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1. Introduction    

Rotating machinery is commonly used in many mechanical systems, including electrical 
motors, machine tools, compressors, turbo machinery and aircraft gas turbine engines. 
Typically these systems are affected by exogenous or endogenous vibrations produced by 
unbalance, misalignment, resonances, material imperfections and cracks. 
Vibration caused by mass unbalance is a common problem in rotating machinery. Rotor 
unbalance occurs when the principal inertia axis of the rotor does not coincide with its 
geometrical axis and leads to synchronous vibrations and significant undesirable forces 
transmitted to the mechanical elements and supports. Many methods have been proposed to 
reduce the unbalance-induced vibration, where different devices such as electromagnetic 
bearings, active squeeze film dampers, lateral force actuators, active balancers and 
pressurized bearings have been developed (Blanco et al., 2008) (Guozhi et al., 2000) (Jinhao 
& Kwon, 2003) (Palazzolo et al., 1993) (Sheu et al., 1997) (Zhou & Shi, 2001). Passive and 
active balancing techniques are based on the unbalance estimation to attenuate the 
unbalance response in the rotating machinery. The Influence Coefficient Method has been 
used to estimate the unbalance while the rotating speed of the rotor is constant (Lee et al., 
2005) (Yu, 2004). This method has been used to estimate the unknown dynamics and rotor-
bearing system unbalance during the speed-varying period (Zhou et al., 2004). On the other 
hand, there is a vast literature on identification methods (Ljung, 1987) (Sagara & Zhao, 1989) 
(Sagara & Zhao, 1990), which are essentially asymptotic, recursive or complex, which 
generally suffer of poor speed performance. 
This chapter presents an active vibration control scheme to reduce unbalance-induced 
synchronous vibration in rotor-bearing systems supported on two ball bearings, one of 
which can be automatically moved along the shaft to control the effective rotor length and, 
as an immediate consequence, the rotor stiffness. This dynamic stiffness control scheme, 
based on frequency analysis, speed control and acceleration scheduling, is used to avoid 
resonant vibration of a rotor system when it passes (run-up or coast down) through its first 
critical speed. Algebraic identification is used for on-line unbalance estimation at the same 
time that the rotor is taken to the desired operating speed. The proposed results are strongly 
based on the algebraic approach to parameter identification in linear systems reported 
(Fliess & Sira, 2003), which requires a priori knowledge of the mathematical model of the 
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system. This approach has been employed for parameter and signal estimation in nonlinear 
and linear vibrating mechanical systems, where numerical simulations and experimental 
results show that the algebraic identification provides high robustness against parameter 
uncertainty, frequency variations, small measurement errors and noise (Beltrán et al., 2005) 
(Beltrán et al., 2006). In addition, algebraic identification is combined with integral 
reconstruction of time derivatives of the output (GPI Control) using a simplified 
mathematical model of the system, where some nonlinear effects (stiffness and friction) 
were neglected; in spite of that, the experimental results show that the estimated values 
represent good approximations of the real parameters and high performance of the 
proposed active vibration control scheme, which means that the algebraic identification and 
GPI control methodologies could be used for some industrial applications, when at least a 
simplified mathematical model of the system is available (Beltrán et al., 2005). 
Some numerical simulations and experiments are included to show the unbalance 
compensation properties and robustness when the rotor is started and operated over the 
first critical speed. 

2. System description 

2.1 Mathematical model 

The Jeffcott rotor system consists of a planar and rigid disk of mass m mounted on a flexible 
shaft of negligible mass and stiffness k at the mid-span between two symmetric bearing 
supports (see figure 1(a) when a = b). Due to rotor unbalance the mass center is not located 
at the geometric center of the disk S but at the point G (center of mass of the unbalanced 
disk); the distance u between these two points is known as disk eccentricity or static 
unbalance (Vance, 1988) (Dimarogonas, 1996). An end view of the whirling rotor is also 
shown in figure 1(b), with coordinates that describe its motion.  
In our analysis the rotor-bearing system is modeled as the assembly of a rigid disk, flexible 
shaft and two ball bearings. This system differs from the classical Jeffcott rotor because the 
effective shaft length can be increased or decreased from its nominal value. In fact, this 
adjustment is obtained by enabling longitudinal motion of one of the bearing supports (right 
bearing in figure 1.a) to different controlled positions into a small interval by using some 
servomechanism, which provides the appropriate longitudinal force. With this simple 
approach one can modify the shaft stiffness; moreover, one can actually control the rotor 
natural frequency, during run-up or coast-down, to evade critical speeds or at least reduce 
rotor vibration amplitudes. Our methodology combines some ideas on variable rotor 
stiffness (Sandler, 1999) and rotor acceleration scheduling (Millsaps, 1998) but completing 
the analysis and control for the Jeffcott-like rotor system. 
The rotor-bearing system is not symmetric when the position of the right bearing changes 
from its nominal value, i.e., a = b = l/2 for the Jeffcott rotor  (Δl = 0). 
For simplicity, the following assumptions are considered: flexible shaft with attached disk, 
gravity loads neglected (insignificant when compared with the actual dynamic loads), 
equivalent mass for the base-bearing mb, linear viscous damping cb between the bearing base 
and the linear sliding, force actuator to control the shaft stiffness F, angular speed 

d
dt
ϕω ϕ= = $  controlled by means of an electrical motor with servodrive and local 

Proportional Integral (PI) controller to track the desired speed scheduling in presence of 
small dynamical disturbances. The mathematical model of the four degree-of-freedom 
Jeffcott-like rotor is obtained using Newton equations as follows 
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Fig. 1. Rotor-bearing system: (a) Schematic diagram of a rotor-bearing system with one 
movable (right) bearing and (b) end view of the whirling rotor 

 2( sin cos )  mx cx kx m u uϕ ϕ ϕ ϕ+ + = +$$ $ $$ $  (1) 

 2( sin cos )  my cy ky m u uϕ ϕ ϕ ϕ+ + = −$$ $ $ $$  (2) 

 2( ) ( sin cos )zJ mu c p m xu yuϕϕ ϕ τ ϕ ϕ+ + = − = −$$ $ $$ $$  (3) 

                               b bm b c b F+ =$$ $  (4) 

where k and c are the stiffness and viscous damping of the shaft, Jz is the polar moment of 
inertia of the disk and Ǖ(t) is the applied torque (control input) for rotor speed regulation. In 
addition, x and y denote the orthogonal coordinates that describe the disk position and 

ϕ ω=$  is the rotor angular velocity. The coordinate b denotes the position of the movable 

(right) bearing, which is controlled by means of the control force F(t) (servomechanism).  
In our analysis the stiffness coefficient for the rotor-bearing system is given by (Rao, 2004) 

 
2 2

3 3

3 ( )EIl a ab b
k

a b

− −
=  (5) 

where l = a + b is the total length of the rotor between both bearings with b  the coordinate to 

be controlled, 
4

64
DI π=  is the moment of inertia of a shaft of diameter D and E is the Young's 

modulus of elasticity ( E = 2.11 ×1011 N/ m2 for AISI 4140 steel). The natural frequency of the 

rotor system is then obtained as follows (Rao, 2004)  

 /n k mω =  (6) 

In such a way that, controlling b by means of the control force F one is able to manipulate ωn 
to evade appropriately the critical speeds during rotor operation. 
The proposed control objective is to reduce as much as possible the rotor vibration 
amplitude, denoted in adimensional units by  

 
2 2x y

R
u

+
=   (7) 

for run-up, coast-down or steady state operation of the rotor system, even in presence of 
small exogenous or endogenous disturbances. Note, however, that this control problem is 
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quite difficult because of the 8th order nonlinear model, many couplings terms, 
underactuation and uncontrollability properties from the two control inputs (Ǖ, F).  

3. Active vibration control 

3.1 Speed control with trajectory planning 

In order to control the speed of the Jeffcott-like rotor system, consider equation (3), under 
the temporary assumption that the eccentricity u is perfectly known and that c ≈ 0 to 
simplify the analysis. Then, the following local PI controller is designed to track desired 

reference trajectories of speed ω*(t) and acceleration scheduling ( )*  tω$  for the rotor: 

 
1

1 0 0

sin cos

* ( ) ( * ( )) ( * ( ))

z

t

J v c kux kuy

v t t t dt

ϕτ ω ϕ ϕ

ω α ω ω α ω ω

= + + −

= − − − −∫$
 (8) 

The use of this controller yields the following closed-loop dynamics for the trajectory 

tracking error e1 =  ω – ( )*  tω$ : 

 1 1 1 0 1 0e e eα α+ + =$$ $  (9) 

Therefore, selecting the design parameters {∝1, ∝0} so that the associated characteristic 
polynomial for equation (9) 

2
1 0( )p s s s= +∝ + ∝  

is a Hurwitz polynomial, one guarantees that the error dynamics is asymptotically stable. 
The prescribed speed and acceleration scheduling for the planned speed trajectory is given 
by 

0

* ( ) ( , , )
i i

i f f i f

f f

t t

t t t t t t t

t t

ω
ω σ ω

ω

⎧ ≤ ≤
⎪⎪= ≤ <⎨
⎪ >⎪⎩

 

where ωi and ωf are the initial and final speeds at the times ti and tf, respectively, passing 
through the first critical frequency, and ǔ(t,ti,tf) is a Bézier polynomials, with ǔ(t,ti,tf) = 0 and  
ǔ(t,ti,tf) = 1, described by 

 ( )
5 2 5

1 2 3 6, ,   ...i i i i
i f

f i f i f i f i

t t t t t t t t
t t t

t t t t t t t t
σ γ γ γ γ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= − + − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (11) 

with Ǆ1 = 252, Ǆ2 = 1050, Ǆ3 = 1800, Ǆ4 = 1575, Ǆ5 = 700, Ǆ6 = 126, in order to guarantee a 
sufficiently smooth transfer between the initial and final speeds. 
The fundamental problem with the proposed feedback control in equation (8) is that the 
eccentricity u is not known, except for the fact that it is constant. The Algebraic identification 
methodology is proposed to on-line estimate the eccentricity u, which is based on the 
algebraic approach to parameter identification in linear systems (Fliess & Sira, 2003). 
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3.2 Algebraic identification of eccentricity 

Consider equation (3) with perfect knowledge of the moment of inertia Jz and the shaft 
stiffness k, and that the position coordinates of the disk (x,y) and the control input Ǖ are 
available for the identification process of the eccentricity u. 
Multiplying equation (3) by t and integrating by parts the resulting expression once with 
respect to time t, one gets 

 
0 0 0

1
( ) ( ) (ycos sin )

t t t

z z

ku
t dt t c dt t x dt

J J
ϕω τ ω ϕ ϕ= − + −∫ ∫ ∫$  (12) 

Solving for the eccentricity u in equation (12) leads to the following on-line algebraic 
identifier for the eccentricity: 

 0

0

( )
ˆ , (0, ]

( cos sin )

t

z z

t

J t J t tc dt
u t

k t y x dt

ϕω ω τ ω
δ

ϕ ϕ

− + −
= ∀ ∈

−

∫
∫

 (13) 

where ǅ is a positive and sufficiently small value. 
Therefore, when the denominator of the identifier of equation (13) is different to 0, at least 

for a small time interval (0, ǅ ] with ǅ > 0, one can find from equation (13) a closed-form 

expression to on-line identify the eccentricity. 

3.3 An adaptive-like controller with algebraic identification 

The PI controller given by equation (8) can be combined with the on-line identification of the 

eccentricity in equation (13), resulting the following certainty equivalence PI control law 

 
1

1 1 0 0

ˆsin cos

* ( ) ( * ( )) ( * ( ))

z

t

J v c kux kuy

v t t t dt

ϕτ ω ϕ ϕ

ω α ω ω α ω ω

= + + −

= − − − −∫$
 (14) 

with 

0

0

( )
ˆ , (0, ]

( cos sin )

t

z z

t

J t J t tc dt
u t

k t y x dt

ϕω ω τ ω
δ

ϕ ϕ

− + −
= ∀ ∈

−

∫
∫

 

Note that, in accordance with the algebraic identification approach, providing fast 

identification for the eccentricity, the proposed controller (14) resembles an adaptive control 

scheme. From a theoretical point of view, the algebraic identification is instantaneous (Fliess 

& Sira, 2003). In practice, however, there are modeling errors and other factors that inhibit 

the algebraic computation. Fortunately, the identification algorithms and closed-loop system 

are robust against such difficulties (Beltrán et al., 2005). 

3.4 Simulation results 

Some numerical simulations were performed using the parameters listed in table 1. 
Figure 2 shows the identification process of eccentricity and the dynamic behavior of the 
adaptive-like PI controller given by equation (14), which starts using the nominal value  
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u = 0 μm. One can see that the identification process is almost instantaneous. The control 
objective is to take from the rest position of the rotor to the operating speed ωf = 300 rad/s. 
 

mr = 0.9 kg D = 0.01 m a = 0.3 m  

mb = 0.4 kg rdisk = 0.04 m cφ = 1.5 × 10-3 Nms/rad

cb = 10 Ns/m u = 100 μm  b = 0.3 ± 0.05 m 

Table 1. Rotor system parameters 

0  0.5 1  1.5 2  2.5 3  3.5 4  4.5 5  
0

100

200

Time [10
-4

 s]

E
cc

en
tr

ic
it

y
 

[μ
m

] 
  

  
  

0 10 20 30 40 50
0

200

R
o

to
r 

S
p

ee
d

[r
a

d
/

s]
  

  

Time [s]

0 10 20 30 40 50
0

0.5

Time [s]

T
o

rq
u

e
[N

m
] 

 

Fig. 2. Close loop system response using the PI controller: (a) identification of eccentricity, 
(b) rotor speed and (c) control input   

The desired speed profile runs up the rotor in a very slow and smooth trajectory while 
passing through the first critical speed. This control scheme is appropriate to guarantee 
stability and tracking. The resulting rotor vibration amplitude (system response when F = 0 ) 
is shown in figure 3, for three different and constant positions of the right bearing (i.e.,  
b = 0.25 m, 0.30 m, 0.35 m), using the PI controller. 
The purpose of these simulations is to illustrate how the position of the bearing truly affects 
the rotor vibration amplitudes for the desired speed profile. The nominal length of the shaft 
is l = 0.60 m. A smaller length l = 0.55 m leads to a higher natural frequency and a bigger 
length l = 0.65 m leads to a smaller natural frequency (see figure 3). Hence to get a minimal 
unbalance response, the rotor length should start at l = 0.55 m and then abruptly change to  
l = 0.65 m. This change of the bearing position must occur exactly when the response for  
l = 0.55 crosses the response for l = 0.65, in order to evade the resonance condition, because 
the rotor speed is different from the natural frequency of the rotor-bearing system. 
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Fig. 3. Unbalance response R for different and constant positions of the movable bearing 

3.5 Simulation results 

It is evident from equations (5) and (6) that controlling the position of the movable (right) 
bearing b applying the control force F and according to a pre-specified speed profile ω*(t) 
the modification of the rotor amplitude response to the unbalance is possible. As a matter of 
fact this methodology is equivalent to a dynamic stiffness control for the Jeffcott-like rotor 
system, enabling smooth changes on coordinate b. 
To design a controller for position reference tracking, consider equation (4). Then, one can 

propose the following Generalized Proportional Integral (GPI) controller for asymptotic and 

robust tracking to the desired position trajectory b*(t) for the bearing position and velocity, 

which employs only position measurements of the bearing. For more details on GPI control 

see (Fliess et al., 2002). 

2

2 2 1 0

ˆ

ˆ
( ) ( ) ( ( )) ( ( ))

b bF m v c b

v b t b b t b b t b b t dtβ β β∗ ∗ ∗ ∗

= −

⎛ ⎞= − − − − − −⎜ ⎟
⎝ ⎠ ∫

$

$$ $ $ (15) 

where 
ˆ
b$  is an integral reconstructor of the bearing velocity, which is given by 

 
0

ˆ 1
( )

tb

b b

c
b b F d

m m
σ σ= − + ∫$  (16) 

The use of the GPI controller given yields the following closed-loop dynamics for the 
trajectory tracking error e2 = b –b*(t): 

 (3)
2 2 1 2 0 22 0e e e eβ β β+ + + =$$ $  (17) 
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Therefore, selecting the design parameters {ǃ0, ǃ1, ǃ2} such that the associated characteristic 
polynomial for equation (17) be Hurwitz, one guarantees that the error dynamics be globally 
asymptotically stable. The desired trajectory planning b*(t) for the bearing position and 
velocity is also based on Bézier polynomials similar to equation (10). 

3.6 Results and discussion 
The proposed methodology for the active vibration control of the transient run-up or coast-
down of the rotor-bearing system consists of the following steps: 
1. Define the trajectory planning for the speed trajectory profile ω*(t) to be asymptotically 

tracked by the use of the adaptive-like PI controller with the algebraic identifier of the 
eccentricity, i.e., limt→ ∞ ω(t) = ω*(t). 

2. Establish an appropriate smooth switching on the position of the movable bearing b*(t) 
to be asymptotically tracked by the application of the GPI controller, i.e.,  
limt→ ∞ b(t) = b*(t). The switching time has to be at the crossing point leading to minimal 
unbalance response in figure 3. 

Figure 4 shows the unbalance response of the rotor-bearing system when rotor speed PI 
controller with algebraic identification of eccentricity and GPI control of the bearing position 
are simultaneously used. Note that the switching of the bearing position leads to small 
transient oscillations due to inertial and centrifugal effects on the overall rotor system. 
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Fig. 4. Rotor vibration amplitude response using active vibration control (solid line) 

First of all, the speed trajectory planning and control torque shown in figure 2 are similarly 
used. The smooth switching for the bearing position is implemented in such a way that the 
run-up of the rotor system starts with the position bi = 0.25 m (i.e., l = 0.55 m) and changes to 
bf = 0.35 m (i.e., l = 0.65 m) exactly at the crossing point shown in the corresponding response 
in figure 3. The switching time occurs when ω = 170.6 rad/s, that is, t = 23.9 s. The desired 
position of the bearing b(t) is illustrated in figure 5 together with the applied control force F. 
A comparison of the open-loop response and the closed-loop response in figure 4 results in 
important unbalance reductions about 64%. 
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Fig. 5. Response of the bearing support using GPI controller: (a) position of the movable 
bearing and (b) control force 

4. Conclusion 

The active vibration control of a Jeffcott-like rotor through dynamic stiffness control and 
acceleration scheduling is addressed. The control approach consists of a servomechanism 
able to move one of the supporting bearings in such a way that the effective rotor length is 
controlled. As a consequence, the rotor stiffness and natural frequency are modified 
according to an off-line and smooth trajectory planning of the rotor speed/acceleration in 
order to reduce the unbalance response when passing through the first critical speed. The 
vibration control scheme results from the combination of passive and active control 
strategies, leading to robust and stable performance in presence of the synchronous 
disturbances associated to the normal operation of the rotor and some small parameter 
uncertainties. Since this active vibration control scheme requires information of the 
eccentricity, a novel algebraic identification approach is proposed for on-line estimation of 
the eccentricity. From a theoretical point of view, the algebraic identification is practically 
instantaneous and robust with respect to parameter uncertainty, frequency variations, small 
measurement errors and noise. The proposed active vibration control scheme, used to 
reduce unbalance-induced synchronous vibration, is restricted to use in small rotating 
machinery (e.g., tools machines, motors and generators). 
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purpose of this book is to present basic and advanced methods for efficiently controlling the vibrations and

limiting their effects. Open-access publishing is an extraordinary opportunity for a wide dissemination of high

quality research. This book is not an exception to this, and I am proud to introduce the works performed by

experts from all over the world.
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