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1. Introduction    

The dynamic stability of journal bearings is an important problem for rotating machinery 
because the dynamic properties of the bearing have a direct influence on machine stability 
and safety.  
Because of their simplicity and large capacity, the plain journal bearings are frequently used 
in rotating machinery; however they can become unstable under small loads and have the 
tendency to generate a whirl motion with a frequency of about one half the rotational 
frequency of the shaft. The radius of the whirl orbit can rapidly increase so that the shaft and 
the sleeve can come into contact, a phenomenon that would damage the bearing. Therefore 
the study of the dynamic behavior of the journal bearings, especially after the instability 
occurs, is of theoretical and practical importance.  
The bearing stability can be improved by adding grooves and holes or by reshaping the 
bearing surface from perfectly circular to one that incorporates lobes, offsets, tilting pads, 
etc. The main disadvantage of these methods is that any gain in the bearing stability may 
reduce the maximum load carrying capacity.  

 
2. The Wave Bearing Concept 

An alternative method to improve journal bearing stability was proposed by Dimofte 
(Dimofte 1995 a; Dimofte 1995 b). His concept called “wave bearing” circumscribed a 
continuous waved profile onto the non-rotating bearing surface. The wave amplitude is 
usually a fraction of the nominal bearing clearance. To exemplify the concept, a comparison 
between a wave bearing having circumscribed a three–wave profile and a plain journal 
bearing is presented in Fig. 1. In order to visualize the concept, the wave amplitude and the 
clearance are greatly exaggerated in Fig. 1. 
The most important parameters of a wave bearing are presented in Fig. 2. In Fig. 2, a wave 
bearing having a three-wave profile is presented. The radial clearance C of the wave bearing 
is defined as the difference between the radius of the mean circle of the waves Rmed and the 
radius, R, of the shaft: 
 

RRC med   (1) 
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The radial clearance is usually less than one thousandth of the journal radius. 
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Fig. 1. Comparison between the plain journal bearing and the wave journal bearing 
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Fig. 2. The geometry of a wave journal bearing 
 
For computational purposes, the wave amplitude is usually non-dimensionalised by 
dividing it by clearance: 

C
ew

w   
 

(2) 

 

The ratio εw is usually called the wave amplitude ratio. The wave amplitude ratio is one of 
the most important geometrical characteristics of a wave bearing because the performance 
of the wave bearing is strongly influenced by this ratio (Ene et all., 2008). The wave 
amplitude ratio has values that generally range between 0.033 and 0.5. 
The performance of a wave bearing also depends on the number of the waves, nw, and on 
the position of the waves relative to the direction of the load, W. Theoretical and 
experimental studies indicate that the best performance is obtained by a three-wave bearing 
having one of the points with maximum wave amplitude on the direction of the load 
(Dimofte, 1995 a, Dimofte, 1995 c).   
The load capacity of a wave bearing is due to the rotation of the shaft and to the variation of 
film thickness along the circumference. With some geometrical considerations, it can be 
shown that in a system of coordinates rotating with the line of centres the fluid film 
thickness h is given by: 
 

   ww ncosecoseCh  (3) 
 
where θ is the angular coordinate starting from the line of centres and  is the angle between 
the starting point of the waves and the line of centres. The film thickness can be also 
expressed in a system of reference Oxy fixed with respect to the sleeve: 
 

    sinycosxncoseCh ssww  (4) 
 
where  is the angular coordinate starting from the negative Ox axis,  is the angle between 
the starting point of the waves and the vertical axis and (xs,ys) are the coordinates of the 
rotor centre.  
Because the shape of a wave bearing is very close to the shape of a plain journal bearing, the 
loss of load capacity of the wave bearing compared to the plain journal bearing is minimal 
(Dimofte, 1995 a).   
The wave bearing concept also includes a number of supply pockets equal to the number of 
the waves (see Fig. 2). They are situated near the points where the waves have maximum 
values.   

 
3. Methods for Simulating the Dynamic Behavior of a Wave Journal Bearing 

Since the early paper of Newkirk and Taylor (Newkirk & Taylor, 1925), a considerable 
number of papers have been devoted to the study of the dynamic stability of the journal 
bearings. Two types of approaches can be identified: 
- critical mass approaches based on  small-perturbation theories; 
- transient approaches based on linear or non-linear theories.  
The critical mass approach has been very popular because of its simplicity and limited 
computational requirements. The main disadvantage of this method is that no bearing 
information can be obtained after the appearance of an unstable whirl. The bearing dynamic 
behavior for unstable conditions can be predicted only by using transient methods. The 
main disadvantage of the transient methods is that they require a large amount of 
computational time.  
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The radial clearance is usually less than one thousandth of the journal radius. 
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Fig. 1. Comparison between the plain journal bearing and the wave journal bearing 
 

Load

O

OS

Mean circle 
of waves

x

y

Sleeve

Starting point 
of the waves ew

Line of centres

Oil supply

ω

Shaft

R
Rmed

θ’

θ

γ

α

Load

O

OS

Mean circle 
of waves

x

y

Sleeve

Starting point 
of the waves ew

Line of centres

Oil supply

ω

Shaft

R
Rmed

θ’

θ

γ

α

 
Fig. 2. The geometry of a wave journal bearing 
 
For computational purposes, the wave amplitude is usually non-dimensionalised by 
dividing it by clearance: 

C
ew

w   
 

(2) 
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of the wave bearing is strongly influenced by this ratio (Ene et all., 2008). The wave 
amplitude ratio has values that generally range between 0.033 and 0.5. 
The performance of a wave bearing also depends on the number of the waves, nw, and on 
the position of the waves relative to the direction of the load, W. Theoretical and 
experimental studies indicate that the best performance is obtained by a three-wave bearing 
having one of the points with maximum wave amplitude on the direction of the load 
(Dimofte, 1995 a, Dimofte, 1995 c).   
The load capacity of a wave bearing is due to the rotation of the shaft and to the variation of 
film thickness along the circumference. With some geometrical considerations, it can be 
shown that in a system of coordinates rotating with the line of centres the fluid film 
thickness h is given by: 
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where  is the angular coordinate starting from the negative Ox axis,  is the angle between 
the starting point of the waves and the vertical axis and (xs,ys) are the coordinates of the 
rotor centre.  
Because the shape of a wave bearing is very close to the shape of a plain journal bearing, the 
loss of load capacity of the wave bearing compared to the plain journal bearing is minimal 
(Dimofte, 1995 a).   
The wave bearing concept also includes a number of supply pockets equal to the number of 
the waves (see Fig. 2). They are situated near the points where the waves have maximum 
values.   

 
3. Methods for Simulating the Dynamic Behavior of a Wave Journal Bearing 

Since the early paper of Newkirk and Taylor (Newkirk & Taylor, 1925), a considerable 
number of papers have been devoted to the study of the dynamic stability of the journal 
bearings. Two types of approaches can be identified: 
- critical mass approaches based on  small-perturbation theories; 
- transient approaches based on linear or non-linear theories.  
The critical mass approach has been very popular because of its simplicity and limited 
computational requirements. The main disadvantage of this method is that no bearing 
information can be obtained after the appearance of an unstable whirl. The bearing dynamic 
behavior for unstable conditions can be predicted only by using transient methods. The 
main disadvantage of the transient methods is that they require a large amount of 
computational time.  
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Calculation of the critical mass implies in the first stage the computation of the dynamic 
coefficients. Two methods can be used to compute the dynamic coefficients: 
- numerical differentiation of the pressure distributions with respect to small perturbations 
of displacements and velocities of the journal centre; 
- perturbation methods. 
The numerical differentiation method requires correct identification of the values of the 
small perturbations so that they are small enough to remain within the limits of the linear 
theory, but large enough to produce significant perturbations with respect to numerical 
errors and approximations. (Frêne et al., 1997).  The numerical differentiation method can be 
used to calculate the dynamic coefficients for different types of journal bearings: circular 
journal bearings (Orcutt & Arvas, 1967; Parkins, 1979), tilting pad journal bearings (White & 
Chan, 1992), etc. 
The problem of correct selection of the small perturbation values can be eliminated by using 
a perturbation method. The perturbation method was first introduced by Lund (Lund & 
Thomsen, 1978; Lund 1984; Kilt & Lund, 1986). It consists of solving five partial differential 
equations, one corresponding to the steady-state pressure distribution and the other four to 
the pressure gradients. The dynamic coefficients are then calculated by integrating the 
pressure gradients distributions.  Lund’s approach has been used by many authors to 
compute the dynamic characteristics of different types of bearings. For example, Lund’s 
method was used by Kostrzewsky et al. (Kostrzewsky et al., 1998) to compute the dynamic 
characteristics of highly preloaded three-lobe journal bearings. In order to reduce the 
computation time, the authors assumed a polynomial form for the axial pressure 
distribution. Kakoty and Majumdar (Kakoty & Majumdar, 1999; Kakoty & Majumdar, 2000) 
studied the effect of fluid inertia on the stability of oil film journal bearings also using a 
linear perturbation analysis. Rao and Sawicki adapted Lund’s infinitesimal procedure so 
that the film content at cavitation rupture and deformation boundaries is taken into 
consideration for both a steady-state pressure distribution and dynamic pressure gradients. 
Rao and Sawicki used this method to investigate the stability characteristics of journal 
bearings (Rao & Sawicki, 2002) and herringbone grooved journal bearings (Rao & Sawicki, 
2004). 
Many papers have investigated the dynamic stability of journal bearings using a transient 
approach. One of the first transient analyses of a journal bearing was performed by Kirk and 
Gunter (Kirk & Gunter, 1976a; Kirk & Gunter, 1976b). Because of the computation 
limitations, they determined the fluid film forces by using a short bearing approximation. 
Monmousseau and Fillon (Monmousseau & Fillon, 1999) used a non-linear transient 
approach to analyze the dynamic behavior of a tilting–pad journal bearing submitted to a 
synchronous and a non-synchronous load. The authors showed that the amplitude of the 
shaft orbit is maximum when the loading frequency is near the critical frequency. 
San Andres (San Andres, 1997) compared the transient responses of a rigid rotor supported 
on externally pressurized, turbulent fluid film bearings obtained using two different 
models: an approximate model based on constant rotordynamic coefficients and a full 
nonlinear model. He concluded that the approximate model provided accurate results only 
for small amplitude loadings and for operating conditions far enough from the stability 
margin of the rotor bearing system. 
Tieu and Qiu (Tieu & Qiu, 1995) presented a comparison between the journal centre 
trajectories of a journal bearing computed using both non-linear and linear theory. Both 

 

methods provided the same critical speed. However, under large dynamic excitations, the 
trajectories obtained with the two methods were significantly different. 
Tichy and Bou-Said (Tichy & Bou-Said, 1991) and Hashimoto and Wada (Hashimoto & 
Wada, 1990) used transient methods to emphasize the effects of turbulence on the dynamic 
response of rotors supported in journal bearings. 
Vijayaraghavan and Brewe (Vijayaraghavan & Brewe, 1992) predicted the trajectories of a 
hydrodynamic journal bearing when a unidirectional external periodic load is applied. The 
authors reported that under periodic loads, the journal centre almost always attains a stable 
limit cycle. When the loading frequency is half of the journal frequency, the fluid film forces 
become very large and the journal centre whirls at large eccentricities. 
In this paper both a critical mass approach and a transient method will be used to predict 
the dynamic behavior of a three-wave bearing in the absence of any external load. 

 
4. Critical Mass Approach 

4.1 Governing equations 
The small perturbation theory assumes that the shaft motion is stable and is limited to small 
perturbations around the static equilibrium. Suppose that in the fixed system of reference 
Oxy (see Fig. 2), the journal centre position is characterized in the steady-state regime by 
coordinates (xs0, ys0). The corresponding film thickness will be denoted by h0. Because the 
shaft motion is limited to small perturbations, the shaft position in the dynamic regime (xs, 
ys) can be described by small amplitudes from the static equilibrium: 
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By combining Eqs. 4 and 5, a relation between the film thicknesses corresponding to the 
steady state (h0) and dynamic regimes (h) is obtained: 
 

 sinycosxhh 0  (6) 
 
Similarly, the dynamic pressure p can be expressed as a first order Taylor expansion around 
the steady-state pressure p0: 
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The pressure distribution in the wave journal bearing is described by the Reynolds equation: 
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where p is the dynamic pressure, h - the fluid film thickness, R - the bearing radius, ω – the 
rotational speed, μ – lubricant viscosity, t-time, θ –angular coordinate, z – axial coordinate, 
and kθ, kz are correction coefficients for turbulent flow. The Reynolds equation can be 
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where p is the dynamic pressure, h - the fluid film thickness, R - the bearing radius, ω – the 
rotational speed, μ – lubricant viscosity, t-time, θ –angular coordinate, z – axial coordinate, 
and kθ, kz are correction coefficients for turbulent flow. The Reynolds equation can be 

www.intechopen.com



Modelling, Simulation and Identiication320

 

obtained from the general Navier-Stocks equations by considering that the dimension upon 
the film thickness is very small compared to the two other directions. 
By introducing the pressure expansion (Eq. 7) and the film thickness equation (Eq. 6) into 
the Reynolds equation (Eq. 8), developing a series and retaining only first order terms, five 
partial differential equations are obtained: 
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For the above equations, the Reynolds boundary conditions at the film rupture zones are: 
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The boundary conditions at the axial ends of the bearing are: 
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where pext is the external pressure.  Similarly, the boundary conditions corresponding to the 
supply pockets are: 
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where ps is the supply pressure. 
It can be seen that Eq. 9a corresponds to the steady-state regime. If the external force is 
vertical, then the equilibrium equations are: 
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The solutions of Eqs. 9b-d allow one to determine the stiffness and damping coefficients of 
the bearing:  
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The upper limit of the stability is given by the critical mass: 
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where Ks is the effective bearing stiffness: 
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and s  is the instability whirl frequency: 
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The critical mass delimitates two possible equilibrium cases: 
1. The rotor mass is smaller than the critical mass ( crmm  ).  The rotor centre returns to its 
static equilibrium position. Particularly, in absence of any external load, the rotor centre 
rotates with a small radius around the bearing centre. The radius depends on the shaft run-
out. In this case, the operating point is stable. 
2. The rotor mass is greater than the critical mass ( crmm  ).  The rotor centre leaves its 
static position and the equilibrium point is unstable. In this case, the method does not allow 
one to predict the motion of the journal centre.  
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obtained from the general Navier-Stocks equations by considering that the dimension upon 
the film thickness is very small compared to the two other directions. 
By introducing the pressure expansion (Eq. 7) and the film thickness equation (Eq. 6) into 
the Reynolds equation (Eq. 8), developing a series and retaining only first order terms, five 
partial differential equations are obtained: 
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For the above equations, the Reynolds boundary conditions at the film rupture zones are: 
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The boundary conditions at the axial ends of the bearing are: 
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where pext is the external pressure.  Similarly, the boundary conditions corresponding to the 
supply pockets are: 
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where ps is the supply pressure. 
It can be seen that Eq. 9a corresponds to the steady-state regime. If the external force is 
vertical, then the equilibrium equations are: 
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The solutions of Eqs. 9b-d allow one to determine the stiffness and damping coefficients of 
the bearing:  
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The upper limit of the stability is given by the critical mass: 
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where Ks is the effective bearing stiffness: 
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and s  is the instability whirl frequency: 
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The critical mass delimitates two possible equilibrium cases: 
1. The rotor mass is smaller than the critical mass ( crmm  ).  The rotor centre returns to its 
static equilibrium position. Particularly, in absence of any external load, the rotor centre 
rotates with a small radius around the bearing centre. The radius depends on the shaft run-
out. In this case, the operating point is stable. 
2. The rotor mass is greater than the critical mass ( crmm  ).  The rotor centre leaves its 
static position and the equilibrium point is unstable. In this case, the method does not allow 
one to predict the motion of the journal centre.  
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4.2 Turbulence model 
Constantinescu’s model of turbulence (Constantinescu et all., 1985; Frêne & Constantinescu, 
1975), which is based on Prandtl mixing length hypothesis, was chosen to model the 
turbulence effects. According to this model, the first signs of turbulence appear when the 
mean Reynolds number, Rem, is equal to the critical Reynolds number, Recr:  
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and q is the total flow. The flow becomes turbulent when: 
 

crm Re2Re   (22) 
 
With these assumptions, the coefficients for turbulent flow are given by: 
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4.3 Model for thermal effects 
Due to computational time considerations, a constant mean temperature is assumed 
throughout the film. The value of the mean temperature is obtained from a global energy 
balance on the bearing. An adiabatic model is considered for the energy balance. According 
to the adiabatic model, all the energy dissipated in the fluid film is convected away by the 
lubricant. Consequently, the heat generated by friction causes only an increase of the 
lubricant temperature. Therefore, the increase of the lubricant temperature (the difference 

 

between the temperature of the lubricant entering the film and the constant mean 
temperature of the film) is given by: 
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where cv is the lubricant specific heat, qlat is the rate of lateral flow and Ff is the friction force. 
The friction force can be obtained by integrating the friction stresses on the bearing surfaces: 
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4.4 Numerical approach 
The first problem that must be solved before evaluating the critical mass is to determine the 
equilibrium position. At the equilibrium, in absence of any external force, the fluid film 
force must be vertical and equal to the bearing weight. The fluid film force can be calculated   
by integrating the steady-state pressure distribution (Eq. 13) where the steady-state pressure 
distribution is described by the steady-state Reynolds equation (Eq. 9a). In the present paper 
the steady-state Reynolds equation is successively solved for different positions of the shaft 
until the fluid film force is vertical and equal to the shaft weight. A bisection algorithm was 
developed for this purpose. 
 For every position of the shaft, the turbulence correction coefficients are determined by 
successive iterations. Thus, for each journal centre position, at the first iteration the pressure 
distribution is determined by assuming that the flow is laminar (i.e., the effective Reynolds 
number is zero and the correction coefficients are 12). From the computed pressure 
distribution, new values of the correction coefficients at every grid point are determined. 
Also, the new mean film temperature (Eqs. 25-26) and the new lubricant properties are 
determined.  Then the steady-state Reynolds equation (Eq. 9a) is integrated again for the 
new values of the correction coefficients and the new mean film temperature. The iterative 
process is repeated until the relative errors for the correction coefficients are smaller than a 
prescribed value (10-5).  
The steady-state Reynolds equation (Eq. 9a) is discretized with a finite difference scheme. 
The resultant system of equations is solved with a successive over-relaxation method (the 
Gauss–Seidel method).  
Having the equilibrium position of the shaft and the correction coefficients corresponding to 
this position, the pressure gradients can now be determined by integrating the differential 
equations corresponding to the pressure gradients (Eqs. 9b-9e) with a finite difference 
scheme. The dynamic coefficients are then calculated by integrating the pressure gradients 
over the entire film (Eqs. 14-15) and next the critical mass is obtained with the equations Eqs. 
16-18. 
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4.2 Turbulence model 
Constantinescu’s model of turbulence (Constantinescu et all., 1985; Frêne & Constantinescu, 
1975), which is based on Prandtl mixing length hypothesis, was chosen to model the 
turbulence effects. According to this model, the first signs of turbulence appear when the 
mean Reynolds number, Rem, is equal to the critical Reynolds number, Recr:  
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4.3 Model for thermal effects 
Due to computational time considerations, a constant mean temperature is assumed 
throughout the film. The value of the mean temperature is obtained from a global energy 
balance on the bearing. An adiabatic model is considered for the energy balance. According 
to the adiabatic model, all the energy dissipated in the fluid film is convected away by the 
lubricant. Consequently, the heat generated by friction causes only an increase of the 
lubricant temperature. Therefore, the increase of the lubricant temperature (the difference 
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where cv is the lubricant specific heat, qlat is the rate of lateral flow and Ff is the friction force. 
The friction force can be obtained by integrating the friction stresses on the bearing surfaces: 
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4.4 Numerical approach 
The first problem that must be solved before evaluating the critical mass is to determine the 
equilibrium position. At the equilibrium, in absence of any external force, the fluid film 
force must be vertical and equal to the bearing weight. The fluid film force can be calculated   
by integrating the steady-state pressure distribution (Eq. 13) where the steady-state pressure 
distribution is described by the steady-state Reynolds equation (Eq. 9a). In the present paper 
the steady-state Reynolds equation is successively solved for different positions of the shaft 
until the fluid film force is vertical and equal to the shaft weight. A bisection algorithm was 
developed for this purpose. 
 For every position of the shaft, the turbulence correction coefficients are determined by 
successive iterations. Thus, for each journal centre position, at the first iteration the pressure 
distribution is determined by assuming that the flow is laminar (i.e., the effective Reynolds 
number is zero and the correction coefficients are 12). From the computed pressure 
distribution, new values of the correction coefficients at every grid point are determined. 
Also, the new mean film temperature (Eqs. 25-26) and the new lubricant properties are 
determined.  Then the steady-state Reynolds equation (Eq. 9a) is integrated again for the 
new values of the correction coefficients and the new mean film temperature. The iterative 
process is repeated until the relative errors for the correction coefficients are smaller than a 
prescribed value (10-5).  
The steady-state Reynolds equation (Eq. 9a) is discretized with a finite difference scheme. 
The resultant system of equations is solved with a successive over-relaxation method (the 
Gauss–Seidel method).  
Having the equilibrium position of the shaft and the correction coefficients corresponding to 
this position, the pressure gradients can now be determined by integrating the differential 
equations corresponding to the pressure gradients (Eqs. 9b-9e) with a finite difference 
scheme. The dynamic coefficients are then calculated by integrating the pressure gradients 
over the entire film (Eqs. 14-15) and next the critical mass is obtained with the equations Eqs. 
16-18. 
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5. Model for simulating the bearing dynamic behavior with a transient method 

5.1 Governing equations 
Without any external force, the equations of motion along and perpendicular to the line of 
centres are: 
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where Fr and F are the radial and tangential components of the fluid force, ρ - the shaft run-
out,  2m- the rotor mass, and ω - the rotational velocity. The components of the fluid film 
force can be determined by integrating the pressure distribution: 
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The pressure distribution in this case is obtained by solving the Reynolds equation written 
in the following form: 
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(29) 

 
The above form of the Reynolds equation was obtained by introducing the expression for 
the wave bearing film thickness (Eq. 3) into Eq. 8. For Eq. 29 the Reynolds boundary 
conditions at the film rupture zones are: 
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Constantinescu’s model of turbulence is also used for this approach to model the turbulent 
flow. 

 
5.2 Numerical approach  
The trajectory of the journal centre is obtained by integrating in time the equations of motion 
(Eqs. 27). At each time step, a pressure distribution corresponding to the motion parameters 
(e, , e ,  ) and correction coefficients for turbulent flow (kθ and kz) from the previous 
moment of time is first obtained. The pressure distribution is found by integrating the 

 

Reynolds equation (Eq. 29) using a central difference scheme combined with a Gauss-Seidel 
method.  
Then a new set of correction coefficients (Eqs. 23) corresponding to the new pressure 
distribution is calculated. Next an energy balance is performed and a new mean film 
temperature is obtained, Eq. (25). The lubricant properties (viscosity, density and specific 
heat) are then updated for the new mean film temperature. Afterwards, the Reynolds 
equation is integrated again for the new values of the correction coefficients and lubricant 
viscosity. The iterative process is repeated until the relative errors for the correction 
coefficients and for mean temperature are smaller than prescribed values. Furthermore, the 
fluid film forces are calculated by integrating the final pressure distribution over the entire 
film (Eqs. 28). All the parameters of the equations of motion (Eqs. 27) are now known so 
they can be integrated to determine the new position of the journal centre.  A fourth order 
Runge–Kutta algorithm is used to integrate the motion equations. The algorithm is repeated 
until the orbit of the journal centre is completed. 

 
6. Numerical simulations 

Both the critical mass and the transient approaches are used to study the dynamic behavior 
of a three-wave bearing having a length of 27.5 mm, a radius of the mean circle of the waves 
of 15 mm, and a clearance of 35 microns. The rotor mass corresponding to one bearing is 
0.825 kg. Synthetic turbine oil Mil-L-23699 was used as a lubricant. The numerical 
predictions are compared to experimental data (Dimofte et al., 2004).  
In real machinery, the rotor always has a small unbalance. This unbalance can be modeled 
as a small run-out. For this reason, two types of transient simulations were performed: the 
“ideal case” with zero run-out and “the real case” with a small run-out of 2 microns. For the 
critical mass approach, the shaft unbalance can not be taken into consideration. 
Different wave amplitude ratios, oil supply pressures and inlet temperatures were 
considered for simulations. The experimental studies showed that for a wave amplitude 
ratio of 0.305 the wave bearing is stable even at speeds of 60000 rpm and supply pressures of 
0.152 MPa. For example, the FFT analysis and the wave shape of the signal from one of the 
proximity probes corresponding to a rotational speed of 60000 rpm are presented in Fig. 3. 
FFT analysis shows the presence of an amplitude peak only at the synchronous frequency. 
In addition, the regular shape of the proximity probe signals indicates also a harmonic 
motion.  The same conclusion can be drawn from the numerical simulations. The variation 
of the critical mass with the rotational speed, as it was predicted by the small perturbation 
theory, is shown in Fig. 4. It can be seen that the critical mass is greater than the bearing 
mass for speeds up to 60000 rpm. Consequently, the bearing is stable for speeds up to 60000 
rpm. The trajectory of the shaft centre is predicted with the transient approach. For example, 
the trajectory of the shaft centre for a rotational speed of 60000 rpm and a zero run-out is 
presented in Fig. 5. It can be seen from Fig. 5 that the journal centre approaches very rapidly 
to the bearing centre and orbits around it with a very small radius. When a run-out is 
considered, the journal centre rotates with one frequency around the bearing centre on a 
closed orbit having the radius approximately equal to the run-out. For example, the 
trajectory of the journal centre for a rotational speed of 60000 rpm and a run-out of 2 
microns is shown in Fig. 6. The shaft centre motion in horizontal direction (Fig. 7) indicates a 
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5. Model for simulating the bearing dynamic behavior with a transient method 

5.1 Governing equations 
Without any external force, the equations of motion along and perpendicular to the line of 
centres are: 
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(27) 

 
where Fr and F are the radial and tangential components of the fluid force, ρ - the shaft run-
out,  2m- the rotor mass, and ω - the rotational velocity. The components of the fluid film 
force can be determined by integrating the pressure distribution: 
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(28) 

 
The pressure distribution in this case is obtained by solving the Reynolds equation written 
in the following form: 
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(29) 

 
The above form of the Reynolds equation was obtained by introducing the expression for 
the wave bearing film thickness (Eq. 3) into Eq. 8. For Eq. 29 the Reynolds boundary 
conditions at the film rupture zones are: 
 

0
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(30) 

 
Constantinescu’s model of turbulence is also used for this approach to model the turbulent 
flow. 

 
5.2 Numerical approach  
The trajectory of the journal centre is obtained by integrating in time the equations of motion 
(Eqs. 27). At each time step, a pressure distribution corresponding to the motion parameters 
(e, , e ,  ) and correction coefficients for turbulent flow (kθ and kz) from the previous 
moment of time is first obtained. The pressure distribution is found by integrating the 

 

Reynolds equation (Eq. 29) using a central difference scheme combined with a Gauss-Seidel 
method.  
Then a new set of correction coefficients (Eqs. 23) corresponding to the new pressure 
distribution is calculated. Next an energy balance is performed and a new mean film 
temperature is obtained, Eq. (25). The lubricant properties (viscosity, density and specific 
heat) are then updated for the new mean film temperature. Afterwards, the Reynolds 
equation is integrated again for the new values of the correction coefficients and lubricant 
viscosity. The iterative process is repeated until the relative errors for the correction 
coefficients and for mean temperature are smaller than prescribed values. Furthermore, the 
fluid film forces are calculated by integrating the final pressure distribution over the entire 
film (Eqs. 28). All the parameters of the equations of motion (Eqs. 27) are now known so 
they can be integrated to determine the new position of the journal centre.  A fourth order 
Runge–Kutta algorithm is used to integrate the motion equations. The algorithm is repeated 
until the orbit of the journal centre is completed. 

 
6. Numerical simulations 

Both the critical mass and the transient approaches are used to study the dynamic behavior 
of a three-wave bearing having a length of 27.5 mm, a radius of the mean circle of the waves 
of 15 mm, and a clearance of 35 microns. The rotor mass corresponding to one bearing is 
0.825 kg. Synthetic turbine oil Mil-L-23699 was used as a lubricant. The numerical 
predictions are compared to experimental data (Dimofte et al., 2004).  
In real machinery, the rotor always has a small unbalance. This unbalance can be modeled 
as a small run-out. For this reason, two types of transient simulations were performed: the 
“ideal case” with zero run-out and “the real case” with a small run-out of 2 microns. For the 
critical mass approach, the shaft unbalance can not be taken into consideration. 
Different wave amplitude ratios, oil supply pressures and inlet temperatures were 
considered for simulations. The experimental studies showed that for a wave amplitude 
ratio of 0.305 the wave bearing is stable even at speeds of 60000 rpm and supply pressures of 
0.152 MPa. For example, the FFT analysis and the wave shape of the signal from one of the 
proximity probes corresponding to a rotational speed of 60000 rpm are presented in Fig. 3. 
FFT analysis shows the presence of an amplitude peak only at the synchronous frequency. 
In addition, the regular shape of the proximity probe signals indicates also a harmonic 
motion.  The same conclusion can be drawn from the numerical simulations. The variation 
of the critical mass with the rotational speed, as it was predicted by the small perturbation 
theory, is shown in Fig. 4. It can be seen that the critical mass is greater than the bearing 
mass for speeds up to 60000 rpm. Consequently, the bearing is stable for speeds up to 60000 
rpm. The trajectory of the shaft centre is predicted with the transient approach. For example, 
the trajectory of the shaft centre for a rotational speed of 60000 rpm and a zero run-out is 
presented in Fig. 5. It can be seen from Fig. 5 that the journal centre approaches very rapidly 
to the bearing centre and orbits around it with a very small radius. When a run-out is 
considered, the journal centre rotates with one frequency around the bearing centre on a 
closed orbit having the radius approximately equal to the run-out. For example, the 
trajectory of the journal centre for a rotational speed of 60000 rpm and a run-out of 2 
microns is shown in Fig. 6. The shaft centre motion in horizontal direction (Fig. 7) indicates a 
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harmonic motion. The FFT analysis of the shaft centre motion in horizontal direction (Fig.8) 
shows that the frequency of the journal centre motion is equal to the rotor speed.  
 

Synchronous 
frequency

Synchronous
frequencySynchronous 

frequency

Synchronous
frequency

 
Fig. 3. FFT analysis and wave shape of the experimental signal for 305.0w  , n=60000 rpm, 
ps=0.152 MPa 
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Fig. 4. Critical mass as function of running speed for 305.0w  and ps=0.152 MPa 
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Fig. 5. Trajectory of the journal centre for 305.0w  , n=60000 rpm, ps=0.152 MPa , and zero 
run-out 
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Fig. 6. Trajectory of the journal centre for 305.0w  , n=60000 rpm, ps=0.152 MPa , and 2 
microns  run-out 
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Fig. 7. The position of the shaft centre in the horizontal direction for 305.0w  , n=60000 
rpm, ps=0.152 MPa , and 2 microns  run-out 
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Fig. 8. FFT analysis of the motion in the horizontal direction for 305.0w  , n=60000 rpm, 
ps=0.152 MPa , and 2 microns  run-out 
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harmonic motion. The FFT analysis of the shaft centre motion in horizontal direction (Fig.8) 
shows that the frequency of the journal centre motion is equal to the rotor speed.  
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Fig. 3. FFT analysis and wave shape of the experimental signal for 305.0w  , n=60000 rpm, 
ps=0.152 MPa 
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Fig. 4. Critical mass as function of running speed for 305.0w  and ps=0.152 MPa 
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Fig. 5. Trajectory of the journal centre for 305.0w  , n=60000 rpm, ps=0.152 MPa , and zero 
run-out 
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Fig. 6. Trajectory of the journal centre for 305.0w  , n=60000 rpm, ps=0.152 MPa , and 2 
microns  run-out 
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Fig. 7. The position of the shaft centre in the horizontal direction for 305.0w  , n=60000 
rpm, ps=0.152 MPa , and 2 microns  run-out 
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Fig. 8. FFT analysis of the motion in the horizontal direction for 305.0w  , n=60000 rpm, 
ps=0.152 MPa , and 2 microns  run-out 
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For wave amplitude ratios smaller than 0.305, the experiments and the numerical 
simulations show that the rotor centre of the analyzed wave bearing can experience an 
unstable motion at rotational speeds that depend on the wave amplitude ratio and oil 
supply pressure. For example, the variation of the critical mass with the rotational speed for 
a wave amplitude ratio of 0.075, a supply pressure of 0.276 MPa at an oil temperature inlet 
of 126 C is presented in Fig. 9. It can be seen that the critical mass is greater than the mass 
of the shaft related to one bearing for speeds smaller than 39000 rpm. The critical mass is 
very close to the rotor mass around 39000 rpm and then it becomes smaller than the rotor 
mass. Consequently, it may be concluded that the fluid film of the wave bearing is unstable 
for rotational speeds greater than 39000 rpm. 
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Fig. 9. Critical mass as function of running speed for 075.0w  and ps=0.276 MPa 
 
The transient analysis allows for the examination of the post whirl orbit details. The stable 
trajectories of the journal centre rotating at 36000 rpm with zero and 2 microns run-out are 
presented in Figs. 10 and 11. The FFT analyses of the numerical predicted motion (Fig. 12) 
and of the experimental signals from the proximity probes (Fig. 13) indicate the presence of 
only the synchronous frequency. The wave shapes of the motion in the horizontal direction 
obtained experimentally (Fig. 13) and from numerical simulations (Fig. 14) also suggest a 
harmonic motion.  
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Fig. 10. Trajectory of the journal centre for 075.0w  , n=36000 rpm, ps=0.276 MPa , and 
zero run-out 
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Fig. 11. Trajectory of the journal centre for 075.0w  , n=36000 rpm, ps=0.276 MPa , and 2 
microns run-out 
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Fig. 12. FFT analysis of the motion in the horizontal direction for 075.0w  , n=36000 rpm, 
ps=0.276 MPa , and 2 microns  run-out 
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Fig. 13. FFT analysis and wave shape of the experimental signal for 075.0w  , n=36000 
rpm, ps=0.276 MPa 
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For wave amplitude ratios smaller than 0.305, the experiments and the numerical 
simulations show that the rotor centre of the analyzed wave bearing can experience an 
unstable motion at rotational speeds that depend on the wave amplitude ratio and oil 
supply pressure. For example, the variation of the critical mass with the rotational speed for 
a wave amplitude ratio of 0.075, a supply pressure of 0.276 MPa at an oil temperature inlet 
of 126 C is presented in Fig. 9. It can be seen that the critical mass is greater than the mass 
of the shaft related to one bearing for speeds smaller than 39000 rpm. The critical mass is 
very close to the rotor mass around 39000 rpm and then it becomes smaller than the rotor 
mass. Consequently, it may be concluded that the fluid film of the wave bearing is unstable 
for rotational speeds greater than 39000 rpm. 
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Fig. 9. Critical mass as function of running speed for 075.0w  and ps=0.276 MPa 
 
The transient analysis allows for the examination of the post whirl orbit details. The stable 
trajectories of the journal centre rotating at 36000 rpm with zero and 2 microns run-out are 
presented in Figs. 10 and 11. The FFT analyses of the numerical predicted motion (Fig. 12) 
and of the experimental signals from the proximity probes (Fig. 13) indicate the presence of 
only the synchronous frequency. The wave shapes of the motion in the horizontal direction 
obtained experimentally (Fig. 13) and from numerical simulations (Fig. 14) also suggest a 
harmonic motion.  
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Fig. 10. Trajectory of the journal centre for 075.0w  , n=36000 rpm, ps=0.276 MPa , and 
zero run-out 
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Fig. 11. Trajectory of the journal centre for 075.0w  , n=36000 rpm, ps=0.276 MPa , and 2 
microns run-out 
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Fig. 12. FFT analysis of the motion in the horizontal direction for 075.0w  , n=36000 rpm, 
ps=0.276 MPa , and 2 microns  run-out 
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Fig. 13. FFT analysis and wave shape of the experimental signal for 075.0w  , n=36000 
rpm, ps=0.276 MPa 
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Fig. 14. The position of the shaft centre in the horizontal direction for 075.0w  , n=36000 
rpm, ps=0.276 MPa , and 2 microns  run-out 
 
If the speed is increased to the stability threshold (39000 rpm, in this case) an incipient sub-
synchronous motion can be detected. The FFT analysis and the wave shape of the signal 
from the proximity probes are presented in Fig. 15. In this case, both the synchronous and 
sub-synchronous frequencies can be identified. However, the synchronous frequency is still 
dominant. The simulated journal centre motion for zero unbalance is presented in Fig. 16. In 
this case the journal centre rotates on a closed orbit. The FFT analysis of the motion predicts 
only the sub-synchronous frequency (Fig. 17). The presence of the synchronous frequency 
can be predicted by the numerical simulations only if the rotor unbalance is taken into 
consideration. When the run-out is introduced in simulations, the journal centre rotates on a 
limit cycle with two frequencies (Fig. 18). The motion of the journal centre in the horizontal 
direction (Fig. 19) and the FFT analysis of the motion (Fig. 20) indicate the existence of both 
synchronous and sub-synchronous frequencies.  They are very similar to those predicted by 
experiments (Fig. 15).   
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Fig. 15. FFT analysis and wave shape of the experimental signal for 075.0w  , n=39000 
rpm, ps=0.276 MPa 
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Fig. 16. Trajectory of the journal centre for 075.0w  , n=39000 rpm, ps=0.276 MPa , and 
zero run-out 
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Fig. 17. FFT analysis of the motion in the horizontal direction for 075.0w  , n=39000 rpm, 
ps=0.276 MPa , and zero run-out 
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Fig. 18. Trajectory of the journal centre for 075.0w  , n=39000 rpm, ps=0.276 MPa , and 2 
microns run-out 
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Fig. 14. The position of the shaft centre in the horizontal direction for 075.0w  , n=36000 
rpm, ps=0.276 MPa , and 2 microns  run-out 
 
If the speed is increased to the stability threshold (39000 rpm, in this case) an incipient sub-
synchronous motion can be detected. The FFT analysis and the wave shape of the signal 
from the proximity probes are presented in Fig. 15. In this case, both the synchronous and 
sub-synchronous frequencies can be identified. However, the synchronous frequency is still 
dominant. The simulated journal centre motion for zero unbalance is presented in Fig. 16. In 
this case the journal centre rotates on a closed orbit. The FFT analysis of the motion predicts 
only the sub-synchronous frequency (Fig. 17). The presence of the synchronous frequency 
can be predicted by the numerical simulations only if the rotor unbalance is taken into 
consideration. When the run-out is introduced in simulations, the journal centre rotates on a 
limit cycle with two frequencies (Fig. 18). The motion of the journal centre in the horizontal 
direction (Fig. 19) and the FFT analysis of the motion (Fig. 20) indicate the existence of both 
synchronous and sub-synchronous frequencies.  They are very similar to those predicted by 
experiments (Fig. 15).   
 

 

Synchronous
frequency

Sub synchronous
frequency

Synchronous
frequency

Sub synchronous
frequency

 
Fig. 15. FFT analysis and wave shape of the experimental signal for 075.0w  , n=39000 
rpm, ps=0.276 MPa 
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Fig. 16. Trajectory of the journal centre for 075.0w  , n=39000 rpm, ps=0.276 MPa , and 
zero run-out 
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Fig. 17. FFT analysis of the motion in the horizontal direction for 075.0w  , n=39000 rpm, 
ps=0.276 MPa , and zero run-out 
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Fig. 18. Trajectory of the journal centre for 075.0w  , n=39000 rpm, ps=0.276 MPa , and 2 
microns run-out 
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Fig. 19. The position of the shaft centre in the horizontal direction for 075.0w  , n=39000 
rpm, ps=0.276 MPa , and 2 microns  run-out 
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Fig. 20. FFT analysis of the motion in the horizontal direction for 075.0w  , n=39000 rpm, 
ps=0.276 MPa , and 2 microns  run-out 
 
The experiments show that the sub-synchronous frequency becomes dominant for rotational 
speeds greater than 44000 rpm (Fig. 21). However, the synchronous frequency is still 
present. The numerically predicted journal centre trajectories for a rotational speed of 44000 
rpm without and with run-out are presented in Figs. (22) and (23). In both cases, the journal 
centre moves on closed orbits. Again, the simulation corresponding to the motion without 
run-out predicts only the sub-synchronous frequency (Fig. 24). The synchronous frequency 
is predicted only by the simulation that takes into account the small run-out (Fig. 25). In this 
case, the wave shape of the motion in the horizontal direction (Fig. 26) is also very similar to 
that predicted by experiments (Fig. 21). An increase of the oil supply pressure to 0.414 MPa 
stabilizes the fluid film of the bearing (Fig. 27). The theoretical analysis shows that the 
bearing can run stable up to 60000 rpm. The critical mass becomes greater than the rotor 
mass (Fig. 28). The FFT analyze of the numerical simulated motion for a rotational speed of 
60000 rpm and a run-out of 2 microns is presented in Fig. (29). It can be seen that the sub-
synchronous frequency disappeared. The corresponding trajectory and the motion in the 
horizontal direction are also presented in Figs. (30) and (31).  If the run-out is zero, then the 

 

limit cycles disappear and the journal approaches to the bearing centre and orbits around it 
with a very small radius (Fig. 32). 
It can be noticed from all the above simulations that the wave bearing journal centre 
maintains its trajectory inside the bearing clearance, even for unstable motions. 
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Fig. 21. FFT analysis and wave shape of the experimental signal for 075.0w  , n=44000 
rpm, ps=0.276 MPa 
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Fig. 22. Trajectory of the journal centre for 075.0w  , n=44000 rpm, ps=0.276 MPa , and 
zero run-out 
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Fig. 23. Trajectory of the journal centre for 075.0w  , n=44000 rpm, ps=0.276 MPa , and 2 
microns run-out 
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Fig. 19. The position of the shaft centre in the horizontal direction for 075.0w  , n=39000 
rpm, ps=0.276 MPa , and 2 microns  run-out 
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Fig. 20. FFT analysis of the motion in the horizontal direction for 075.0w  , n=39000 rpm, 
ps=0.276 MPa , and 2 microns  run-out 
 
The experiments show that the sub-synchronous frequency becomes dominant for rotational 
speeds greater than 44000 rpm (Fig. 21). However, the synchronous frequency is still 
present. The numerically predicted journal centre trajectories for a rotational speed of 44000 
rpm without and with run-out are presented in Figs. (22) and (23). In both cases, the journal 
centre moves on closed orbits. Again, the simulation corresponding to the motion without 
run-out predicts only the sub-synchronous frequency (Fig. 24). The synchronous frequency 
is predicted only by the simulation that takes into account the small run-out (Fig. 25). In this 
case, the wave shape of the motion in the horizontal direction (Fig. 26) is also very similar to 
that predicted by experiments (Fig. 21). An increase of the oil supply pressure to 0.414 MPa 
stabilizes the fluid film of the bearing (Fig. 27). The theoretical analysis shows that the 
bearing can run stable up to 60000 rpm. The critical mass becomes greater than the rotor 
mass (Fig. 28). The FFT analyze of the numerical simulated motion for a rotational speed of 
60000 rpm and a run-out of 2 microns is presented in Fig. (29). It can be seen that the sub-
synchronous frequency disappeared. The corresponding trajectory and the motion in the 
horizontal direction are also presented in Figs. (30) and (31).  If the run-out is zero, then the 

 

limit cycles disappear and the journal approaches to the bearing centre and orbits around it 
with a very small radius (Fig. 32). 
It can be noticed from all the above simulations that the wave bearing journal centre 
maintains its trajectory inside the bearing clearance, even for unstable motions. 
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Fig. 21. FFT analysis and wave shape of the experimental signal for 075.0w  , n=44000 
rpm, ps=0.276 MPa 
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Fig. 22. Trajectory of the journal centre for 075.0w  , n=44000 rpm, ps=0.276 MPa , and 
zero run-out 
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Fig. 23. Trajectory of the journal centre for 075.0w  , n=44000 rpm, ps=0.276 MPa , and 2 
microns run-out 
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Fig. 24. FFT analysis of the motion in the horizontal direction for 075.0w  , n=44000 rpm, 
ps=0.276 MPa , and zero  run-out 
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Fig. 25. FFT analysis of the motion in the horizontal direction for 075.0w  , n=44000 rpm, 
ps=0.276 MPa , and 2 microns run-out 
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Fig. 26. The position of the shaft centre in the horizontal direction for 075.0w  , n=44000 
rpm, ps=0.276 MPa , and 2 microns  run-out 
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Fig. 27. FFT analysis and wave shape of the experimental signal for 075.0w  , n=44000 
rpm, ps=0.414 MPa 
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Fig. 28. Critical mass as function of running speed for 075.0w  and ps=0.414 MPa 
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Fig. 29. FFT analysis and wave shape of the experimental signal for 075.0w  , n=60000 
rpm, ps=0.414 MPa 
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Fig. 24. FFT analysis of the motion in the horizontal direction for 075.0w  , n=44000 rpm, 
ps=0.276 MPa , and zero  run-out 
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Fig. 25. FFT analysis of the motion in the horizontal direction for 075.0w  , n=44000 rpm, 
ps=0.276 MPa , and 2 microns run-out 
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Fig. 26. The position of the shaft centre in the horizontal direction for 075.0w  , n=44000 
rpm, ps=0.276 MPa , and 2 microns  run-out 
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Fig. 27. FFT analysis and wave shape of the experimental signal for 075.0w  , n=44000 
rpm, ps=0.414 MPa 
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Fig. 28. Critical mass as function of running speed for 075.0w  and ps=0.414 MPa 
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Fig. 29. FFT analysis and wave shape of the experimental signal for 075.0w  , n=60000 
rpm, ps=0.414 MPa 
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Fig. 30. Trajectory of the journal centre for 075.0w  , n=60000 rpm, ps=0.440 MPa, and 2 
microns run-out 
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Fig. 31. The position of the shaft centre in the horizontal direction for 075.0w  , n=60000 
rpm, ps=0.414 MPa , and 2 microns  run-out 
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Fig. 32. Trajectory of the journal centre for 075.0w  , n=60000 rpm, ps=0.440 MPa, and 0 
microns run-out 

 

7. Conclusions 

Both a critical mass and a transient method were developed to model and simulate the 
dynamic behavior of a fluid film wave journal bearing. The methods were validated by 
comparing the theoretical results obtained for a three-wave bearing having a diameter of 30 
mm, a length of 27.5 mm and a clearance of 35 microns with experimental data.  It was 
concluded that: 
 The dynamic behavior of the bearing after the appearance of the sub-synchronous 

frequency could be numerically predicted only by using a transient approach. 
 The experimental studies demonstrated that even when the bearing fluid film is 

unstable, the synchronous frequency is still present.  
 The numerical simulations showed that the presence of the synchronous frequency in 

the unstable motions can be theoretically predicted only if the inherent unbalance of the 
rotor is taken into consideration.  

 The theoretical and experimental investigations also proved that even if the fluid film is 
unstable, the wave bearing maintains the whirl orbit inside the bearing clearance. 
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Fig. 30. Trajectory of the journal centre for 075.0w  , n=60000 rpm, ps=0.440 MPa, and 2 
microns run-out 
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Fig. 31. The position of the shaft centre in the horizontal direction for 075.0w  , n=60000 
rpm, ps=0.414 MPa , and 2 microns  run-out 
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Fig. 32. Trajectory of the journal centre for 075.0w  , n=60000 rpm, ps=0.440 MPa, and 0 
microns run-out 
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Both a critical mass and a transient method were developed to model and simulate the 
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