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1. Introduction 

Communication using speech is inherently natural, with this ability of communication 
unconsciously acquired in a step-by-step manner throughout life. In order to explore the 
benefits of speech communication in devices, there have been many research works 
performed over the past several decades. As a result, automatic speech recognition (ASR) 
systems have been deployed in a range of applications, including automatic reservation 
systems, dictation systems, navigation systems, etc. 
Due to increasing globalization, the need for effective interlingual communication has also 
been growing. However, because of the fact that most people tend to speak foreign languages 
with variant or influent pronunciations, this has led to an increasing demand for the 
development of non-native ASR systems (Goronzy et al., 2001). In other words, a conventional 
ASR system is optimized with native speech; however, non-native speech has different 
characteristics from native speech. That is, non-native speech tends to reflect the 
pronunciations or syntactic characteristics of the mother tongue of the non-native speakers, as 
well as the wide range of fluencies among non-native speakers. Therefore, the performance of 
an ASR system evaluated using non-native speech tends to severely degrade when compared 
to that of native speech due to the mismatch between the native training data and the non-
native test data (Compernolle, 2001). A simple way to improve the performance of an ASR 
system for non-native speech would be to train the ASR system using a non-native speech 
database, though in reality the number of non-native speech samples available for this task is 
not currently sufficient to train an ASR system. Thus, techniques for improving non-native 
ASR performance using only small amount of non-native speech are required. 
There have been three major approaches for handling non-native speech for ASR: acoustic 
modeling, language modeling, and pronunciation modeling approaches. First, acoustic 
modeling approaches find pronunciation differences and transform and/or adapt acoustic 
models to include the effects of non-native speech (Gruhn et al., 2004; Morgan, 2004; Steidl 
et al., 2004). Second, language modeling approaches deal with the grammatical effects or 
speaking style of non-native speech (Bellegarda, 2001). Third, pronunciation modeling 
approaches derive pronunciation variant rules from non-native speech and apply the 
derived rules to pronunciation models for non-native speech (Amdal et al., 2000; Fosler-
Lussier, 1999; Goronzy et al., 2004; Gruhn et al., 2004; Raux, 2004; Strik et al., 1999). 

Source: Advances in Speech Recognition, Book edited by: Noam R. Shabtai,  
 ISBN 978-953-307-097-1, pp. 164, September 2010, Sciyo, Croatia, downloaded from SCIYO.COM
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The remainder of this chapter is organized as follows. In Section 2, an overview of  
non-native speech recognition is investigated. After that, acoustic modeling, language 
modeling, and pronunciation modeling approaches are explained in Sections 3, 4, and 5, 
respectively. Then, a new pronunciation modeling method is proposed in Section 6 as a 
means of improving the performance of non-native speech recognition. In addition, the 
performance of a non-native ASR system adopting the proposed method is evaluated and 
compared to that employing conventional pronunciation model adaptation methods. 
Finally, we conclude our findings in Section 7. 

2. Overview of non-native speech recognition 

Recently, speech recognition technology has become more familiar in our lives (Goronzy et 
al., 2001), as numerous applications are increasingly adopting speech recognition systems. 
For example, voice dialing is possible based on either a user stating a name or a number, 
dictation systems are relatively common, and there are a number of voice-enabled automatic 
response systems available. However, when these ASR systems are used by non-native 
speakers, the performance of the system can rapidly degrade because of the mismatches 
between the native training data and the non-native test data (Compernolle, 2001). 
Previously, several works have investigated the characteristics of non-native speech and the 
effect of non-native speech on ASR performance, some of which tried to explore the 
differences in characteristics between native and non-native speakers. For examples, the 
authors of (Sidaras et al., 2009) demonstrated that the duration and the first and second 
formant frequencies of English vowels spoken by Spanish speakers had different 
characteristics from those of native English speakers. Moreover, it was found that Spanish-
accented English was perceived better when the listeners were trained with this form of 
English. Similarly, it was noticed that the tongue location of the English vowels by non-
native speakers had different characteristics from that of native speakers (Wade et al., 2007). 
In addition, according to the work in (Alotaibi et al., 2010), unique consonants existed in 
some languages, such as four emphatic consonants of Arabic, and these unfamiliar 
consonants were found to be hard to perceive by non-native speakers. It was then found 
that when non-native speakers pronounced words containing these unfamiliar consonants, 
degradation of ASR performance could occur. 
Other researchers have attempted to compare the ASR performance of both native and non-
native speech. In (Wang et al., 2003), it was shown that the word error rate (WER) of an 
English ASR system by German speakers was 49.3% whereas that of native English speakers 
was 16.2%. Moreover, in (Steidl et al., 2004), an ASR system trained by German speakers 
provided WERs of 18.5% and 34.0% when tested by native German speakers and English 
speakers, respectively. However, when the same ASR system was trained by English 
speakers but tested by German speakers, the WER increased from 35.0% to 65.6%. Based on 
these previous works, it is evident that adjusting for different pronunciation characteristics 
between native and non-native speakers is crucial for improving the ASR performance of 
non-native speech. 
In order to improve the ASR performance for non-native speech, we first need to prepare a 
non-native speech database to train the ASR system or adjust the system for non-native 
speech; then, each component of the ASR system can be adjusted for non-native speech. 
Depending on which ASR component is adapted or modified for non-native speech, we can 
classify the techniques developed for non-native speech as shown in Fig. 1. In brief, a typical 
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ASR system is composed of a front-end for extracting acoustic feature, acoustic models for 
representing recognition units with the acoustic features, a language model for covering 

language-specific grammar or syntax, and a pronunciation model for handling the 
phonology, phonotactics, or phonetics of the target language. Therefore, different techniques 
can deal with non-native ASR issues from acoustic modeling, language modeling, or 
pronunciation modeling points of view. In addition, it is also important to consider how to 
transform or compensate for acoustic features extracted from non-native speech into native 
speech. It is suggested here that to further improve ASR performance, a hybrid modeling 
approach can be used, one that combines some or all of the approaches mentioned above. 
 

Test speech data

Front-end Feature modeling

Acoustic model Acoustic modeling
Non native

Pattern matchingRecognized text Language model Language modeling

Pronunciation model Pronunciation modeling

Non-native

speech

database

Hybrid modeling

 

Fig. 1. Classification of techniques applied to non-native ASR. 

1. Non-native speech database design 
In order to develop a non-native ASR system and investigate the characteristics of non-
native speech, we first require non-native speech databases; Raab et al. (Raab et al., 
2007) have previously reviewed such non-native speech databases. 

2. Acoustic modeling approach 
Acoustic modeling approaches are used to adjust acoustic models and thereby improve 
the recognition performance of non-native speech (Gruhn et al., 2004; Morgan, 2004; 
Steidl et al., 2004). A simple way of adjusting acoustic models is to train them using a 
large amount of non-native speech. However, in practice it is rather difficult to collect a 
sufficient amount of non-native speech; therefore, acoustic models are usually adapted 
via a conventional acoustic model adaptation method, such as maximum likelihood 
linear regression (MLLR) and/or maximum a posteriori (MAP) methods (Yang et al., 
2004). As an alternative, the acoustic models adjusted for non-native speech can also be 
obtained by interpolating the acoustic models for native speech and the acoustic models 
for the mother tongue (Steidl et al., 2004; Tan et al., 2007). In other words, the acoustic 
models trained with two different languages are combined to obtain the acoustic 
models for non-native speech. However, the most popular way of obtaining the 
adjusted acoustic models is to apply an adaptation technique with only small amount of 
adaptation data for non-native speech (Liu et al., 2008; Oh et al., 2007; 2009). 

3. Language modeling approach 
Language modeling approaches deal with the grammatical effects or speaking styles of 
non-native speech, since non-native speakers tend to make a different sentence 
structure from native speakers (Bellegarda, 2001). However, there are relatively few 
research works in this area, compared to either the acoustic modeling approaches or the 
pronunciation modeling approaches (Huang et al., 2008; Raux et al., 2004; Steidl et al., 
2004). 
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4. Pronunciation modeling approach 
Pronunciation modeling approaches first derive pronunciation variants from non-native 
speakers and then apply them to the pronunciation models for non-native speech. 
Usually, the variant pronunciations for each word are added to the pronunciation models, 
which is similar to a multiple pronunciation dictionary approach (Amdal et al., 2000; 
Fosler-Lussier, 1999; Goronzy et al., 2004; Gruhn et al., 2004; Raux, 2004; Strik et al., 1999). 
The pronunciation variants from non-native speakers can be derived by either 
knowledge-based or data-driven approaches (Strik et al., 1999). Note that knowledge-
based approaches are based on linguistics or phonetic knowledge (Schaden, 2003; 
Tajchman et al., 1995; Wiseman et al., 1998), whereas data-driven approaches 
automatically derive pronunciation variants from non-native speech data and can be 
further classified into either a direct method (Amdal et al., 2000; Fosler-Lussier, 1999; 
Strik et al., 1999) or an indirect method (Amdal et al., 2000; Fosler-Lussier, 1999; 
Goronzy et al., 2004; Svendsen, 2004; Wolff et al., 2001). 
If many pronunciation variants are derived, the adapted pronunciation model becomes 
enlarged, resulting in performance degradation of the ASR system due to the fact that 
confusability in the pronunciation model is increased. Thus, several confusability 
reduction methods have also been proposed (Amdal et al., 2000; Hernandez-Abrego et 
al., 2004; Tsai et al., 2002). 

5. Hybrid modeling approach 
Hybrid modeling approaches combine several modeling approaches, as described 
above, to further improve the performance of non-native ASR. In other words, acoustic 
or pronunciation modeling approaches can be combined in an MLLR and/or MAP 
adaptation framework (Goronzy et al., 2004; He et al., 2003; Liu et al., 2008; Oh et al., 
2007; 2010; Tan et al., 2007). In particular, Bouselmi et al. (Bouselmi et al., 2007) 
proposed several combination schemes for pronunciation and MLLR/MAP acoustic 
model adaptations. On the other hand, pronunciation variant rules were decomposed 
into either pronunciation or acoustic variants (Oh et al., 2008). After that, pronunciation 
and acoustic model adaptations were applied to pronunciation and acoustic variants, 
respectively. 

6. Feature-domain approach 
The feature-domain approach applies a feature adaptation method to compensate for 
mismatches between training and test conditions; the acoustic models are trained using 
native speech, but are tested using non-native speech. For example, Oh and Kim (Oh et 
al., 2010) applied a feature-space MLLR (fMLLR) adaptation with smoothing techniques 
to non-native ASR. 

The next three sections will provide more detailed descriptions of the acoustic, language, 
and pronunciation modeling approaches. 

3. Acoustic modeling approach 

Because of the limited non-native speech database mentioned in Section 2, interpolating or 
adapting existing acoustic models using a small amount of non-native speech data is 
preferred, rather than attempting to train new acoustic models using large amounts of non-
native speech data. Thus, in this section we introduce a number of acoustic modeling 
approaches in attempts to improve the performance of non-native ASR by using only a 
limited amount of non-native speech data. 
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As an effort to adapt acoustic models, several interpolation methods have been proposed, 

where two sets of acoustic models, the acoustic models trained with the target language and 

the acoustic models trained with the mother tongue of native speakers, are combined 

(Matsunaga et al., 2003; Steidl et al., 2004; Tan et al., 2007). Contrary to interpolating acoustic 

models, phone acoustic models of the target language were modified by adding an 

alternative path to the corresponding mother tongue phone acoustic models of non-native 

speakers (Bartkova et al., 2006; Bouselmi et al., 2006). Finally, the acoustic models were 

adapted by using non-native adaptation data via either an algorithm dedicated to non-

native ASR or a conventional speaker adaptation method (Liu et al., 2008; Oh et al., 2007; 

2009). 

3.1 Retraining method 

A retraining method generates non-native acoustic models by using a large amount of non-

native speech data or retrains native acoustic models by using a moderately large sample of 

non-native speech data. These types of retraining methods are very simple but have several 

drawbacks, such as the following. 

First, retraining methods require a large amount of non-native speech and their 

corresponding transcription data; however, these data are usually limited in quantity. 

Second, the transcriptions of a non-native speech database cannot be automatically 

generated since some non-native speech data contain various unpredictable pronunciations 

and structural errors. Third, the performance of ASR systems employing the retrained  

non-native acoustic models tends to drastically degrade for native speech (Oh et al., 2007). 

For these reasons, several alternative methods have been proposed, which either interpolate 

the native and non-native acoustic models or adapt the native acoustic models based on a 

relatively small non-native database. 

3.2 Interpolation method 

In this subsection, we explain several interpolation methods, classified as either: 1) 

interpolation of native acoustic models of target language using non-native speech data 

(Steidl et al., 2004), and 2) interpolation of native acoustic models of target language based 

on native acoustic models of the mother tongue of non-native speakers (Tan et al., 2007). 

3.2.1 Use of target language acoustic models 

In this category, the acoustic model interpolation method is based on two assumptions. 
First, each non-native pronunciation has at least one similar native pronunciation in the 
target language, stemming from the fact that most languages have very similar phone 
inventories. Second, the native acoustic models of the target language are sufficient for 
adapting acoustic models for non-native speech. 
The procedure of the acoustic model interpolation method is as follows: 
Step 1. Generation of transcriptions based on native acoustic models 

Each non-native utterance in a development set is recognized by the native acoustic 
models of the target language, which then automatically generates the transcriptions. 
According to the recognition results, each pronunciation in the lexicon is replaced by 
the recognized monophone such that highly specialized pronunciations in the lexicon 
are adapted. 
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Step 2. Selection of optimal interpolation partners 
To select the optimal K-1 partners for acoustic model interpolation, each candidate 
partner is first interpolated based on the state of a hidden Markov model (HMM) of the 
target language, as shown in Eq. (1). Next, an N-best list of candidate partners is 
evaluated, and the first K-1 candidate partners are then selected from the N-best list. 

Step 3. Interpolation of selected acoustic models 

Since semi-continuous HMMs share the same set of output density probabilities, only 

the interpolation weights and the corresponding transition probabilities need to be 

adjusted in order to interpolate native acoustic models of the target language for non-

native acoustic models. When there are K-1 interpolation partners for the state si of an 

HMM, the mixture weight ci,m of a state si of the HMM is adjusted as ,
ˆ

i mc , based on the 

following equation: 

 
1, 1 , ,

ˆ  ...
Ki m i m K i mm c c cρ ρ∀ = ⋅ + + ⋅   (1) 

where 
1i

s  represents is , and 
1
, ,

Ki is sA  indicate the states of the corresponding 

interpolation partners of the state is .→
1i

c  represents the mixture weight of is , and 

1
, ,

Ki ic cA  indicate the mixture weights of the states of the corresponding interpolation 

partners  of the state is . In addition, ρ1, …, ρK are the interpolation weights. 
The interpolation weights indicate the probability from the original state si to the states 
of the corresponding interpolation partner and can be estimated using an expectation- 
maximization (EM) algorithm. After the interpolation weights are estimated, the 
corresponding transition probabilities can be determined in a similar manner. 

3.2.2 Combined use of target language and mother tongue acoustic models 
Tan and Besacier (Tan et al., 2007) proposed three interpolation methods based on the use of 
both the target language acoustic models and the mother tongue acoustic models of non-
native speakers, which include 1) manual interpolation, 2) weighted least square based 
interpolation, and 3) eigenvoice based interpolation. The three acoustic model interpolation 
methods consist of two identical steps for preprocessing and one different step for the 
acoustic model interpolation. 
Step 1. Investigation of phoneme mapping information 

The mapping information on the phoneme substitutions for non-native speech is 
investigated using both the knowledge-based and the data-driven approaches. 

• Knowledge-based approach 
Phoneme substitutions from the mother tongue of non-native speakers to the target 
language are first examined based on the international phonetic alphabet (IPA) 
tables (International Phonetic Association, 1999). 

• Data-driven approach 
For a phoneme whose substitution information is not known from the IPA tables, a 
data-driven approach is applied using a phoneme confusion matrix. In other 
words, a forced alignment is first performed based on the target language acoustic 
models for each non-native utterance in a development set. Then, phoneme 
recognition is also performed using the mother tongue acoustic models for each 
non-native utterance. Next, the two phoneme sequences are aligned using time 
information in order to generate the phoneme confusion matrix. From the 
generated confusion matrix, the mapped phoneme having the highest probability is 
selected as the phoneme substitution for each phoneme. 
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Step 2. Regeneration of mother tongue acoustic models of non-native speakers 
Before interpolating acoustic models, the mother tongue acoustic models of non-native 
speakers are reconstructed from the target language acoustic models in order to match 
the configuration of the target language acoustic models. For this task, the 
pronunciation dictionary of the mother tongue of non-native speakers is first modified 
using the investigated mapping information. The mother tongue acoustic models of 
non-native speakers are then reconstructed from the target language acoustic models by 
performing MLLR and MAP adaptations based on the speech corpus of the mother 
tongue of non-native speakers and the modified pronunciation dictionary. 

• In the cases of manual and weighted least square based interpolations 
The mother tongue acoustic models of non-native speakers are reconstructed from 
the target language acoustic models by performing MLLR and MAP adaptations 
based on all the speech data of the mother tongue of non-native speakers and the 
modified pronunciation dictionary. In other words, speaker-independent acoustic 
models of the mother tongue are obtained as the mother tongue acoustic models. 

• In the case of eigenvoice based interpolation 
For each native speaker of a speech training corpus, the target language acoustic 
models are reconstructed by performing MLLR and MAP adaptations using a 
subset of the speech corpus of the target language for the corresponding speaker 
and the original pronunciation dictionary. In other words, several sets of speaker-
dependent acoustic models of the target language are obtained. 
Next, for each non-native speaker in a development speech corpus, the mother 
tongue acoustic models of non-native speakers are reconstructed from the target 
language acoustic models by performing MLLR and MAP adaptations using a 
subset of the speech corpus of the mother tongue for the corresponding speaker 
and the modified pronunciation dictionary. As a result, several sets of speaker-
dependent acoustic models for the mother tongue are obtained. 

Step 3.a. Manual interpolation of acoustic models 
For the non-native acoustic models (pinterpolated) of a phoneme, the target language 
acoustic models (ptarget_language) for the phoneme are then interpolated based on the 
mother tongue acoustic models (pmother_tongue) of the corresponding mapping phoneme, 
using the equation of 

 _ _(1 )interpolated target language mother tonguep w p w p= ⋅ + − ⋅   (2) 

where w (0 ≤ w ≤ 1) indicates an interpolation weight. In this method, the interpolation 
weight (w) is manually determined by experiments; this method is appropriate in the 
case that no non-native speech is available. 

Step 3.b. Weighted least square based interpolation of acoustic models 
If the non-native adaptation data are available, the interpolation weight can be 
predicted using the weighted least square. In other words, Eq. (2) can be rewritten as 

 1

_ _

2

(  ) ( )target language mother tongue interpolated

w
A x p p p b

w

⎛ ⎞
⋅ = ⋅ = =⎜ ⎟

⎝ ⎠
  (3) 

where b is calculated as the speaker means obtained by a forced-alignment with the 
non-native adaptation data on the target language acoustic models. 
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Given A and b as in Eq. (3), the interpolation weight vector x can then be solved by 
using the weighted least square as 

 1 1T TA A x A b− −⋅ Σ ⋅ ⋅ = ⋅Σ ⋅  (4) 

where the speaker variance Σ is a weight since each mean does not have the same 
weight. 

Step 3.c. Eigenvoice based interpolation of acoustic models 
From all the generated sets of speaker-dependent acoustic models for the target 
language and the mother tongue, the means act as supervectors for creating a non-
native space for eigenvoice based interpolation. Thus, a subset of these eigenvectors is 
selected for the interpolation. 

3.3 Adaptation method 

In order to compensate for mismatches between the native training data and the non-native 
test data of the target language, the native acoustic models of the target language are 
adapted using non-native speech such that the ASR performance for non-native speech can 
be improved. As a simple adaptation, traditional acoustic model adaptation methods, which 
are widely used for speaker adaptations or noise-robust ASR, can be applied. However, 
traditional MLLR and/or MAP adaptation methods adapt only speaker or environmental 
variability, not pronunciation variability from non-native speakers. Hence, this subsection 
focuses on acoustic model adaptation methods for handling pronunciation variability from 
non-native speakers (Oh et al., 2007; 2009). 

3.3.1 Modified decision-tree based state-clustering method 

The modified decision-tree based state-clustering method is performed in a decision-tree 
based state-tying step during construction of the acoustic models. The main procedure of 
the modified decision-tree based state-clustering method is as follows: 
Step 1. Analysis of pronunciation variability of non-native speakers 

Since the modified decision-tree based state-clustering method is based on the 
pronunciation variability of non-native speech, this pronunciation variability is first 
investigated in an indirect data-driven method that will be further explained in Section 
6. In brief, for each utterance in a non-native development set, phoneme recognition is 
performed and then an N-best list of phoneme sequences is obtained. Next, the 
phoneme rule patterns that are derived from the recognized N-best lists are applied to a 
decision tree, C4.5 (Quinlan, 1993). As a result, the pronunciation variant rules are 
generated. 

Step 2. Decomposition of pronunciation variability of non-native speakers 
Among the derived pronunciation variant rules, acoustic variants are selected in the case 
that the default class (phonemedefault) of the pronunciation variant rule has a different 
phoneme from a target phoneme (phonemetarget). Other pronunciation variant rules are 
then determined as pronunciation variants. Note that only the acoustic variants are 
applied to the modified decision-tree based state-clustering method.  
The acoustic and pronunciation variants can be briefly explained as follows: 

• Acoustic variants, phonemevariantacoustic 

Acoustic variants are named since the pronunciation variant rules are applied in 
the acoustic modeling. In addition, it is assumed that the variants occurred due to 
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the different pronunciation characteristics between the target language and the 
non-native speaker’s mother tongue. These acoustic variants can be placed in any 
context and thus they are also referred to as context-independent variants. For this 
reason, acoustic modeling is more appropriate than pronunciation modeling since 
pronunciation modeling adds variant pronunciations for each corresponding 
context and thereby increases the confusability. 

• Pronunciation variants, phonemevariantpronunciation  

Pronunciation variants are named since the pronunciation variant rules are applied in 
the pronunciation modeling. In addition, it is assumed that the variants are due to the 
co-articulation effect. In the model, these pronunciation variants would be placed in a 
specific context with the left two phonemes and the right two phonemes, and thus 
they are also referred to as context-dependent variants. Consequently, pronunciation 
modeling can more properly handle the pronunciation variants by adding the 
corresponding variant pronunciations of each word. 

Step 3. Adaptation in the state-tying step of acoustic model construction 
The acoustic model adaptation is performed in the decision-tree based state-tying step 
of acoustic model construction using the acoustic variants. For a phoneme having no 
acoustic variants, a traditional state-tying step is applied, in which a decision tree for 
each target phoneme (phonemetarget) is utilized based on the states of the triphone 
acoustic models where the central phone of the triphone has the phonemetarget. However, 
for a phoneme having acoustic variants, a decision tree for each phonemetarget is utilized 
by using the states of the triphone acoustic models in which the central phone of the 
triphone has either phonemetarget or phonemevariantacoustic. 

3.3.2 Modified MLLR adaptation method 

A traditional MLLR adaptation method is commonly used for speaker or environment 
variants; however, the MLLR adaptation should be modified for non-native ASR (Oh et al., 
2009). In other words, an MLLR/MAP adaptation for triphone models having pronunciation 
variations is performed to handle the pronunciation variability of non-native speakers. The 
main procedure of the modified MLLR adaptation method is as follows: 
Step 1. Acquisition of pronunciation variations of non-native speech 

The pronunciation variations of non-native speech are generated in an indirect data-
driven approach, as will be explained in Section 6. Then, the only acoustic variants are 
selected by investigating the pronunciation variant rules in which the default class has a 
different phoneme as the target phoneme, as described in Section 3.3.1. 

Step 2. Generation of regression classes 
In this step, two separate sets of regression classes are generated; overall regression classes 
for the characteristics of non-native speakers or environments, and pronunciation 
variation regression classes for the pronunciation variations of non-native speech. 

• For the overall regression classes 
All the acoustic models of the target language are pooled on the root node of a 
regression class tree and the overall regression classes are then generated by 
splitting the regression class tree to adapt the acoustic models of the target 
language for the characteristics of non-native speakers or environments. 

• For the pronunciation variation regression classes 
Pronunciation variation regression classes are generated for each pronunciation 
having acoustic variants. That is, the acoustic models for both the target 
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pronunciation and the corresponding variant pronunciations are pooled on the root 
node of a regression class tree, and the pronunciation variation regression classes 
for the target pronunciation are then generated by splitting the regression class tree 
such that the acoustic models of the target language are adapted for the 
pronunciation variations of non-native speech. 

In order to generate a regression class, the acoustic models pooled on the root node of a 
regression class tree are first split based on the criterion of the centroid splitting 
algorithm, using the Euclidean distance measure (Young et al., 2002). Then, each 
regression class is identified by using the acoustic models clustered on the leaf node of 
the regression class tree. 

Step 3. Adaptation of acoustic models using MLLR and MAP adaptation methods 
It is known that the combination of MLLR and MAP adaptations can further improve 
the ASR performance of non-native speech, as opposed to using either only the MLLR 
or MAP adaptations (Goronzy et al., 2004; He et al., 2003; Tan et al., 2007). Therefore, a 
second-pass adaptation method using both the MLLR and MAP adaptations is 
performed in order to adapt the acoustic models of the target language (Oh et al., 2009). 
In other words, for each regression class, the corresponding MLLR transformation 
matrix is first estimated via an EM algorithm based on the non-native adaptation data. 
Then, the adapted acoustic models are generated by applying a MAP adaptation with 
the non-native adaptation data and the estimated MLLR transformation matrix. 

Step 4. Reconfiguration of the adapted acoustic models 
Since one set of adapted acoustic models from the overall regression classes and several 
different sets of adapted acoustic models from the pronunciation variation regression 
classes are generated in Step 3) of this subsection, a single set of adapted acoustic 
models should be selected. To this end, for each pronunciation variation, the 
corresponding models in the adapted acoustic models from the overall regression 
classes are replaced by the acoustic models adapted by the corresponding 
pronunciation variation regression class. Accordingly, the reconfigured acoustic models 
can cover the characteristics of non-native speakers or environments as well as the 
pronunciation variations of non-native speech. 

4. Language modeling approach 

Language modeling approaches are associated with the different speaking styles or the 
grammatical effects of non-native speech. When compared to either the acoustic or 
pronunciation modeling approaches, there have been few research works reported on 
language modeling. Nevertheless, in this section, we explain the language modeling method 
for continuous word speech recognition and for pronunciation grammar (Huang et al., 2008; 
Raux et al., 2004; Steidl et al., 2004). 

4.1 Interpolation with non-native language model 

Non-native speakers tend to make different sentence structures from native speakers due to 
the syntactic characteristics of the mother tongue of non-native speakers. For handling such 
syntactic differences of non-native speech, Steidl et al. (Steidl et al., 2004) employed an 
adapted language model by combining the original native language model and the non-
native language model. The non-native language model was generated by using the 
transliteration of a non-native speech database. In addition, Raux and Eskenazi (Raux et al., 
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2004) generated a non-native language model for a language learning system having both 
native and non-native speech data. It was shown from subsequent experiments that both 
methods improved the recognition performance when compared to the native language 
model. 

4.2 Unsupervised pronunciation grammar growing 

Huang et al. (Huang et al., 2008) proposed an unsupervised pronunciation grammar 
growing method in order to obtain the grammar of the pronunciation variations of non-
native speakers and to generate the pronunciation models for non-native speech. The 
method consisted of two steps: the construction of a pronunciation variation graph and the 
generation of the non-native grammar from the pronunciation variation graph. 
The main procedure of the unsupervised pronunciation grammar growing method is as 
follows: 
Step 1. Construction of a pronunciation variation graph 

A pronunciation variation graph for a word starts with all the possible pronunciation 
variations including insertions, deletions, and substitutions. Thus, a huge search space 
is required for the pronunciation variation graph of a word. In the graph, a node 
indicates the possible pronunciation and an edge represents the possible transition 
between pronunciations. In order to reduce the search space of the graph, the possible 
pronunciations and transitions for a substitution are first constrained within the broad 
class information defined by linguistic experts. Next, the possible paths remaining for 
the pronunciation variations are evaluated by calculating the posterior probabilities of 
each phone pair (phstart, phend) using the equation, 

 11 1 1 1
( ) exp[ ( ) ( )]

2(2 )
end end end end

end

N N
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i ph i ph ph i ph
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where xi, N, and d indicate the i-th observation feature vector corresponding to phstart in 
a training speech corpus, the number of observation feature vectors corresponding to 
phstart in the training speech corpus, and the dimension of the observation feature vector, 
respectively. In addition, ┣phend, ┤phend, and Σphend represent the acoustic model, the mean 

vector, and the covariance matrix for the phone phend. In the experiment, paths that are 
greater than a predefined threshold remain in the pronunciation variation graph. 
Next, the possible left-context and right-context dependent pronunciations are 
generated using both a target language pronunciation dictionary and a mother tongue 
pronunciation dictionary. Then, only the possible paths having context dependent 
pronunciations are extracted. 

Step 2. Generation of non-native grammar 
By using the constructed pronunciation variation graph, speech recognition is first 
performed and the pronunciation variation grammar is then optimized by removing the 
pronunciations that are incorrectly recognized or have unusual variants based on the 
recognition confidence and support score. Here, the word-level generalized posterior 
probability and the occurrence frequency of the pronunciation variation are used as the 
recognition confidence and the support score, respectively. The finally optimized 
pronunciation variation grammar is subsequently used to generate the multiple 
pronunciation dictionary for non-native speakers. 
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5. Pronunciation modeling approach 

There are two approaches pertaining to pronunciation model adaptations for non-native 
speech: a knowledge-based approach and a data-driven approach (Strik et al., 1999). A 
knowledge-based approach uses pronunciation rules from phonological knowledge and 
develops a pronunciation dictionary based on the pronunciation rules. In the case of a data-
driven approach, phonological rules for pronunciation adaptation are automatically 
generated from non-native speech and transcription data; as such, a subdivision into direct 
and indirect data-driven methods can be applied. 

5.1 Knowledge-based method 

In a knowledge-based method, phonologically obtained pronunciation rules are used to 
transform a baseform into a pronunciation variant. For example, the phonological rule 

 / / / / / / / /vowel b d vowel b D+ + → + +   (6) 

is used to transform a consonant /d/ followed by a consonant /b/ into a fortis consonant 
/D/ in Korean. The phonological rules are derived based on linguistical and phonological 
knowledge according to known pronunciation variations of speech. Then, the phonological 
rules are applied to baseforms in a pronunciation dictionary. 
As representatives of knowledge-based approaches, pronunciation rules from phonological 
knowledge were previously generated to develop a pronunciation dictionary based on 
pronunciation rules (Tajchman et al., 1995; Wiseman et al., 1998). Also, Schaden (Schaden, 
2003) transformed canonical phonetic dictionaries of the target language into adapted 
dictionaries in order to model prototypical foreign-accented pronunciation variants. 

5.2 Data-driven method 

The primary advantage of the knowledge-based approach is that it can be applied to all 

corpora and especially to new words that are not introduced in the ASR system. However, a 

notable drawback of the approach is in that the rules are often very general, resulting in too 

many variants in the pronunciation dictionary, thereby increasing the confusability of 

pronunciation variations. Moreover, it should be noted that even if this approach is applied 

to an ASR system, it is unlikely that all aspects of non-native speech could be covered. 

In order to compensate for such drawbacks of the knowledge-based approach, 

pronunciation variations are derived from speech signals in data-driven methods. Data-

driven methods can be further classified into direct data-driven or indirect data-driven 

approaches. The direct data-driven approach derives pronunciation variants depending on 

pronunciation training databases, as proposed in (Amdal et al., 2000; Fosler-Lussier, 1999; 

Strik et al., 1999). When an ASR system employs the adapted pronunciation dictionary using 

a direct data-driven approach, some unseen words might appear during ASR testing. Thus, 

such a mismatch condition in the pronunciation model between ASR training and testing 

could degrade the performance of an ASR system. 

On the other hand, an indirect data-driven method investigates pronunciation variability from 
the speech training data, derives the variant rules, and applies the variant rules in the ASR 
pronunciation dictionary to compensate for the variability (Amdal et al., 2000; Fosler-Lussier, 
1999; Goronzy et al., 2004; Svendsen, 2004; Wolff et al., 2001). For example, pronunciation rules 
were derived using the speech training data, which in turn could be applied to generate one or 
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more baseforms of any vocabulary word in the pronunciation dictionary (Svendsen, 2004). In 
addition, variants were derived using a phoneme recognizer such that pronunciation rules 
could be constructed using a decision tree (Fosler-Lussier, 1999). Confidence measures were 
then used to select only the most reliable variants from among all the recognized variants; a 
similar approach was applied in the Verbmobil project reported in (Wolff et al., 2001). As 
another example, non-native speech was first examined using a phoneme recognizer to 
determine variants, and then variants caused by recognition errors were removed based on the 
statistics pertaining to the co-occurrences of phonemes (Amdal et al., 2000). In this way, 
Goronzy et al. (Goronzy et al., 2004) used an English phoneme recognizer to generate English 
pronunciations for German words and used decision trees that were able to predict English-
accented variants from German canonical transcriptions. 

5.3 Confusability reduction of pronunciation dictionary 

As described above, data-driven methods adapt a pronunciation dictionary after building 
variant rules from the derived pronunciation variants, whereas a knowledge-based method 
derives variant rules based on phonological and phonetic knowledge, and then adds 
alternatives of pronunciation variants into the pronunciation dictionary. However, the 
adapted pronunciation dictionary can have more than one element corresponding to a word 
in the pronunciation dictionary. Therefore, the system memory size must be increased in 
order to store the pronunciation dictionary, which also increases the computational 
complexity and results in a longer decoding time for ASR. It was also observed that adding 
pronunciation variants to the pronunciation dictionary increases the confusability, and that 
a large increase in confusability is probably one reason for only small improvements or even 
deteriorations of ASR performance (Tsai et al., 2002). By appropriately selecting the 
pronunciation variations, the confusability would be reduced. In order to mitigate this 
problem, several approaches have been previously reported, which will be discussed in 
Section 6.2. 

6. Pronunciation model adaptation based on multiple pronunciation 
dictionary 

In this section, we describe a new pronunciation model adaptation method and an 
optimization method of the adapted pronunciation models proposed in (Kim et al., 2008). In 
particular, Section 6.1 describes the proposed pronunciation adaptation method based on an 
indirect data-driven approach that adapts a pronunciation dictionary after building the 
variant rules from the derived pronunciation variants, resulting in a multiple pronunciation 
dictionary. This dictionary can have more than one element corresponding to a word in the 
pronunciation dictionary. Thus, a size optimization method of the multiple pronunciation 
dictionary is also proposed in Section 6.2, in which some confusable pronunciation variants 
in the pronunciation dictionary are removed. Finally, in Section 6.3, the performance of a 
non-native ASR system employing the proposed method is evaluated and compared with 
that using a conventional pronunciation model adaptation method. 

6.1 Multiple pronunciation dictionary 
Fig. 2 shows the main procedure of the proposed pronunciation variation modeling method 
based on an indirect data-driven approach that is applied to non-native speech. From the 
figure, the five steps of the procedure are as follows: 
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Fig. 2. Procedure of the proposed pronunciation variation modeling method based on an 
indirect data-driven approach applied to non-native ASR. 

Step 1. Each utterance in a non-native development set is recognized using a phoneme 
recognizer. 

Step 2. The recognized phoneme sequence is aligned using a dynamic programming 
algorithm based on the reference phoneme sequence transcribed by the native 
pronunciation dictionary, referred to as reference transcription. 

Step 3. Using the alignment results of Step 2), variant phoneme patterns are obtained. 
Step 4. Pronunciation variation rules are then derived from the variant phoneme patterns 

using a decision tree. 
Step 5. Finally, pronunciation variations are generated from the pronunciation variation 

rules, allowing the pronunciation dictionary to be adapted for non-native ASR. 
The details of each processing step are explained in further detail in the following 
subsections. 

6.1.1 Phoneme recognition and aligned sequence 

To derive the pronunciation rules, we first perform a phoneme recognition for each 

utterance in the non-native development set. As a result, we can obtain an N-best list of 

phoneme sequences for each utterance. However, there are no word boundaries in the list, 

which are required to differentiate inter-word pronunciation variations from cross-word 

pronunciation variations. To obtain these word boundaries, the recognized phoneme 

sequence is aligned on the basis of a dynamic programming algorithm and compared to the 

reference transcription with word boundaries.  

From the alignment between the recognized phoneme sequence and the reference 

transcription, a rule pattern is obtained if the following condition is satisfied: 

 2 1 1 2L L X R R Y− − + + →   (7) 

where X is a phoneme that is to be mapped into Y, and the left and right phonemes in the 

reference transcription are L1 and L2, and R1 and R2, respectively. 

It is known from (Goronzy et al., 2004) that it is rather difficult to differentiate pronunciation 
variations from the substitution, deletion, and insertion errors incurred by phoneme 
recognition. Therefore, the recognition errors should be as small as possible; thus, three 
subsequent processes are applied to reduce these errors. First, we perform a Viterbi search 
based on the N-best lists. Second, we only extract a sentence or an isolated word included in 

www.intechopen.com



Non-native Pronunciation Variation Modeling for Automatic Speech Recognition   

 

97 

the development set if its phoneme recognition accuracy is over the predefined threshold. 
Third, if more than half of the neighboring phonemes of X in Eq. (7) are different from the 
neighboring phonemes of the target phoneme Y, this rule pattern is removed from the rule 
pattern set. 

6.1.2 Decision-tree based rule derivation and pronunciation dictionary adaptation 
Decision-tree based modeling is a popular method of deriving pronunciation variation rules 
(Fosler-Lussier, 1999; Wolff et al., 2001). Here, we use C4.5, a software extension of the basic 
ID3 algorithm designed by Quinlan (Quinlan, 1993). After the rule patterns are categorized 
by filtering errors, pronunciation variation rules are constructed by C4.5. Their attributes 
include the two left phonemes, L1 and L2, and the two right phonemes, R1 and R2, of the 
affected phoneme X. The output class is the target phoneme, where one decision tree is 
constructed for each phoneme. Next, each decision tree is converted into an equivalent set of 
the rules by tracing each path in the decision tree from the root node to each leaf node. 
Next, a native pronunciation dictionary is adapted from these derived rules using C4.5, 
which results in a multiple pronunciation dictionary. For a more detailed description of 
adapting the pronunciation dictionary, refer to the work in (Kim et al., 2007). 

6.2 Optimized multiple pronunciation dictionary 
The size of the adapted multiple pronunciation dictionary could be much larger than that of 
the baseline pronunciation dictionary. As one solution to this problem, the confusability 
could be reduced by pruning the pronunciation variant rules based on either a rule 
probability, a rule probability using log likelihood, a decision tree, or another method. 
However, this approach does not take into account the interaction between words in a 
multiple pronunciation dictionary (Amdal et al., 2000). In other words, if a word is 
represented by several different phonetic sequences based on pronunciation variant rules 
and one of the sequences is similar to a phonetic sequence of another word, the confusability 
is further increased. Moreover, the confusability of words that have a smaller number of 
phonemes incurs errors in ASR systems (Hernandez-Abrego et al., 2004). Therefore, the 
number of phonemes in a word’s sequence should be used as a measure of the confusability. 
In the following subsections, we propose a confusability measure and explain how the 
measure is applied to reduce the confusability in the multiple pronunciation dictionary of a 
non-native ASR system. 

6.2.1 Confusability measure 

Let M be a multiple pronunciation dictionary. It is assumed that the number of words in M 
is Nw and the i-th word, Wi, included in M, has Np,i pronunciation variants. Here, we denote 
si,j as the j-th pronunciation variant belonging to the i-th word; i.e., M={Wi|i = 1, . . . ,Nw} and 
Wi={si,j|j = 1, . . . ,Np,i}. A confusability measure (CM) is then defined as 

 
, ,, , , , ,1 ,1( ) ( ) min ( , ) ( )

w p ki j i j i j k l k lk N k i l NCM s L s D s s L s≤ ≤ ≠ ≤ ≤ ⎢ ⎥= ⋅ ⋅⎣ ⎦  (8) 

where D(x,y) is the Levenshtein distance between x and y (Levenshtein, 1966). In addition, 
L(x) is the number of phonemes of a pronunciation variant x, normalized by the maximal 
number of phonemes over all the pronunciations in M such that 
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,1 ,1 ,( )

w p imax i N j N i jl max s≤ ≤ ≤ ≤= ̋  (9) 

where ̋(x) is defined as the number of phonemes in the pronunciation x. The goal of the 

proposed confusability measure defined in Eq. (8) is to detect pronunciation variants that 

are highly confusable so that ASR errors due to high similarities between the phonetic 

sequences of words in the multiple pronunciation dictionary can be reduced. 
The normalized number of phonemes of a phonetic sequence x, is defined by 

 max( ) /xL x l l=  (10) 

where lx = ̋(x) and lmax is the maximum number of phonemes among all the sequences in M, 

as defined in Eq. (9). Eq. (10) contributes to the reduction of ASR errors because an ASR 

system tends to be more erroneous if the recognized word has a short phonetic sequence 

(Hernandez-Abrego et al., 2004). Therefore, the normalized number of a word’s sequence 

can be used as a measure of the confusability. 

6.2.2 Confusability reduction of multiple pronunciation dictionary 
To reduce the confusability in the adapted multiple pronunciation dictionary, the 
confusability measure, defined in Eq. (8), for each pronunciation variant in the multiple 
pronunciation dictionary is first calculated. After that, all pronunciation variants except for 
the phonetic sequences obtained from the baseform are sorted according to their 
confusability measure scores. Finally, the pronunciation variants whose confusability 
measure scores are above a predefined threshold are used in constructing a pruned multiple 
pronunciation dictionary. 

6.3 Speech recognition experiments 
In order to evaluate the proposed pronunciation adaptation method, the baseline ASR 
system is first constructed. After that, we evaluate the performance of an ASR system using 
the pronunciation dictionary pruned by the proposed confusability reduction method, and 
compare it with that using the baseline pronunciation dictionary or the multiple 
pronunciation dictionary based on the indirect data-driven method. 

6.3.1 Baseline ASR system 
Especially, we want to develop a non-native ASR system that recognizes English spoken by 
Koreans. Thus, we need a training database spoken by native speakers to construct the 
baseline native ASR system. It is also required the native and non-native databases for 
developing and evaluating the non-native ASR system. In this subsection, we first describe 
the native and non-native databases. After that, we discuss how to construct each 
component of the baseline ASR system including ASR features, acoustic models, 
pronunciation and language models. 
1. Training database 

As a training set for the baseline ASR system, we used a subset of the Wall Street 
Journal database (WSJ0) (Paul et al., 1992). The WSJ0 database was a 5000-word closed 
loop task for evaluating the performance of a large vocabulary continuous speech 
recognition (LVCSR) system. The training set consisted of 7,138 utterances recorded by 
a Sennheiser close-talking microphone and several far-field microphones, in which all 
utterances were sampled at a rate of 16 kHz. 
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2. Development and evaluation databases 
For developing and testing the proposed method, we used a subset of the Korean- 

Spoken English Corpus (K-SEC) (Rhee et al., 2004), comprised of English 

pronunciations spoken by both Korean and native English speakers. This database was 

divided into three parts: one was used for developing the pronunciation dictionary 

described in Section 6.1, and the others were evaluation subsets for both the baseline 

ASR system and an ASR system employing the proposed pronunciation modeling 

method. In other words, the two evaluation sets were comprised of utterances spoken 

by 49 Koreans and 7 native English speakers, respectively. The development set 

consisted of 11,125 isolated words spoken by 7 Koreans and 36 sentences by 98 Koreans, 

where each sentence had around 7 words. As a result, we had 7,299 isolated words and 

3,123 continuous sentences for the development set. The two evaluation sets were made 

up of continuous sentences, in which each Korean or native speaker uttered 14 

continuous sentences, resulting in a total of 146 words. In other words, we had 686 and 

98 utterances for non-native speech and native speech, respectively. 

3. Feature extraction 
For the baseline ASR system, we extracted 12 mel-frequency cepstral coefficients  

(MFCC) with logarithmic energy for every 10 ms analysis frame, and concatenated their 

first and second derivatives to obtain a 39-dimensional feature vector. During the 

training and testing, we applied a cepstral mean normalization to the feature vectors. 

4. Acoustic models 
The acoustic models were based on 3-state left-to-right, context-dependent, 4-mixture, 

and cross-word triphone models, and they were trained using the HTK version 3.2 

Toolkit (Young et al., 2002). All triphone models were expanded from 41 monophones, 

which included silence and pause models, and states of the triphone models were tied 

by employing a decision tree (Young et al., 1994). As a result, we had 9,655 physical 

triphones, 68,923 logical triphones, and 5,292 states, which was then referred to as the 

baseline ASR system. 

5. Pronunciation and language models 
To develop a pronunciation dictionary, a back-off bigram language model was 

generated from a phoneme transcription of the training database, and the 

pronunciation dictionary was generated from a list of 41 phonemes with silence. In 

order to explore the behavior of pronunciation models based on the difference between 

the target language and the mother tongue, the pronunciation dictionary was only from 

the text of the test set. The pronunciation of each word was built from the CMU 

pronunciation dictionary (Weide, 1998) and any missing words from the CMU 

dictionary were transcribed manually. The pronunciation dictionary was comprised of 

340 words, which was equal to the number of entries in the pronunciation dictionary. In 

addition, the relative ratio of the pronunciation dictionary size, defined as the average 

number of different pronunciations per word, was 1.  

The performance of the baseline ASR system was tested using the two evaluation sets. 

Consequently, it was found that the average WERs of the baseline ASR system were 0.68% 

and 19.92% when the ASR system was tested by native speakers and by non-native 

speakers, respectively. This result confirmed the fact that performance of the ASR system 

tested by non-native speech could be exceedingly degraded. 
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Table 1. Performance comparison of an ASR system with a) the baseline pronunciation 
dictionary, b) a multiple pronunciation dictionary prior to reduction, and c) a pruned 
multiple pronunciation dictionary based on the proposed confusability reduction method. 
(Reprinted with permission from (Kim et al., 2008). Copyright IASTED/ACTA Press.) 

6.3.2 Evaluation of the proposed pronunciation modeling method 

To generate a multiple pronunciation dictionary, we performed a phoneme recognition and 
obtained a 200-best list for each utterance in the development set. As a phoneme recognizer, 
we used the baseline acoustic models, a phoneme based back-off bigram language model, 
and a pronunciation dictionary with a list of 41 phonemes with silence. By using the 200-
best list, the performance of phoneme recognition was improved from 28.27% to 49.08%. In 
addition, the rule patterns could be generated using only phoneme sequences where the 
phoneme recognition accuracy was over 50%. After applying the rule patterns in C4.5, at a 
pruning option of 25%, we obtained 334 rules from the decision trees. Then, a multiple 
pronunciation dictionary was generated by adapting the baseline pronunciation dictionary 
from the obtained 334 rules. To reduce the confusability, we also applied the proposed 
optimization method to the adapted multiple pronunciation dictionary. 
Table 1 compares the average WERs, the pronunciation dictionary size, and the ASR 
decoding time for the baseline ASR system and the ASR systems employing the multiple 
pronunciation dictionary and the pruned multiple pronunciation dictionaries according to 
pruning thresholds of 0, 0.1, 0.2, and 0.3. It can be seen in the table that the ASR system 
employing the multiple pronunciation dictionary increased the WER, compared to that 
employing the baseline pronunciation dictionary. The performance degradation incurred by 
the proposed multiple pronunciation dictionary was due to the increased confusability by 
improper pronunciation variants. 
Next, the multiple pronunciation dictionary was pruned using the proposed confusability 
measure, and the average WERs of the ASR system using the differently pruned multiple 
pronunciation dictionaries are shown in the third row of Table 1. The table shows that the 
pruned multiple pronunciation dictionary constructed with a threshold of 0.1 gave the 
lowest average WER among all other dictionaries. That is, the average WERs of an ASR 
system using the pruned multiple pronunciation dictionary were 18.58% and 0.59% for non-
native and native speech, respectively, which corresponded to relative WER reductions of 
6.98% and 15.30%, compared to those of the baseline ASR system and an ASR system using 
the multiple pronunciation dictionary prior to pruning. Moreover, the ASR decoding time 
for the pruned multiple pronunciation dictionary was also reduced by 21.10% compared to 
that for the multiple pronunciation dictionary without pruning. 
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7. Conclusion 

This chapter addressed issues associated with efficient pronunciation variation modeling for 
non-native automatic speech recognition (ASR), where non-native speech was mostly 
characterized by different pronunciations, speaking styles, and articulators of speakers from 
their native speech. The techniques for improving the performance of non-native ASR could 
then be classified into four approaches: acoustic modeling, language modeling, 
pronunciation modeling, and hybrid modeling approaches. We first reviewed these four 
approaches before proposing a new pronunciation model adaptation method. 
In particular, the proposed pronunciation adaptation method was based on a multiple 
pronunciation dictionary, designed using an indirect data-driven method. However, this 
approach resulted in an increased search space for ASR decoding due to the increase of the 
pronunciation dictionary size. Therefore, a method for optimizing the size of the multiple 
pronunciation dictionary was also proposed, where a confusability measure based on the 
Levenshtein distance was introduced in order to remove some confusable pronunciation 
variants from the dictionary. To investigate the effects of the proposed approach on ASR 
performance, English was selected as the target language and English utterances spoken by 
Koreans were considered as the non-native speech. Subsequently, it was shown from the 
continuous non-native ASR experiments that an ASR system using the optimized multiple 
pronunciation dictionary could achieve an average word error rate reduction of 15.30%, 
with a relative reduction in computational complexity of 21.10%, compared to that achieved 
using the multiple pronunciation dictionary without optimization. 
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