
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



14 

Neural Network Control of  
Non-linear Full Vehicle Model Vibrations  

Rahmi Guclu and Kayhan Gulez 
Yildiz Technical University 

Turkey 

1. Introduction      

Vehicle suspension serves the basic function of isolating passengers and the chassis from the 

roughness of the road to provide a more comfortable ride. In other words, very important 

role of the suspension system is the ride control. Due to developments in the control 

technology, electronically controlled suspensions have gained more interest. These 

suspensions have active components controlled by a microprocessor. By using this 

arrangement, significant achievements in vehicle response can be carried out. Selection of 

the control method is also important during the design process. In this study, Neural 

Network (NN) controllers parallel to McPherson strut-type independent suspensions are 

used. The major advantages of this control method are its success, robust structure and the 

ability and adaptation of using these types of controllers on vehicles. To simplify models, a 

number of researchers assumed vehicle models to be linear. However, such models ignore 

non-linearities present in the system. By including non-linearities such as dry friction on 

dampers, the results become more realistic.  

During the last decade, many researchers applied some linear and non-linear control 

methods to vehicle models. Due to simplicity, quarter car models were mostly preferred. 

(Redfield & Karnopp, 1998) examined the optimal performance comparisons of variable 

component suspensions on a quarter car model. (Yue et al., 1989) also applied LQR and 

LQG controller to a quarter car model. 

(Stein & Ballo, 1991) designed a driver’s seat for off-road vehicles with active suspensions. 

Hac (Hac, 1992) applied optimal linear preview control on the active suspensions of a 

quarter car model. (Rakheja et al., 1994) added a passenger seat in their analysis. A 

passenger seat suspension system was described by a generalized two degrees of freedom 

model and with non-linearities such as shock absorber damping, linkage friction and bump 

stops. Since the quarter car model is insufficient to give information about the angular 

motions of a vehicle, some researchers used more complex models like half and full car 

models. These models give information about the pitch, roll and bounce motions of a vehicle 

body. (Crolla & Abdel Hady, 1991) compared some active suspension control laws on a full 

car model. Integrated or filtered white noise was taken as the road input. The same 

researchers applied linear optimal control law to a similar model in 1992. (Hrovat, 1993) 

compared the performances of active and passive suspension systems on quarter, half and 

full car models using linear quadratic optimal control.  
Source: Vibration Control, Book edited by: Dr. Mickaël Lallart,  
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Dry friction on dampers is one of the main factors affecting ride comfort. For a vehicle 
traveling on a relatively smooth road at low speeds, the effect of road input cannot 
overcome dry friction force and, therefore, the suspensions are almost locked, which is 
known as Boulevard Jerk, and an uncomfortable vibration mode becomes effective due to 
reduced degrees of freedom (Silvester, 1966). Control of vibrations using non-linearity on 
active suspensions was achieved. (Alleyne et al., 1993) compared sliding mode controlled 
active suspensions with PID controlled active suspensions for a quarter car active 
suspension system. As the conclusion, the paper shows that sliding mode controller is better 
than PID one. 
(Park & Kim, 2000) designed a decentralized variable structure controller for active 
suspension systems of vehicles. (Yokoyama et al., 2001) examined a new SMC for semi-
active suspension systems with magneto-rheological (MR) dampers which have undesirable 
non-linear properties. (Yoshimura et al., 2001) showed the construction of an active 
suspension system for a quarter car model using the concept of sliding mode control.       
(Al-Holou et al., 2002) examined the development of a robust intelligent non-linear 
controller for active suspension systems based on a comprehensive and realistic non-linear 
model. (Guclu, 2004), (Guclu, 2005), (Guclu & Gulez, 2008) applied fuzzy logic controlled 
active suspensions on a non-linear four and eight degrees of freedom vehicle model without 
suspension-gap degeneration.  
(Otten et al., 1997) applied for linear motors of a learning feed-forward controller. 

2. Vehicle model 

The non-linear full car model used in this study is shown in Figure 1. This full car model has 
eight degrees of freedom, namely vertical translations x1, x2, x3, x4, x5, x6 and angular 
rotations x7 = θ, x8 = . These are the motion of the right front axle, the motion of the left 
front axle, the motion of the right rear axle, the motion of the left rear axle, the bounce 
motion of the passenger seat, the bounce motion of the vehicle body, the pitch motion of the 
vehicle body and the roll motion of the vehicle body, respectively. A passenger seat is 
included in the vehicle model to predict the response of the passenger due to a road 
disturbance. The common application in modeling the vehicle with a passenger seat is to 
add only one passenger seat preferably in the driver seat position though considering only 
one suspended seat implies that other seats are assumed to be fixed rigidly to the chassis 
(Baumal et al., 1998).  
f(Vri) is dry friction force. Namely, zi (i = 1,…,4) in Figure 2 is road excitation and is given in 
Figure 7 in detail. yi-xi (i=1,…,5) represents relative displacements of the suspension systems 
and controllers. yi is given in the Appendix. The equation of the linear motor is 

                 e i iR I  K (y x ) v+ − =$$              i = (1,…,5) (1) 

where v and I are the control voltage and current of the armature coil, respectively. R and Ke 
are the resistance value and induced voltage constant of the armature coil. The current of the 
armature coil (I) and control force (u) has the following relation: 

 u = Kf I  (2) 

Kf is the thrust constant. The inductance of the armature coil is neglected. 
In general, the state-space form of a non-linear dynamic system can be written as follows: 
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Fig. 1. The non-linear full car model with a passenger seat. 

 ( )x f x B u= + ⎡ ⎤⎣ ⎦$  (3) 

Here, for the eight degree-of-freedom system considered in this study, x = [x1 x2 x3 .... x16]T 

where 9 1 1 10 2 2x x f (x) , x x f (x)= = = =$ $  and so on. f(x) is vector functions composed of first 

order differential equations that can be non-linear, [B] is the controller coefficient matrix and  

u = [u1 u2 u3 u4 u5]T  is the control input vector written for the most general case in this 

study. f(x) and [B] are given in the Appendix along with the nomenclature of vehicle 

parameters. Mathematically, u1, u2, u3 and u4 do not have to exist together. In order to 

control vehicle body motions, three controller forces are sufficient since the body has three 

degrees of freedom in this study. These are bounce, pitch and roll motions. But, for practical 

reasons, four controllers parallel to the suspensions are introduced. The yaw motion is 

neglected. Finally, five controllers are used including the one under the passenger seat. 

As mentioned before, the major non-linearity of the model comes from dry friction on the 

dampers. Geometric non-linearity has also been included. Dry friction on the dampers 

depends on the relative speed (Vr) between related damper ends. Experiments show that the 

dry friction model (Figure 2) has a viscous band character rather than being of a classical 

bang-bang type. The band ε is very small, and this prevents the complete locking of the 

suspension ends. For vehicle traveling with a low speed on a road with relatively low 

roughness generate dry friction force f(Vr) around ±R that practically locks the suspension 

generating a high equivalent viscous friction effect. Dry friction parameters are R=22 N and 

ε=0.0012 m/s. 
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Fig. 3. The adaptation of NN controller closed form to the non-linear full vehicle model.  
Fast Back-propagation Algorithm (FBA) which is proposed by (Karayiannis & 
Venetsanopoulas, 1993) is used in the study.  

www.intechopen.com



Neural Network Control of Non-linear Full Vehicle Model Vibrations   

 

323 

3. Neural Network (NN) controller design 

The Neural Network control is basically non-linear and adaptive in nature, giving robust 

performance under parameter variation and load disturbance effect. The main idea behind 

proposing a neural network controller on vehicles is its simplicity, satisfactory performance 

and the ability. Neural Networks are successfully used in variety applications areas such as 

control and early detection of machine faults. The feed-forward neural network is usually 

trained by a back-propagation training algorithm first proposed by (Rumelhart et al, 1986). 

This was the starting point of the effective usage of NNs after the 1980s. With the advantage 

of high speed computational technology, NNs are more realistic, easily updateable and 

implementable today. The distributed weights in the network contribute to the distributed 

intelligence or associative memory property of the network. The actual output pattern is 

compared with the desired output pattern and the weights are adjusted by the supervised 

back-propagation training algorithm until the pattern matching occurs, i.e., the pattern 

errors become acceptably small. 

The impressive advantages of NNs are the capability of solving highly non-linear and 

complex problems and the efficiency of processing imprecise and noisy data.  

Figure 3 shows the adaptation of the closed form of NN controller to the non-linear full car 
model with a passenger seat. The control forces are produced by PMSM. 

4. Simulation part 

In this study, the code of the tool written in C++ and Matlab with Simulink are used. The 

aim of the neural network control system for the vehicle system uses the functions from f1 to 

f16 in the vehicle motions as the output variable while the variables of the other side of the 

equations of f1-f16 in the Appendix are their inputs. Figure 4 shows the general operating 

block diagram of a NN algorithm.  

 
 
 

 
 
 
 
 

NN X p,ky  

ˆ p,ky  
e = ˆ p,ky - kpY ,  

NN Algorithm 
FBA 

 
 
 

Fig. 4. Closed loop general block diagram of a neural network algorithm. 

In this study, the FBA is used in the NN structure. The Neural Network input and output 

functions for the full vehicle system with passenger seat are given in Figure 5. The 

controllers have the following structures in Table 1.  

In this study, NN controller is applied to a non-linear full vehicle model including Figure 5. 
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          X1        X2        X3       X4         X5     X6           X7      X8   
                X9       X10      X11       X12      X13       X14       X15   X16     

tanhx tanhx tanhx tanhx tanhx tanhx tanhx tanhx tanhx tanhx tanhx 

  tanhx   tanhx    tanhx   tanhx tanhx tanhx     tanhx tanhx    tanhx tanhx 

1.Hidden 
Layer 

2. Hidden  
Layer 

          f1     f2    f3   f4    f5   f6     f7 f8       f9   f10   f11  f12  f13  f14   f15 f16

 
 

Fig. 5. Neural Network structure for the full vehicle control. 
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The 
Corresponding 
Variable 

Number 
of Inputs 

Number of 
Nodes in  
Hidden Layer-1 

Number of 
Nodes in 
Hidden Layer-2 

Number of 
Outputs 

Generalized 
System Error 
(%) 

f1 1 4 3 1 0 

f2 1 4 3 1 0 

f3 1 4 3 1 0 

f4 1 4 3 1 0 

f5 1 4 3 1 0 

f6 1 4 3 1 0 

f7 1 4 3 1 0 

f8 1 4 3 1 0 

f9 7 10 9 1 0 

f10 7 10 9 1 0 

f11 8 11 10 1 0 

f12 8 11 10 1 0 

f13 6 9 8 1 0 

f14 15 18 17 1 0 

f15 15 18 17 1 0 

f16 15 18 17 1 0 

Table 1. The structures of NN controllers for each function. 

4.1 Time response of the non-linear vehicle model 
In the simulation stage, first the non-linear model is used in order to obtain time responses.  
Second, for the frequency responses, the non-linear dry friction model is linearized using a 
describing function method. Accelerometers are used as sensors. These sensors are placed 
only to measure the states to be controlled. The data provided by these sensors are 
processed by micro-controllers having the NN algorithms designed. Here, the vehicle is 
assumed to travel over the bump road surface (Figure 6). The road bump parameters are h = 
0.035 m and L = 0.025 m. 

 z

y

  h

3L L 4L  

Fig. 6. Road disturbance. 

There is a time delay between the front and rear wheel inputs.  This time delay is as follows: 

 ( )ǅ(t) = a + b /V   (4) 

where (a + b) is the distance between the front and rear axles and V is the velocity of the 
vehicle. Table 2 gives the NN test phase results for all functions, separately. Comparison 
diagrams of NN controller results and uncontrolled values are depicted in Figure 7. As to be 
seen from Table 2, all of the NN test phase results in Figure 7 are very good harmony with 
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the uncontrolled ones. The momentum and learning rates are 0,7 and 0,9 respectively. The 
number of iteration for training phase is 3000000, and the number of hidden layer is 2. The  
 

f1 (x'1 ) f1 f2 (x'2 ) f2 f3 (x'3 ) f3 f4 (x'4 ) f4 

Uncont-
rolled 
Values 

NN 
Results 

Uncont
-rolled 
Values 

NN 
Results 

Uncont 
-rolled 
Values 

NN 
Results 

Uncont-
rolled 
Values 

NN Results 

-0.2 -0.204308 -0.35 -0.3482 -0.0052 -0.004826 0.004 0.003139 

0 0 -0.01 -0.010068 -0.0041 -0.003805 -0.0018 -0.001855 

0 0 0 0 -0.0026 -0.002412 -0.0013 -0.001425 

0 0 0 0 -0.0029 -0.002691 0.0018  0.001244 

0 0 0 0 -0.0029 -0.002691 -0.0031 -0.002974 

0 0 0 0 -0.0027 -0.002505 -0.002 -0.002027 

0 0 0 0 0.001 0.00093 -0.0019 -0.001941 
 

f5 (x'5 ) f5 f6 (x'6 ) f6 f7 (θ' ) f7 f8 (α' ) f8 

Uncon-  
trolled 
 Values 

NN 
Results 

Uncon- 
trolled 
Values 

NN 
Results 

Uncon- 
trolled 
 Values 

NN 
Results 

Uncon- 
trolled 
 Values 

NN Results 

0.017 0.016104 -0.028 -0.02744 0.1 0.098095 -0.006 -0.00573 

0.007 0.006631 -0.001 -0.00098 -0.002 -0.001966 -0.004 -0.003822 

0.012 0.011368 -0.001 -0.00098 -0.001 -0.000983 -0.001 -0.000959 

-0.0025 -0.002371 0 0 0 0 0 -0.000004 

0.0009 0.000851 0 0 0 0 0.001 0.00095 

0 -0.000002 0 0 0 0 0 -0.000004 

0 -0.000002 0 0 0 0 0 -0.000004 
 

f9 (x''1 ) f9 f10 (x''2 ) f10 f11 (x''3 ) f11 f12 (x''4 ) f12 

Uncon-    
trolled 
 Values 

NN 
Results 

Uncon-
trolled 
 Values 

NN 
Results 

Uncon-
trolled 
Values 

NN 
Results 

Uncon-
trolled 
 Values 

NN 
Results 

-49.99911 -50 -15.01661 -15 -0.4 -0.399975 0.37 0.370004 

-9.947977 -10 -7.896958 -8 -0.2 -0.199977 -0.3 -0.300001 

-0.920222 0 -0.581933 0 0.63 0.688073 -0.56 -0.622842 

-0.324225 0 -0.182448 0 -0.6 -0.613647 0.52 0.447904 

-0.197652 0 -0.323465 0 -0.5 -0.541713 0.59 0.512811 

-0.336008 0 -0.230341 0     
 

f13 (x''5 ) f13 f14 (x''6 ) f14 f15 (θ'' ) f15 f16 (α'' ) f16 

Uncon-
trolled 
Values 

NN 
Results 

Uncon-
trolled 
Values 

NN 
Results 

Uncon-
trolled 
Values 

NN 
Results 

Uncon-
trolled 
Values 

NN Results 

0.13 0.13 -0.8 -0.8 -0.1 -0.099969 -0.25 -0.249997 

-0.15 -0.15 -0.5 -0.499998 -0.05 -0.049979 0 0.000003 

0.02 0.003019 0 -0.031477 0.1 0.081286 0.1 0.121414 

0.01 0.00281 0 -0.000726 -0.001 -0.012811 0.02 0.02012 

0 -0.01114 -0.001 0.000546 -0.0012 -0.002351 -0.001 0.001679 

  -0.001 0.000443 -0.0012 0.000695 -0.0013 -0.005978 

  -0.001 0.00035 -0.0012 -0.000332 -0.0013 0.001662 

Table 2. The NN test phase results for all functions 
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number of hidden nodes in hidden layers are given in Table 1, respectively. The level of 
error shows that NN controller has a good approximation to control the system parameter 
and functions, since the generalized system error for all variables in Table 1 is % 0. 
 

  
 

  
 

  
 

  

Fig. 7. Neural Network (NN) Controller results comparing with uncontrolled values. 
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Fig. 8. Neural Network (NN) Controller results of passenger seat displacement for u5=0. 

 

   
 

θ

   

Fig. 9. Time responses of passenger seat and vehicle body displacements, pitch and roll 
angular displacements for controlled and uncontrolled cases. 

“Figure 8 shows plot of x5 without passenger seat controller (u5=0). Since the other 

controllers are active, u5 controller force of 9 N for the passenger seat is enough. If the seat 

controller is eliminated (u5=0) and other controllers are kept, the results changes as in Figure 

8.” The time responses of passenger seat and vehicle body displacements, pitch and roll 

angular displacements for NN controlled and uncontrolled cases of the non-linear vehicle 

are shown in Figure 9. The maximum displacements of the active system are less than those 

of the passive system, and the active system returns to rest faster. All displacements are 

succesfully controlled by the proposed NN controller as well. The stick-slip effect of dry 

friction non-linearity having an offset in Figure 9 is observed for the uncontrolled case. This 

undesired effect is considerably overcome by NN controller as shown in the same figure. 
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“The passenger is almost isolated from the disturbance, since the all controllers are active. 

Here, maximum displacements of passenger seat for uncontrolled and NN controlled cases 

are 2,8.10-3 m and 0,2.10-3 m, respectively.”   

The vertical acceleration of the passenger is also an important criterion, which mainly affects 
ride comfort since the force generated by the inertia of the passenger creates disturbances. In 
other words, minimizing the vertical displacement may not mean an improvement in itself 
alone, as an improvement in the acceleration is also obtained. In Figure 10, the acceleration 
of the passenger in the non-linear vehicle model is shown. The NN controller decreases the 
amplitude of the acceleration when compared with the uncontrolled one.  
 

 

Fig. 10. Time responses of passenger seat vertical acceleration. 

Another criterion is the control forces used since it is directly related with the cost of the 

controller. Figure 11 shows the controller force inputs. The front and rear suspensions apply 

a maximum force of about 4000 N. The amount of force applied to the passenger seat 

decreases since the body is controlled and the passenger seat is slightly isolated. A 9 N 

maximum force in addition to the other controller forces is sufficient to bring the passenger 

to the reference value of zero displacement. 

4.2 Frequency response of the vehicle model 
Frequency response analysis is the main tool in interpreting the dynamic behavior of 
vehicles. Since the frequency response plot of a non-linear system is dependent on input and 
is not unique, the dry friction model is linearized in frequency response analysis. 
Linearization without ignoring non-linearity is achieved by using the describing function 
method for dry friction on dampers and assuming that the vehicle body angular motions are 
small. In this technique, the effect of a non-linear dry friction model is replaced by a linear 
equivalent damping coefficient (Ce) obtained by the describing function method (Appendix). 
The frequency responses of the uncontrolled condition are compared with NN controller 
frequency response of the frame. In Figure 12, the frequency response plots of the passenger 
seat displacements and accelerations are considered. Two visual groups of displacement 
resonance frequencies in the uncontrolled case at approximately 2 and 15 Hz are observed in 
logarithmic plots. These frequencies belong to the vehicle system. In the NN controlled 
cases, the amplitudes of resonance frequencies of the vehicle system decrease. Actually, the 
vehicle model has eight resonance frequencies. The values of the related natural frequencies 
are obtained by solving the eigenvalue problem using Matlab. These values are 0.975, 1.183, 
1.396, 2.202, 12.261, 12.264, 16.387 and 16.388 Hz. Since the natural frequencies are very close 

www.intechopen.com



 Vibration Control 

 

330 

to each other, only two visual groups are seen in Figure 12. Using controllers under the 
vehicle body and passenger seat gives the maximum displacement and acceleration isolation 
for the passenger as shown in the figures. 

   
 

   
 

 

Fig. 11. NN Control force inputs. 

    

Fig. 12. Frequency response plots of passenger displacements and accelerations. 
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5. Conclusions 

The aim of this study was the development of a Neural Network (NN) based controller for 
vibrations of a non-linear eight-degree-of-freedom vehicle model with active suspensions. 
This controller, which had a very good performance for the results both in time and 
frequency responses, has been applied to the vehicle. Only having controllers under the 
vehicle body without u5 does not provide a good control over passenger comfort. The 
simulation results prove that, using controllers under the vehicle body and passenger seat 
provided excellent ride comfort. Therefore, this strategy should be taken into account by 
considering the control of the vehicle body and passenger seat together. Using this strategy, 
the bounce motion of the passenger reduces with an extra controller that applies very small 
force input, since the other controllers are active. If the passenger seat controller is 
eliminated and only other controllers are kept, the vibrations increase. A successful 
improvement has also been obtained in the isolation of the vertical acceleration of 
passengers. Frequency response plots of a passenger for this strategy support the results 
obtained. In conclusion, adding a controller under the passenger seat in addition to the other 
controllers improves ride comfort considerably. The decrease in vibration amplitudes and 
the excellent improvement in resonance values support this result. 

6. Nomenclature 

Vehicle variables 
a , b distances of axle to the center of gravity of the vehicle body (m) 
c , d distances of unsprung masses to the center of gravity of the axles (m) 
e , f distances of passenger seat to the center of gravity of the vehicle body (m) 
csi ith damping coefficient of suspension (Ns/m) 
cs5 damping coefficient of passenger seat (Ns/m) 
f(Vri) ith dry friction force (N) 
ksi ith spring constant of suspension (N/m) 
ks5 spring constant of passenger seat (N/m) 
kti ith stiffness coefficient of tire (N/m) 
mi ith mass of axle (kg) 
m5 mass of the passenger (kg) 
xi ith state variable (m)   
zi(t) ith road excitation  (m) 
Ix7 mass moment of inertia of the vehicle body for pitch motion (kgm2) 
Ix8 mass moment of inertia of the vehicle body for roll motion (kgm2) 
M mass of the vehicle body (kg) 

7. Appendix 

The parameters of the vehicle: 
M = 1100 kg 
Ix7 = 1848 kg.m2 

Ix8 = 550 kg.m2 

m1= m2 = 25 kg 
m3= m4 = 45 kg 
m5= 90 kg 
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ks1= ks2 = 15000 N/m 
ks3 = ks4 = 17000 N/m 
ks5 = 15000 N/m 
cs1 = cs2 = cs3  = cs4 = 2500 N.s/m 
cs5 = 150 N.s/m 
kt1 = k t2 = kt3 = kt4 = 250000 N/m 
a = 1.2 m 
b = 1.4 m 
c = 0.5 m 
d = 1.0 m 
e = 0.3 m 
f = 0.25 m 
Dry friction force and linear equivalent damping coefficient: 

f (Vri) = Cei (
. .

iiy - x )   (i = 1...5) 

. .

ii

i
i i i. .

ii

n        if  y - x <ǆ

Ce = n 4R
(2θ -Sin2θ )+ Cosθ         else

π
π y - x

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

 

-1
i . .

ii

ǆθ =Sin

y - x        

8761 Sin xcSin xa xy −+=  

8762 xSindxSina xy ++=  

8763 xSincxSinb xy −−=  

8764 xSindxSinb xy +−=  

8765 xSinfxSine xy ++=  

State equations excluding control inputs: 

1 9 2 10 3 11 4 12

5 13 6 14 7 15 8 16

f (x)=x         , f (x)=x         , f (x)=x        , f (x)=x   

f (x)=x         , f (x)=x         ,  f (x)=x        ,     f (x)=x      

( )
( )

9 1 s1 t1 1 s1 6 s1 7 s1 8 s1 9 s1 14

s1 7 15 s1 8 16 t1 1 r1 1

f (x)=1/m  { - k +k x +k x +ak Sin x -ck Sin x -c x +c x

                     +ac Cosx x -cc Cosx x +k z +f V -u  }  

( )
( )

10 2 s2 t2 2 s2 6 s2 7 s2 8 s2 10 s2 14

s2 7 15 s2 8 16 t2 2 r2 2

f (x)=1/m  { - k +k x +k x +ak Sin x +dk Sin x -c x +c x

                      +ac Cosx x +dc Cosx x +k z +f V -u  }  

( )
( )

11 3 s3 t3 3 s3 6 s3 7 s3 8 s3 11 s3 14

s3 7 15 s3 8 16 t3 3 r3 3

f (x)=1/m  { - k +k x +k x -bk Sin x -ck Sin x -c x +c x

                       -bc Cosx x -cc Cosx x +k z +f V -u  }  

( )
( )

12 4 s4 t4 4 s4 6 s4 7 s4 8 s4 12 s4 14

s4 7 15 s4 8 16 t4 4 r4 4

f (x)=1/m  { - k +k x +k x -bk Sin x +dk Sin x -c x +c x

                       -bc Cosx x +dc Cosx x +k z +f V -u  }  

13 5 s5 5 s5 6 s5 7 s5 8 s5 14 s5 14

s5 7 15 s5 8 16 5

f (x)=1/m  { -k x +k x +ek Sin x +f k Sin x -c x +c x

                       +ec Cosx x +f c Cosx x +u  }
 

www.intechopen.com



Neural Network Control of Non-linear Full Vehicle Model Vibrations   

 

333 

( )
( ) ( )( )

14 s1 1 s2 2 s3 3 s4 4 s5 5 s1 s2 s3 s4 s5 6

s1 s2 s3 s4 s5 7 s2 s4 s1 s3 s5 8

s1 9 s2 10 s3 11 s4 12 s5

f (x)=1/M { k x +k x +k x +k x +k x - k +k +k +k +k x

                     - a k +k -b k +k +ek  Sin x -(d(k +k )-c(k +k )+f k )Sin x

                     +c x +c x +c x +c x +c

( ) ( )( )
( ) ( ) ( ) ( )

13 s1 s2 s3 s4 s5 14

s1 s2 s3 s4 s5 7 15 s2 s4 s1 s3 s5 8 16

r1 r2 r3 r4 1 2 3 4 5

x -(c +c +c +c +c )x

                     - a c +c -b c +c +ec  Cosx x -(d(c +c )-c(c +c )+f c )Cosx x

                     -f V -f V -f V -f V +u +u +u +u -u  }

 

( ) ( )( )
( ) ( )( )

15 x7 s1 1 s2 2 s3 3 s4 4 s5 5 s1 s2 s3 s4 s5 6

2 2 2
s1 s2 s3 s4 s5 7 s2 s4 s1 s3 s5 8

s1 9 s2 10

f (x)=1/I { ak x +ak x -bk x -bk x +ek x - a k +k -b k +k +ek x

                     - a k +k +b k +k +e k Sinx -(d(ak -bk )- c(ak -bk )+e f k )Sinx

                    +ac x +a c x ( ) ( )( )
( ) ( )( )
( ) ( ) ( ) ( )

s3 11 s4 12 s5 13 s1 s2 s3 s4 s5 14

2 2 2
s1 s2 s3 s4 s5 7 15 s2 s4 s1 s3 s5 8 16

r1 r2 r3 r4 1 2

-bc x -bc x +e c x - a c +c -b c +c +ec x

                     - a c +c +b c +c +e c Cosx x -(d(a c -bc )-c(ac -bc )+ef c )Cosx x

                     -a f V -af V +bf V +bf V +a(u +u 3 4 5 7)-b(u +u )-eu  } Cosx

 

( ) ( )( )
( ) ( )( )

16 x8 s1 1 s2 2 s3 3 s4 4 s5 5 s2 s4 s1 s3 s5 6

2 2 2
s2 s4 s1 s3 s5 7 s2 s4 s1 s3 s5 8

s1 9 s2 1

f (x)=1/I { -ck x +dk x -ck x +dk x +f k x - d k +k -c k +k +f k x

                     - d ak -bk -c ak -bk +ef k Sinx -(d (k +k )+c (k +k )+f k )Sinx

                     -cc x +dc x ( ) ( )( )
( ) ( )( )
( ) ( ) ( ) ( )

0 s3 11 s4 12 s5 13 s2 s4 s1 s3 s5 14

2 2 2
s2 s4 s1 s3 s5 7 15 s2 s4 s1 s3 s5 8 16

r1 r2 r3 r4 1

-cc x +dc x +f c x - d c +c -c c +c +f c x

                     - d ac -bc -c ac -bc +ef c Cosx x -(d (c +c )+c (c +c )+f c )Cosx x

                     -c f V +df V -cf V +df V -c(u +u3 2 4 5 8)+d(u +u )-fu  } Cosx

The controller force matrix: 

( )( ) ( )( ) ( )
( ) ( )

( )( )

( )( ) ( )( ) ( )
( ) ( )

( )( )

( )( ) ( )( )
( )

( )( )

( )( ) ( )( )
( )

( )( )

1 1 1 1

2 2 2 2

3 3 3

4 4 4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

-d b+ e + f a+ bb d d 1
- -

a+ b c+ d m a+ b c+ d m c+ d m a+ b c+ d m

-c b+ e -f a+ bb c c 1
- - -

a+ b c+ d m a+ b c+ d m c+ d m a+ b c+ d mB =

d a-ea d d
- 0 -

a+ b c+ d m a+ b c+ d m a+ b c+ d m

c a-ea c c
- 0 -

a+ b c+ d m a+ b c+ d m a+ b c+ d m

0 0 0

⎡ ⎤⎣ ⎦

5

7

8

1

m

1
0 0 0

M

1
0 0 0

Ix

1
0 0 0

Ix

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  
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