 ± 314 −29789 ± 225† −28865 ± 151†

GES −33572 ± 247† −31952 ± 273† −30448 ± 836† −29255 ± 634†

K2-T −32334 ± 489† −31772 ± 339† −30322 ± 337† −29248 ± 163†

K2-R −33002 ± 489† −31858 ± 395† −29866 ± 281† −29320 ± 245†

MWST −34045 ± 141† −33791 ± 519† −33744 ± 296† −33717 ± 254†

Original −28353

G0 −45614

Table 2. Means and standard deviations of the BIC scores (INSURANCE).

Insurance
250 500

D ⊕ Inv ⊖ D ⊕ Inv ⊖

GA 39, 6 4, 4 7, 2 28 34 3, 1 7, 6 23, 3

GA-SN 37 3, 5 7, 1 26, 4 35, 1 3, 7 7, 4 24

GA-AM 37, 5 4, 3 6, 6 26, 6 33, 9 3, 2 7, 7 23

GA-HN 38, 1 3, 5 7, 5 27, 1 33,3 3 7, 3 23

GS 42, 1 4, 6 9, 4 28, 1 37, 7 4, 5 9, 4 23, 8

GES 39, 5 3, 7 7, 1 28, 7 35, 1 3 7, 1 25

K2-T 42, 7 5, 1 8, 4 29, 2 40, 8 5, 4 8, 8 26, 6

K2-R 42, 4 4, 8 7, 2 30, 4 41, 8 6, 5 8, 8 26, 6

MWST 41, 7 4 7, 7 30 41, 3 3, 5 8, 3 29, 5

1000 2000

D ⊕ Inv ⊖ D ⊕ Inv ⊖

GA 39, 6 4, 4 7, 2 28 27, 8 4, 7 8 15, 1

GA-SN 30, 8 3, 8 7, 4 19, 6 24,4 3, 4 6, 7 14, 3

GA-AM 31, 4 4 8 19, 4 27 4, 3 8, 4 14, 3

GA-HN 29,3 3, 6 6, 5 19, 2 26, 6 3, 6 8, 6 14, 4

GS 35, 9 5, 1 10 20, 8 31, 9 5, 2 11, 4 15, 3

GES 32, 4 4, 1 8, 1 20, 2 27, 5 4 8, 4 15, 1

K2-T 38, 7 5, 9 11 21, 8 34, 6 7, 3 10, 9 16, 4

K2-R 39, 6 8, 3 8, 3 23 36, 1 8, 5 8, 5 9, 1

MWST 37, 7 1, 7 8, 3 27, 7 36, 3 1, 2 7, 9 27, 2

Table 3. Mean structural differences between the original INSURANCE network and the best
solutions founded by some algorithms.
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makes it competitive in terms of computing time if we could detect this event.

Insurance Net.
250 500 1000 2000

GA 364 ± 319 454 ± 295 425 ± 249 555 ± 278

GA-SN 704 ± 295 605 ± 321 694 ± 258 723 ± 234

GA-AM 398 ± 326 414 ± 277 526 ± 320 501 ± 281

GA-HN 82 ± 59 106 ± 77 166 ± 84 116 ± 27

Table 4. Mean of the necessary number of iterations to find the best structure (INSURANCE).

The averaged computing time of each algorithm is given Table 5 (for the ALARM network).
We note here that GA-HN is only three times slower than GES. We note too that these
computing times are rather stable when the size of the database increases.

ALARM Net.
250 500 1000 2000

GA 3593 ± 47 3659 ± 41 3871 ± 53 4088 ± 180

GA-SN 3843 ± 58 3877 ± 44 4051 ± 59 4332 ± 78

GA-AM 3875 ± 32 4005 ± 43 4481 ± 46 4834 ± 52

GA-HN 9118 ± 269 9179 ± 285 9026 ± 236 9214 ± 244

GS 9040 ± 1866 9503 ± 1555 12283 ± 1403 16216 ± 2192

GES 3112 ± 321 2762 ± 166 4055 ± 3, 4 5759 ± 420

K2-T 733 ± 9 855 ± 25 1011 ± 14 1184 ± 8

K2-R 3734 ± 61 4368 ± 152 5019 ± 67 5982 ± 43

MWST 10 ± 1 10 ± 2 11 ± 1 12 ± 1

Table 5. Averaged computing times (in seconds) and standard deviations (ALARM).

6. Application

Graphics recognition deals with graphic entities in document images and is a subfield of
document image analysis. These graphic entities could correspond to symbols, mathematical
formulas, musical scores, silhouettes, logos etc., depending on the application domain.
Documents from electronics, engineering, music, architecture and various other fields use
domain-dependent graphic notations which are based on particular alphabets of symbols.
These industries have a rich heritage of hand-drawn documents and because of high
demands of application domains, overtime symbol recognition is becoming core goal of
automatic image analysis and understanding systems. The method proposed in (Luqman
et al., 2009) is a hybrid of structural and statistical pattern recognition approaches where the
representational power of structural approaches is exploited and the computational efficiency
of statistical classifiers is employed.

In our knowledge there are only a few methods which use Bayesian networks for graphic
symbol recognition. Recently Barrat et al. (Barrat et al., 2007) have used the naive Bayes
classifier in a pure statistical manner for graphic symbol recognition. Their system uses three
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shape descriptors: Generic Fourier Descriptor, Zernike descriptor & R-Signature 1D, and
applies dimensionality reduction for extracting the most relevant and discriminating features
to formulate a feature vector. This reduces the length of their feature vector and eventually
the number of variables (nodes) in Bayesian network. The naive Bayes classifier is a powerful
Bayesian classifier but it assumes a strong independence relationship among attributes given
the class variable. We believe that the power of Bayesian networks is not fully explored;
as instead of using predefined dependency relationships, if we find dependencies between
all variable pairs from underlying data we can obtain a more powerful Bayesian network
classifier. This will also help to ignore irrelevant variables and exploit the variables that are
interesting for discriminating symbols in underlying symbol set.

Our method is an original adaptation of Bayesian network learning for the problem of
graphic symbol recognition. For symbol representation, we use a structural signature. The
signature is computed from the attributed relational graph (ARG) of symbol and is composed
of geometric & topologic characteristics of the structure of symbol. We use (overlapping)
fuzzy intervals for computing noise sensitive features in signature. This increases the ability
of our signature to resist against irregularities (Mitra & Pal, 2005) that may be introduced in
the shape of symbol by deformations & degradations. For symbol recognition, we employ
a Bayesian network. This network is learned from underlying training data by using the
GA-HN algorithm. A query symbol is classified by using Bayesian probabilistic inference
(on encoded joint probability distribution). We have selected the features in signature very
carefully to best suit them to linear graphic symbols and to restrict their number to minimum;
as Bayesian network algorithms are known to perform better for a smaller number of nodes.
Our structural signature makes the proposed system robust & independent of application
domains and it could be used for all types of 2D linear graphic symbols.

After representing the symbols in learning set by ARG and describing them by structural
signatures, we proceed to learning of a Bayesian network. The signatures are first dis-
cretized. We discretize each feature variable (of signature) separately and independently
of others. The class labels are chosen intelligently in order to avoid the need of any dis-
cretization for them. The discretization of number of nodes and number of arcs achieves a
comparison of similarity of symbols (instead of strict comparison of exact feature values).
This discretization step also ensures that the features in signature of query symbol will look
for symbols whose number of nodes and arcs lie in same intervals as that of the query symbol.

The Bayesian network is learned in two steps. First we learn the structure of the network.
Despite the training algorithms are evolutionary one, they have provided stable results (for
a given dataset multiple invocations always returned identical network structures). Each
feature in signature becomes a node of network. The goal of structure learning stage is to
find the best network structure from underlying data which contains all possible dependency
relationships between all variable pairs. The structure of the learned network depicts the
dependency relationships between different features in signature. Fig.3 shows one of the
learned structures from our experiments. The second step is learning of parameters of
network; which are conditional probability distributions Pr(nodei|parentsi) associated to
nodes of the network and which quantify the dependency relationships between nodes.
The network parameters are obtained by maximum likelihood estimation (MLE); which is a
robust parameter estimation technique and assigns the most likely parameter values to best
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describe a given distribution of data. We avoid null probabilities by using Dirichlet priors
with MLE. The learned Bayesian network encodes joint probability distribution of the symbol
signatures.

N

B1

C

A1B2B3

C1 C2

C3D2D3

A2A3

A4

A5 D1 A6

Fig. 3. Example of a Bayesian network : C = class, N = number of nodes, A1 = number of
connections, A2 = number of L-junctions, A3 = number of T-junctions, A4 = number of in-
tersections, A5 = number of parallel connections, A6 = number of successive connections, B1
(resp. B2 and B3) = number of nodes with low (resp. medium and high) density of connec-
tions, C1 (resp. C2 and C3) = number of small-length (resp. medium-length and full-length)
primitives, D1 = number of small-angle (resp. medium-angle and full-angle) connections.

The conditional independence property of Bayesian networks helps us to ignore irrelevant
features in structural signature for an underlying symbol set. This property states that
a node is conditionally independent of its non-descendants given its immediate parents
(Charniak, 1991). Conditional independence of a node in Bayesian network is fully ex-
ploited during probabilistic inference and thus helps us to ignore irrelevant features for
an underlying symbol set while computing posterior probabilities for different symbol classes.

For recognizing a query symbol we use Bayesian probabilistic inference on the encoded joint
probability distribution. This is achieved by using junction tree inference engine which is
the most popular exact inference engine for Bayesian probabilistic inference. The inference
engine propagates the evidence (signature of query symbol) in network and computes poste-
rior probability for each symbol class. Equation 12 gives Bayes rule for our system. It states
that posterior probability or probability of a symbol class ci given a query signature evidence
e is computed from likelihood (probability of e given ci), prior probability of ci and marginal
likelihood (prior probability of e). The marginal likelihood Pr(e) is to normalize the posterior
probability; it ensures that the probabilities fall between 0 and 1.

Pr(ci|e) =
Pr(e, ci)

Pr(e)
=

Pr(e|ci)× Pr(ci)

Pr(e)
(12)

where,

{

e = f1, f2, f3, ..., f16

Pr(e) = Pr(e, ci) = ∑
k
i=1 Pr(e|ci)× Pr(ci)

(13)

The posterior probabilities are computed for all k symbol classes and the query symbol is then
assigned to class which maximizes the posterior probability i.e. which has highest posterior
probability for the given query symbol.
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6.1 Symbols with vectorial and binary noise

The organization of four international symbol recognition contests over last decade (Aksoy
et al., 2000; Dosch & Valveny, 2005; Valveny & Dosch, 2003; Valveny et al., 2007), has provided
our community an important test bed for evaluation of methods over a standard dataset.
These contests were organized to evaluate and test the symbol recognition methods for
their scalability and robustness against binary degradation and vectorial deformations.
The contests were run on pre-segmented linear symbols from architectural and electronic
drawings, as these symbols are representative of a wide range of shapes (Valveny & Dosch,
2003). GREC2005 (Dosch & Valveny, 2005) & GREC2007 (Valveny et al., 2007) databases are
composed of the same set of models, whereas GREC2003 (Valveny & Dosch, 2003) database
is a subset of GREC2005.

Fig. 4. Model symbols from electronic drawings and from floor plans.

We experimented with synthetically generated 2D symbols of models collected from database
of GREC2005. In order to get a true picture of the performance of our proposed method
on this database, we have experimented with 20, 50, 75, 100, 125 & 150 symbol classes. We
generated our own learning & test sets (based on deformations & degradations of GREC2005)
for our experiments. For each class the perfect symbol (the model) along with its 36 rotated
and 12 scaled examples was used for learning; as the features have already been shown
invariant to scaling & rotation and because of the fact that generally Bayesian network
learning algorithms perform better on datasets with large number of examples. The system
has been tested for its scalability on clean symbols (rotated & scaled), various levels of
vectorial deformations and for binary degradations of GREC symbol recognition contest.
Each test dataset was composed of 10 query symbols for each class.

Number of classes (models) 20 50 75 100 125 150

Clean symbols (rotated & scaled) 100% 100% 100% 100% 100% 99%

Hand-drawn deform. Level-1 99% 96% 93% 92% 90% 89%

Hand-drawn deform. Level-2 98% 95% 92% 90% 89% 87%

Hand-drawn deform. Level-3 95% 77% 73% 70% 69% 67%

Binary degrade 98% 96% 93% 92% 89% 89%

Table 6. Results of symbol recognition experiments.
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Table 6 summarizes the experimental results. A 100% recognition rate for clean symbols illus-
trates the invariance of our method to rotation & scaling. Our method outperforms all GREC
participants (available results from GREC2003 and GREC2005 competitions) in scalability
tests and is comparable to contest participants for low levels of deformation & degradations.
The recognition rates decrease with level of deformation and drop drastically for high binary
degradations. This is an expected behavior and is a result of the irregularities produced in
symbol signature; which is a direct outcome of the noise sensitivity of vectorization step,
as also pointed out by (Llados et al., 2002). We used only clean symbols for learning and
(thus) the recognition rates truely illustrate the robustness of our system against vectorial and
binary noise.

6.2 Symbols with contextual noise

A second set of experimentation was performed on a synthetically generated corpus, of
symbols cropped from complete documents (Delalandre et al., 2007). These experiments
focused on evaluating the robustness of the proposed system against context noise i.e. the
structural noise introduced in symbols when they are cropped from documents. We believe
that this type of noise gets very important when we are dealing with symbols in context in
complete documents and to the best of our knowledge; no results have yet been published
for this type of noise. We have performed these experiments on two subsets of symbols:
consisting of 16 models from floor plans and 21 models from electronic diagrams. The models
are derived from GREC2005 database and are given in Fig.4. For each class the perfect
symbol (model), along with its 36 rotated and 12 scaled examples was used for learning. The
examples of models, for learning, were generated using ImageMagick and the test sets were
generated synthetically (Delalandre et al., 2007) with different levels of context-noise in order
to simulate the cropping of symbols from documents. Test symbols were randomly rotated
& scaled and multiple query symbols were included for each class. The test datasets are
available at (Delalandre, 2009).

Dataset Noise 1-TOP 3-TOP

Floor plans Level 1 84% 95%

Floor plans Level 2 79% 90%

Floor plans Level 3 76% 87%

Electronic diagrams Level 1 69% 89%

Electronic diagrams Level 2 66% 88%

Electronic diagrams Level 3 61% 85%

Table 7. Results of symbol recognition experiments for context noise.1-TOP stands for the
right class in given in first position and 3-TOP stands for the right class in belonging to the
first 3 answers.

Table 7 summarizes the results of experiments for context noise. We have not used any sophis-
ticated de-noising or pretreatment and our method derives its ability to resist against context
noise, directly from underlying vectorization technique, the fuzzy approach used for comput-
ing structural signature and the capabilities of Bayesian networks to cope with uncertainties.
The models for electronic diagrams contain symbols consisting of complex arrangement of
lines & arcs, which affects the features in structural signature as the employed vectorization
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technique is not able to cope with arcs & circles; as is depicted by the recognition rates for
these symbols. But keeping in view the fact that we have used only clean symbols for learn-
ing and noisy symbols for testing, we believe that the results show the ability of our signature
to exploit the sufficient structural details of symbols and it could be used to discriminate and
recognize symbols with context noise.

7. Conclusion

We have presented three methods for learning the structure of a Bayesian network. The first
one consists in the control of the probability distribution of mutation in the genetic algorithm.
The second one is to incorporate a scheme penalty in the genetic algorithm so that it avoids
certain areas of space research. The third method is to search through several competing
populations and to allow timely exchange among these populations. We have shown experi-
mentally that different algorithms behaved satisfactorily, in particular that they were proving
to be successful on large databases. We also examined the behavior of proposed algorithms.
Niching strategies are interesting, especially using the spatial one, which focuses quickly on
the best solutions.
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