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1. Introduction    

Automated recognition of emotions conveyed in the speech is an important research topic 
that has emerged in recent years with a number of possible applications (Picard, 1997). The 
most important one is probably the improvement of the man-machine interface, knowing 
that human communication contains a large amount of emotional messages which should 
be recognized by machines such as robot assistants in the household, computer tutors, or 
automatic speech recognition (ASR) units in call-centers. 
Most research on recognizing emotions in the speech focuses on a small number of emotion 
categories (Dellaert et al., 1996; Lee et al., 2001; Yu et al., 2004; Vidrascu & Devillers, 2005; 
Schuller et al., 2005). However, such categorization is a strong restriction if we think of the 
continuum in the expression of human emotions. In particular, if we want to resolve 
moderate emotions in spontaneous utterances in addition to the stereotype portrayal of 
exaggerated emotions, several questions must be asked: 

• How can we estimate the emotion conveyed in the speech signal more detailed than in 
the state-of-the-art categorization? 

• How many features are necessary for such estimation, and which method is suitable for 
selection? 

• Which estimation methods are suitable, and what are the pros and the cons of each 
method? 

In this contribution we intend to give some answers to these questions, building upon our 
previous work reported in (Grimm et al., 2007a; 2007b). We propose a generalized 
framework using a continuous-valued, three-dimensional emotion space method. This 
method defines emotions as points in a three-dimensional emotion space spanned by the 
three basic attributes (“primitives”) valence (positive-negative axis), activation (calm-excited 
axis), and dominance (weak-strong axis) (see Kehrein, 2002). Figure 1 shows a schematic 
sketch of this emotion space. Anger, e.g., would be represented by negative valence, high 
excitation level on the activation axis, and strong dominance. Such real-valued notion was 
shown to be transferable to emotion categories, if desired (Grimm et al., 2006). At the same 
time, it lends itself to a gradual description of emotion which is helpful to describe intensity 
changes over time or speaker-dependent emotion expression behaviors, for example.  

Source: Robust Speech Recognition and Understanding, Book edited by: Michael Grimm and Kristian Kroschel,
ISBN 987-3-90213-08-0, pp.460, I-Tech, Vienna, Austria, June 2007
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Figure 1. Three-dimensional emotion space, spanned by the primitives valence, activation,
and dominance, with a sample emotion vector added for illustration of the component 
concept.

While emotion space concepts have been named as an alternative to emotion categories in 
many studies (see Cowie, et al., 2001 or Cowie & Cornelius, 2003 for a comprehensive 
overview), they have so far only been used for emotional speech synthesis (Schröder, 2003), 
and hardly for emotion recognition. In the few other studies on detecting emotions in 
speech using an emotion space concept, first the emotion space is subdivided into 2 or 3 
subregions and then these emotion space regions are classified just as emotion categories 
(Fragopanagos & Taylor, 2005; Vidrascu & Devillers, 2005). Thus, we consider the direct, 
continuous-valued estimation of these emotion primitives in this contribution. 
Based on a German speech database containing authentic emotional expressions from a TV 
talk-show, the automatic estimation of these three emotion primitives was studied. The 
reference was built by a human listener test using the text-free method of Self Assessment 
Manikins (see Section 2.2). The speech signal was segmented into utterances for this study 
yielding 893 samples of 47 speakers. For the automatic estimation of the emotion in these 
utterances, a feature vector was built containing the statistics of the fundamental frequency, 
energy and the MFCCs, such as mean value, standard deviation, minimum, maximum, 
range, and quartiles. Two different techniques to reduce the feature vector size were 
studied. As an automatic emotion estimation method we used Support Vector Regression 
(SVR), which provides a kernel-based, non-linear estimation of the three emotion primitives. 
This method showed promising results and a moderate to high correlation with the human 
listeners’ ratings in a preliminary study. It is now compared to KNN and Fuzzy Logic both 
with respect to the estimation error and the learning curve properties (see Sections 5.1 and 
5.2, respectively). 
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The rest of the paper is organized as follows. Section 2 briefly introduces the data we used, 
and it also describes the emotion evaluation by human listeners. Section 3 describes the pre-
processing steps of feature extraction and feature selection. Section 4 presents the different 
classifiers used for continuous-valued emotion primitive estimation. Section 5 describes the 
results and discusses the different estimator outcomes. Section 6 contains the conclusion and 
directions for future work. 
The term “emotion” is very difficult to define. It refers to a very complex inner state of a 
person including a wide range of cognitive and physical events (Scherer, 1990). In addition 
to the truly felt affective state, the expression of emotions is superimposed by the display 
rules of the situation. In the scope of this chapter we understand the term “emotion” only as 
the visible part of this inner state that is transmitted through the speech signal and thus 
observable by a human receiver. Also, the conclusions drawn from the automatic estimation 
have to be seen in the context of the situation. Analyzing additional channels, such as the 
mimics, gestures, or physiological signals, might improve the understanding of the situation 
and thus help identify the emotional state of a person more precisely. 

2. Data 

2.1 Data acquisition 

To study the emotion recognition on authentic emotions in speech we extracted dialogue 
episodes from a talk-show on TV. In this talk-show, two or three persons discuss problems 
such as fatherhood questions, friendship issues, or difficulties in the family. Due to the 
spontaneous and unscripted manner of the episodes, the emotional expressions can be 
considered authentic. Due to the topics, the data contains many negative emotions and few 
positive ones.  
This data was first introduced as VAM corpus1 in (Grimm & Kroschel, 2005b). All signals 
were sampled at 16 kHz and 16 bit resolution. In total the corpus contains 893 sentences 
from 47 speakers (11m/36f).  
The emotion in each utterance was evaluated in a listener test (c.f. Section 2.2). Based on 
such a human evaluation, Figure 2 shows the histogram of the emotions contained in the 
database. The attested emotion was taken as the reference for the automatic recognition, 
since assessment by the speakers themselves was not available. 

Figure 2. Distribution of the emotions present in the VAM corpus. 

                                                                
1 The acronym VAM resides from the title of the talk-show, “Vera am Mittag“ (German: 

Vera at Noon). 
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2.2. Emotion evaluation 

For evaluation we used a listener test. A group of evaluators listened to the emotional 
sentences and assessed the emotional content.  For this human evaluation we used the Self 
Assessment Manikins (Fischer, et al., 2002;  Grimm & Kroschel, 2005a). In this method five 
images were offered per emotion primitive.  For each sentence, an evaluator listened to the 
speech signal. Then he/she was asked to select the best describing image for each primitive. 

This evaluation method yields one reference value for each primitive 

i ∈ {valence, activation, dominance} and each utterance n. The individual listener ratings were 
averaged using confidence scores as described in (Grimm & Kroschel, 2005a).  
One half of the database was evaluated by 17 listeners, the other by 6 listeners, which was 
due to the fact that the second half of the database was recorded and evaluated later, when 
only a smaller number of evaluators was available. In comparison with other studies on 
emotion recognition which included 2 to 5 independent evaluations (Vidrascu & Devillers, 
2005; Yu et al., 2004), we used a much higher number of evaluators to gain statistical 
confidence. 
The average standard deviation in the evaluation was 0.29, 0.34, and 0.31 for valence,
activation, and dominance, respectively. Thus, the average human deviation in the evaluation 
test was slightly above one half of the distance between two images, which was notably low 
for such a difficult task. The mean correlation between the evaluators was 0.49, 0.72, and 
0.61, respectively (Grimm et al., 2007a), measured by Pearson’s empirical correlation 
coefficient. Thus, valence was significantly more difficult to evaluate than activation or 
dominance. However, this result might also be an artifact of the correlation coefficient 
including the variance of the distribution, which is also smaller for valence.

3. Pre-processing 

3.1. Feature extraction 

The speaker’s emotion is conveyed through a number of different channels. The most 
apparent correlates are found in the prosody of the speech. An overview on the acoustic 
expression of emotions can be found in (Murray & Arnott, 1993; Cowie & Cornelius, 2003). 
Analyzing the linguistic content provided by ASR in addition to the prosody might improve 
the estimation of the emotion (Lee & Narayanan, 2005). However, it has to be kept in mind 
that the performance of the ASR degrades remarkably in the case of emotional speech. 
Therefore, we concentrate on the non-linguistic information in the speech signal in this 
study. 
In accordance with other research on automatic emotion recognition, we extracted prosodic 
features from the fundamental frequency (pitch) and the energy contours of the speech 
signals. The first and the second derivatives were also used. For pitch extraction, the 
autocorrelation method was used. For each of these 6 signals (pitch, energy x 0th, 1st, 2nd

derivative) we calculated the following 9 statistical parameters:  

• mean value 

• standard deviation  

• median

• minimum (not for energy) 

• maximum 

• 25% quantile 
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• 75% quantile

• difference between maximum and minimum 

• difference between the quartiles 
In addition we used 6 temporal characteristics:  

• pause-to-speech ratio 

• speech duration mean 

• speech duration standard deviation  

• pause duration mean 

• pause duration standard deviation  

• speaking rate 
Finally, the spectral characteristics were added to the feature set. The Mel Frequency 
Cepstral Coefficients (MFCCs) were calculated in 13 subbands. The increased bandwidth 
with increasing center frequency of the individual subbands thereby reflects the hearing 
characteristics of the human ear (O'Shaughnessy, 1999).  The mean value and the standard 
deviation of each of the 39 MFCC trajectories (13 subbands x 0th, 1st, 2nd derivative) were 
added to the feature set. 
Thus, in total 137 acoustic features were extracted: 53 features derived from pitch and 
energy, 6 temporal characteristics, and 78 features to describe the spectral variability in the 
cause of the utterance. They were normalized to the range [0, 1]. 

3.2. Feature selection 

To reduce the large amount of acoustic features, we used two different methods: Sequential 
Forward Selection (SFS) and Principal Component Analysis (PCA). 
In the Sequential Forward Selection (SFS) technique for feature selection (Kittler, 1978), the 
feature set is increased sequentially. In each iteration, the one feature is added to the set 
which minimizes the classification error. Listing 1 contains the pseudo-code for this 
procedure.

current_best_feature_set := { } 

remaining_features := {feat1, ..., feat137} 

for num_features = 1 to 137 

  error := { } 

for new_feature in remaining_features 

 current_feature_set := current_best_feature_set {new_feature}

 error(new_feature):= classific_test(current_feature_set) 

end

  best_feature := arg min error 

  current_best_feature_set := current_best_feature_set {best_feature}

  remaining_features := remaining_features \ {best_feature} 

end

feature_ranking : = current_best_feature_set 

Listing 1: Pseudo-code for the Sequential Forward Feature Selection method. 

Figure 3 shows the classification error as a function of the feature set size. For this procedure 
the Support Vector Regression estimation method was applied, which is introduced in 
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Section 4.1. With an increasing number of features the classification error shrinks rapidly. 
However, for large feature sets, the error increases again, though only marginally. This 
effect might be caused by the fact that some features bear contradictory information 
concerning the emotion that is being conveyed. Thus, we found that, for each of the 
primitives and each of the classifiers, using 20 features was sufficient. Adding more features 
did not improve the results. The variance of the error was almost constant for feature sets of 

10 or more features with a value of σ2 ≈ 0.015. 

Figure 3. Classification error as a function of the feature set. 

The SFS method was compared to Principal Component Analysis (PCA). While SFS includes 
the classifier in the selection routine, the PCA does not use the classification result as a 

feedback. It is based only on the N = 893 observations of the M = 137 features, 

  (1) 

which are combined in the observation matrix 

 (2) 

Note that the features have to be zero-mean, which can be achieved by subtracting the 

estimated mean value for each feature m = 1,…,M. The M × M covariance 

matrix of the features can thus be stated as . According to (Kroschel, 2004), the 

features can be decorrelated by transforming them to a orthonormal basis 

where the basis vectors m = 1,…,M, are determined by solving the deterministic 
equation

 (3) 
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Thus, the basis vectors are the eigenvectors of the covariance matrix . The transformed, 

uncorrelated features  can be calculated by  

  (4) 

where denotes the complex conjugate transpose of . In the PCA, now the eigenvectors 
are sorted in decreasing order of the eigenvalues, and only those eigenvectors are kept as 
new basis vectors whose eigenvalue exceeds a threshold of, in our case, 1% of the maximum 
eigenvalue:

 (5) 

with

(6)

Figure 4 shows the eigenvalues of the covariance matrix based on our observations of 
acoustic features derived from emotional speech. It can be seen that the eigenvalues 
decrease quickly with increasing index. Thus, the first ten components carry already a large 
amount of the information. However, to include 90% of the total eigenvalue sum, at least 

 61 components must be included in the uncorrelated feature set; to include 99%, 

 96 components are required. 
Since such a large number of features is not desirable for the classifier, we preferred the SFS 
method to the PCA method in order to reduce the size of the feature set. Note that SFS also 
reduces the computational demand since only a smaller number of features have to be 
calculated in contrast to PCA where still all features would be necessary to apply Equation 
(5).

Figure 4. Eigenvalues of the covariance matrix derived from 893 observations of 137 acoustic 
features extracted from emotional speech. 
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4. Emotion primitives estimation 

The task of the emotion estimator is to map the acoustic features to the real-valued emotion 
primitives. We analyzed several classifiers: Support Vector Regression, Fuzzy k-Nearest 
Neighbor classifiers, and a rule-based Fuzzy Logic inference method. In the following 
subsections we briefly describe the individual estimators. The desired output is not a 
classification into one of a finite set of categories but an estimation of continuous-valued 

emotion parameters, the primitives i ∈ {valence, activation, dominance}.

The results of these three estimators are discussed in Section 5. 

4.1. Support Vector Regression 

Support Vector Regression (SVR) is a regression method based on Support Vector Machines 
(Vapnik, 1995;  Campbell, 2001; Schölkopf & Smola, 2001). Support Vector Machines are 
applied to a wide range of classification tasks (Abe, 2005). Based on a solid theoretical 
framework, they were shown to not only minimize the empirical training error but, more 
general, the structural risk. The decision function in SVMs is found by the hyperplane which 
maximizes the margin between two classes. Non-linear classification can be applied very 
efficiently by using the so-called kernel trick, i.e., by replacing the inner products that appear 
in the calculation of the decision function by (optionally) non-linear kernel functions. This 
kernel trick replaces a transformation of the features into a higher-dimensional space, linear 
classification in this higher-dimensional space, and re-transformation into the original space.  
In Support Vector Regression the role of the separation margin is inverted, i.e., the aim is to 

find the optimal regression hyperplane so that most training samples lie within an ε-margin 
around this hyperplane. Figure 5 shows a schematic sketch for SVR in which the non-linear 
regression curve was found using the kernel trick. The technical terms included in the figure 
will be described below. First results of using SVR for emotion primitives estimation were 
reported in (Grimm et al., 2007b). 

Figure 5. An example for Support Vector Regression using the kernel trick. 

The mathematical formulation of the problem how to find an optimal regression hyperplane 
using a finite set of training samples can be found in (Vapnik, 1995; Schölkopf & Smola, 
2001). Here we give only a short summary. 
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The goal is to find a function  which maps the m acoustic features 

to the emotion primitive value 

 (7) 

We need three SVR functions to estimate the three emotion primitives separately: 

i ∈ {valence, activation, dominance}. For improved readability we omit the notion of the index 
(i) in the following.  

The easiest solution is a linear function, i.e., a hyperplane in 

  (8) 

where are the parameters of the hyperplane and  denotes the inner 

product. To determine the parameters we need a set of N learning samples 

 and a loss function  to penalize the distance between the 
function’s output  and the (for the training samples well-known) true 

 (9) 

We chose the ε-insensitive loss function  

  (10) 

which assigns zero loss within a margin of width ε around the true value and linear loss for 
larger deviations. This loss function allows for the neglection of a large amount of training 
samples in the calculation of the hyperplane (Smola, 1996). The remaining samples are 
called Support Vectors (see Figure 5). 

Since the structural risk is minimized for the function f with the least complexity, the 
problem can be formulated as 

    for n = 1,…,N 

(11)

It is common and in our applications absolutely necessary to allow some outliers. This can 

be achieved by introducing slack variables  (see Figure 5) and a soft margin parameter C,
which yields the following problem:  
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  for n = 1,…,N. (12) 

This problem can be reformulated using the dual Lagrange function involving the Lagrange 
multipliers  as functions of the slack variables, 
   

(13)

In this maximization task the training samples  only occur as inner products. Since one of 

the Lagrange conditions requires  

(14)

which means that w can completely be expressed as a linear combination of the feature 

vectors (Support Vector Expansion), the target function f can be stated as 

(15)

While (15) is a functional formulation, it is easily applied to any query feature vector v0 with 

unknown emotion primitive values  by evaluating 
It is obvious that both in (13) and (15) the feature vectors only occur as inner products. These 
inner products can be replaced by a (non-linear) kernel function: 

 (16)  
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This replacement expresses the kernel trick mathematically. It allows non-linear regression 
in an efficient way. 
We used the following kernel functions:  

• Radial basis function (SVR-RBF):  

 (17)  

• Polynomial kernel (SVR-Poly): 

 (18)  

Both, the choice of the kernel function and the kernel parameter, is important. If σ in 
SVR-RBF is small, the regression function will follow closely the training samples. For 

σ  = 0.01, e.g., we can observe clear overfitting. The larger σ, the flatter gets the target curve; 

therefore it cannot be chosen too big. We tested for the range of σ ∈ [10
-4

, 10
4
] and found that 

σ ∈ [2.5, 10] gives good results. We finally chose σ = 3.5.

In the polynomial kernel the parameter d determines the order of the polynomial. The 

higher d, the more complex gets the regression curve. However, we found that, on a search 

interval of d ∈ [1, 10], the best results can be achieved with d = 1. This choice results in a 
polynomial of order 1, i.e., a linear function. 

In addition to the choice of the kernel function, the parameters of the SVR, C and ε, have to 
be set. We used a first, grid-based search on a logarithmic scale and a second, fine-grained 
search in the best region to find those parameters that give the lowest error (Chudoba, 2006).  

The soft margin parameter C has an influence on how many sample vectors are finally used 

for the calculation of the regression curve. The higher C, the more outliers are allowed, and 
the more sample vectors are included as support vectors. Our search region was 

C ∈ [10
-4

, 10
4
], and the best results were achieved for C ∈ [0.1, 50]. Since this parameter has 

to be regarded jointly with the kernel function parameter, we chose  C = 10 for SVR-RBF and 

C = 0.1 for SVR-Poly, respectively. 

The parameter ε  defines the width of the margin around the regression curve. This 
parameter essentially influences the number of support vectors used. Since, in general, those 
feature vectors are used as support vectors which are lying outside or at least close to the 
margin border, a larger margin yields less support vectors. The number of support vectors is 
computationally relevant because the summation in (15) in practice reduces to the 

summation of the support vectors only. Testing on the range of ε  ∈ [0,1], we decided to 

choose ε = 0.2 for all kernels. 
For all experiments, the libsvm implementation was used (Chang & Lin, 2001). 

4.2. Fuzzy k-Nearest Neighbor estimator 

As an alternative to SVM, the k-Nearest Neighbor method was studied. This method was 
shown to give comparable results on related problems, namely the discrete categorization of 
emotion stereotypes (Yacoub et al., 2003; Dellaert et al., 1996). The k-Nearest Neighbor 
(KNN) method is a distance-based approach. It determines the k closest neighbors of a query 

v = v0 in the feature space and assigns the properties of these neighbors to the query 
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(Kroschel, 2004). Such method can be regarded as spanning a hypersphere S around the 

feature vector v0,

 (19) 

where

 (20) 

is the set of all sample vecors vn, n = 1,…,N, and the radius r is chosen to have exactly k

sample feature vectors lie within this hypersphere, 

 (21) 

Thus, without loss of generality, S can be stated as 

 (22) 

with the indices 

In our case, the properties of the neighbors are the emotion primitive values 

These values are averaged to get the final emotion estimate  for a query feature vector v0,

(23)

Due to this average, all k neighbors have an influence on the estimate. This led us to calling 
the method Fuzzy KNN. 

The parameters to choose are p of the Lp distance in (19) and k, the number of neighbors 
considered. According to (Kroschel, 2004), the vector distance  in (19) is defined as 

(24)

We tested  and found that the results were almost independent of the 

distance norm. Thus, we finally chose p = 2 (Euclidean distance). 
The second design parameter, k, had a greater impact on the results. We tested  

 and found that the error decreased rapidly with increasing k. The error 

remained at a relatively constant level for values of k ≥ 9. Thus, we decided for k = 11 for our 
experiments.

4.3. Rule-based Fuzzy Logic estimator 

A rule-based Fuzzy Logic (FL) estimator has previously been used for automatic emotion 
primitive estimation (Grimm & Kroschel, 2005b; Grimm et al., 2007a). Therefore, it will be 
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described very briefly here. This method can be regarded as the state-of-the art in emotion 
primitive estimation.  
The fuzzy logic captures well the nature of emotions, which in general is fuzzy in 
description and notation. This fuzzy description is reflected in the number of linguistic 
terms which are used to describe feelings, moods, and affective attitudes.  
A fuzzy logic estimator consists of three major elements (Kroschel, 2004): 

• Fuzzification

• Inference 

• Defuzzification 
The fuzzification step transforms the crisp variables, which are the acoustic features in our 
case, into fuzzy, linguistic variables. We transformed each feature into three linguistic 
variables, low, medium, and high, respectively. We assigned membership grades to each of 
these fuzzy variables according to the relative position of the crisp feature value within the 
range between the 10% and the 90% quantiles of the overall feature value distribution 
observed in the training samples. 
The rules in the inference system can be derived from expert knowledge. However, we 
decided to derive them automatically by analysis of the relation between the acoustic 
features and the desired emotion primitives. We used a set of three linguistic, fuzzy 
variables for each primitive: negative, neutral, and positive for valence; calm, neutral, and excited
for activation; and weak, neutral, and strong for dominance. Thus, each fuzzy variable of the 
acoustic features was related to each fuzzy variable of the emotion primitives.  
The individual steps of the inference part are the following (Kroschel, 2004; Grimm et al., 
2007a): First, all features were aggregated using maximum aggregation method. Then, 
inference was performed using the product method; this process determines the conclusion 
drawn from the fuzzy acoustic features onto the fuzzy emotion values. Finally, 
accumulation of the three fuzzy membership contours for each primitive was achieved 
using the maximum method. The result was the fusion of negative, neutral, and positive 
contours into one membership function for valence, etc.
In the last step, the fuzzy emotion values were defuzzified to yield crisp emotion primitive 
values. We used the centroid method for this task. 

5. Results 

This section reports the results of our experiments on estimating the emotion primitives 
conveyed in spontaneous speech. First, the results are compared with respect to the different 
estimators. While these results were already presented very briefly in (Grimm et al., 2007b), 
we provide a more elaborate discussion of these results here. Second, we present the 
learning curves of the different estimators to show the dependence on the data size that is 
necessary for training. 

5.1 Comparison of the emotion estimation results 

All experiments were performed using a 10-fold cross-validation. To assess the estimation 
results we used two different measures:  

• The mean linear error between the emotion estimates and the reference annotated 

manually by the human evaluators, ,
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(25)

• The empirical correlation coefficient between the emotion estimates and the reference, 

(26)

Table 1. summarizes (a) the mean linear error for each estimator, for each emotion primitive 
separately, and (b) the correlation coefficient to measure the tendency in the emotion 
estimates.

The results in Table 1(a) indicate that all primitives can be estimated with a small error in 
the range of 0.13 to 0.18. There was only one exception when valence was estimated using the 
FL estimator (0.27). Considering the range of values, which was [-1,+1], it can be stated that 
the emotion primitives are mostly estimated in the correct region, and, e.g., a very excited 
utterance might get estimated as moderately excited to very excited, but not as very calm. 

(a) Mean Error (b) Correlation Coefficient

Valence Activation Dominance Valence Activation Dominance

SVR-RBF 0.13 0.15 0.14 0.46 0.82 0.79 

SVR-Pol 0.14 0.16 0.15 0.39 0.80 0.77 

FL 0.27 0.17 0.18 0.28 0.75 0.72 

KNN 0.13 0.16 0.14 0.46 0.80 0.78 

Table 1. Mean error and correlation with reference of the emotion primitive estimation. 

The error is thus even better than the human evaluation, which showed on average a 
standard deviation of 0.31 (c.f. Section 2.2). However, it has to be noted that this standard 
deviation also includes the quantization error of the emotion axes due to the finite set of 
values offered to the evaluators. Also the automatic estimation might benefit from the 
relatively large amount of neutral and moderate emotions that yielded better individual 
results than the extreme emotions. 
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The correlation between the estimates and the reference was significantly different for the 
individual emotion primitives, as shown in Table 1(b). The correlation for valence was 
between 0.28 and 0.46 for the different estimators, and it was between 0.72 and 0.82 for 
activation and dominance. It has to be noted that the correlation coefficients for valence are 

only moderately significant at p > 10
-3, while all other correlation coefficients are statistically 

significant at p < 10
-5. These different significance levels reflect the fact that the distribution 

in the values for valence was much narrower than for activation or dominance. Thus the results 
imply very good recognition results for activation and dominance, and moderate recognition 
results for valence.
Comparing the individual estimation methods, we can say that the best results were 
achieved using the SVR-RBF estimator with errors of 0.13, 0.15, and 0.14, and correlation 
coefficients of 0.46, 0.82, and 0.79 for valence, activation, and dominance, respectively. The 
Fuzzy KNN estimator performed almost as well as the SVR-RBF. The SVR-Poly estimator 
gave worse results for valence in comparison to almost as good results for activation and 
dominance. Similarly, the FL estimator gave even worse results for valence but still very good 
ones for activation and dominance.

Figure 6. Emotion primitives estimation: results in comparison with manually labeled 
human reference. 
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Thus, the kernel-based method outperformed all other methods only marginally, apart from 
the FL method which seems to be clearly the last choice. These differences are probably 
caused by the complexity in the representation of the relation between the acoustic features 
and the emotion primitives. While Fuzzy Logic only uses the rules derived from the 
correlation coefficients, which is a rather coarse generalization, the SVR method provides a 
more complex, nonlinear relation in form of the regression curve in a high-dimensional 
feature space. KNN does not provide such sophisticated abstraction, but uses a huge 
amount of comparison options to choose the neighbors from.  
Thus, on deciding between SVR and KNN, the focus must be set on the computational 
demand: If we have enough computational power to calculate all the distances necessary in 
the KNN method, this might be the choice due to the simplicity in the setup of the classifier. 
Alternatively, if we are forced to have low computational demands at runtime, we might 
decide for SVR-RBF and provide the computational power only once, which is at the instant 
of generating the regression hyperplane. 
As a summary of the results, Figure 6 shows the estimation results using the SVR-RBF 
estimator. In this graph, the emotion primitive values are arranged in ascending order. This 
order is in contrast to the experiment, where we provided random order, but helps in 
grasping the benefits and the limits of the presented method, in particular with respect to 
the mentioned difficulty of having relatively few positive emotions but a wide range of 
activation and dominance values. 
Figure 6 reveals some information about the nature of the errors. Most of the estimates are 
located within a small margin around the references. However, a small number of very high 
or very low primitive values was occasionally underestimated. 

5.2 Learning curves 

In addition to the direct comparison of the estimator results, it is interesting to see the 
amount of training data that is necessary to achieve such results. We analyzed a wide range 
of 50% to 98% of the data to be available for training and compared the estimation results 
for these individual conditions. Figure 7 shows these learning curves for (a) SVR-RBF, (b) 
FL, and (c) KNN. 
It can be seen that the error curves are very different. For the FL estimator, the error curves 
are almost constant over the total range. This result is very interesting since it shows that 
although the FL absolute error was higher than the one using alternative estimators, it is 
more robust considering the necessary amount of training data. Therefore this method 
might be worth using for applications in which few training data is available. 
If we compare the SVR-RBF and the KNN learning curves, we can observe that the error for 
KNN depends more on the training data size than the respective error using SVR. This 
difference can be explained by the nature of learning in these two methods. SVR uses a 
generalizing method that yields a more abstract representation of the training data in form 
of the regression curve parameters. In contrast, KNN uses only an explicit representation of 
a set of training features. Thus, providing a smaller number of training samples directly 
reduces the options for comparison when trying to find the most appropriate neighbors. 
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Figure 7. Learning curves of different estimators for emotion primitive estimation, based on 
the VAM corpus. 

6. Conclusion 

In this chapter we discussed the recognition of emotions in spontaneous speech. We used a 
general framework motivated by emotion psychology to describe emotions by means of 
three emotion “primitives” (attributes), namely valence, activation, and dominance. With these 
emotion primitives, we proposed a real-valued three-dimensional emotion space concept to 
overcome the limitations in the state-of-the-art emotion categorization. We tested the 
method on the basis of 893 spontaneous emotional utterances recorded on a German TV 
talk-show.
For the acoustic representation of the emotion conveyed in the speech signal, we extracted 
137 features. These reflected the prosody and the spectral characteristics of the speech. We 
tested two methods to reduce the problem of large feature sets, Principal Component 
Analysis and Sequential Feature Selection. Thus, we selected the 20 most relevant acoustic 
features that yielded the best recognition results.  
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For the estimation of the emotion primitives, Support Vector Regression, Fuzzy Logic, and 
Fuzzy k-Nearest Neighbor methods were used. We found that the emotion primitives could 
be estimated with a small error of 0.13 to 0.15, where the range of values was [-1,+1]. The 
correlation between the reference annotated manually by the evaluators and the 
automatically calculated estimates was moderate (0.46, valence) to high (0.82/0.79, 
activation/dominance). In comparison to the Fuzzy Logic estimator, which was the baseline, 
the error for valence, activation and dominance estimation could be reduced by 52%, 12% and 
22%, respectively. 
Thus, Support Vector Regression gave the best estimation results, however, closely followed 
by KNN. Note that while SVR is computationally much more demanding for initialization 
(finding the regression hyperplane), the KNN method requires more computational power 
at the actual estimation step due to the distance matrix that has to be calculated. The rule-
based FL algorithm is computationally less demanding but gives clearly inferior results, at 
least for valence. However, when regarding the learning curves of the three estimators, i.e., 
assessing the estimation error as a function of the training data size, it was shown that the 
Fuzzy Logic method gave the most robust results. Thus, in the case of very few training data 
available, the FL method might be an appropriate choice again. 
In our future work we will study the fusion of the emotion primitive estimation with the 
automated speech recognition (ASR). While the emotion recognition might be used to 
parameterize or personalize the ASR unit, the phoneme estimates of the ASR, on return, 
might be used to improve the emotion recognition. Future work will also investigate the 
design of a real-time system using the algorithms that were reported here. The advantage of 
continuous-valued estimates of the emotional state of a person could be used to build an 
adaptive emotion tracking system. Such a system might be capable to adapt to individual 
personalities and long-term moods, and thus finally provide indeed humanoid man-
machine interfaces. 
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