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1. Introduction 

For most simple processes, PID control can provide satisfactory closed loop performance. 
However, in spite of the considerable advantages of conventional PID controllers (such as 
simplicity of their structures, robustness and ease of implementation), they still have a major 
drawback in that the controllers may need to be re-tuned, if the systems to be controlled are 
subjected to significant changes, in order to achieve satisfactory performance. For this 
reason, during the last two decades much work in linear control theory has been devoted to 
incorporating the flexibility of self-tuning control and the simplicity of PID structures. A lot 
of self-tuning methods have been developed and special attention is currently being paid to 
PID self-tuning controllers and their implementation, [e.g. Yusof R. & et al., (1994); Yusof, R.; 
(1993) and Tokuda M.; & Yamamoto T.; (2002)]. 
During the past three decades, a special attention has also been given to the problem of 
designing pole-placement controllers and self-tuning regulators. Various self-tuning 
controllers based on classical pole-placement ideas were developed and employed in real 
applications, [e.g. Sirisena H. & Teng F.,(1986); Zhu Q., & et al., (2002); Zayed A. & Hussain 
A., (2004); Astrom K.., & Wittenmark B., (1973)]. The popularity of pole-placement 
techniques may be attributed to the fact that in the regulator case they provide mechanisms 
to over-come the restriction to minimum-phase plants of the original minimum variance 
self-tuner of Astrom K., & Wittenmark B., (1973). In the servo case, they provide the ability 
to directly introduce bandwidth and damping ratio as tuning parameters. In addition, there 
is some improvement in robustness of pole-placement methods, as they simply modify the 
system dynamics as opposed to cancelling them as per the early optimal self-tuning 
controllers. Furthermore, unlike many of the self-tuning based PID control designs [see for 
example Yusof R. & et al., (1994); Yusof, R.; (1993)], in which the tuning parameters must be 
selected using a trial and error procedure, the tuning parameters for pole-placement 
controllers can be automatically set on-line by specifying the desired closed loop poles.  
Comparatively, only little attention has been given to zeros since they are considered to be 
less crucial than poles. Most of the previous discussion on zeros are centred around the 
choice of the sampling time so that the resulting system is invertible. However, it is 
important to note that zeros may be used to achieve better set point tracking  Zayed A. & 
Hussain A., (2004)., and they may also help reduce the magnitude of the control action 
Sirisena H. & Teng F.,(1986).. 
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Therefore, in order to achieve more effective control action and combine the advantages of 
the self-tuning controllers with those of the PID, and zero pole-placement controllers need 
to be integrated. However, the most of multivariable pole-placement controllers are explicit 
and have considerable drawbacks in that the control designs involve the solution of a 
Diophantine equations, which in some applications may lead to excessive computational 
and numerical instability problems and they are obtained as a right matrix-fraction and an 
additional transforming step from a right to left-matrix description is required in order to 
implement the control law Zhu Q., & et al., (2002). 
In an attempt to avoid solving Diophantine equations and to obtain the control as a left 
matrix-fraction for direct implementation, a novel multivariable generalised minimum 
variance stochastic adaptive controller with PID pole placement structure is presented in 
this paper. It builds on the previous works Zhu Q., & et al., (2002); Zayed, A. & et al., (2004); 
and Zayed A. & Hussain A., (2004). The proposed design provides the designer with a 
choice of using either a self-tuning controller or an implicit PID controller. 
The paper is organised as follows: the derivation of the control law is discussed in section 2. 
In section 3, a simulation case study is carried out in order to demonstrate the effectiveness 
of the proposed controller in the performance of the closed loop system. Finally, some 
concluding remarks are presented in section 4.  

 
2. Derivation of control law 

In deriving the multivariable self-tuning control law we assume that the process is described 
by the following Controlled Auto-Regressive Moving Average (CARMA) model  Yusof R. & 
et al., (1994); Zayed, A. & et al., (2004); Astrom K.., & Wittenmark B., (1973): 
 
 1 1 1( ) ( ) ( ) ( ) ( ) ( )z t z t k z t    A y B u C    (1) 
 

where ( )ty  is the measured output vector with dimension ( 1n ), ( )tu  is the measured 
control input vector ( 1n ), ( )t  is an uncorrelated sequence of random variables with 
zero mean, k is the time delay in the integer sampling interval and ( )t  denotes the sampling 
instant, 1, 2, 3,.....,t  .  

The polynomial matrices 1( )zA , 1( )zB  and 1( )zC  are expressed in terms of the 

backwards shift operator, 1z {i.e. 1 ( ) ( 1)z t t  x x }, and are given as: 
 

 1 1 2
1 2( ) ............ an

na
z z z z      A I A A A     (2) 

 1 1
0 1( ) ...... , (0) 0nb

nb
z z z     B B B B B  (3) 

 1 1 2
1 2( ) .......... nc

nc
z z z z      C I C C C  (4) 

 

where ,an  ,bn  and cn  are the degrees of the polynomials. 
The coefficients of the above polynomials are ( n n ) matrices and I  is the ( n n ) identity 
matrix. 

It is assumed that the zeroes of the det 1( )zC  lie inside the unit disc of the z-plane (that is, 

the polynomial 1( )zC  is inverse stable). It is also assumed without any loss of generality, 
that the disturbance transfer function is proper (i.e. c an n ) [1, 4, 8]. No assumption 

concerning the polynomial 1( )zB  is made implying that the process can be a minimum or 
non-minimum phase system. 
The control law minimises the variance of an auxiliary output )(t : 
 
 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )t z t z t k z t k       P y Q u R w   (5) 
 
Here ( )tw  is the ( 1n ) set point vector and 1( )zP , 1( )zQ  and 1( )zR  are the user-

defined transfer functions in the backward shift operator 1z . 1( )zP  is rational matrix 
which can be expressed as: 
 
 1 1 1 1( ) ( ) ( )n dz z z   P P P  (6) 
 

here 1( )n zP  and 1( )d zP  are respectively monic ( n n ) numerator and denominator 
matrices with degrees pn

n  and pd
n . The performance of closed loop system is determined 

by the selection of the polynomial matrices 1( )zP , 1( )zQ  and 1( )zR  which are 
important design decisions. 
The control law which minimises the above cost function given by (5) can be expressed 
as( Zayed, A. & et al., (2004)): 
 

 0( ) [ ( ) ( )]s st t t Q u H w F y  (7) 
 

where sQ  and 0H  are the user transfer functions matrices which they depend on Q  and 
R , respectively. 
We further assume that sQ  and 0H  can also be expressed as:  
 

 
0

1( )
1Δ (1 )

s

s s

z




   
    

H F

Q H V Q

I I

  (8) 

 

  and sQ  are the ( nn ) polynomial matrices, and V  is a user-defined polynomial 

diagonal gain matrix. Here H  and I  are the ( n n ) desired closed loop system zeros 
polynomial matrix and identity matrix, respectively. 
Combining equations (7) and (8), gives: 
 

 ( ) [ ( ) ( )]s s st t t     Q u VF w H VF y  (9) 
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here 1( )n zP  and 1( )d zP  are respectively monic ( n n ) numerator and denominator 
matrices with degrees pn

n  and pd
n . The performance of closed loop system is determined 

by the selection of the polynomial matrices 1( )zP , 1( )zQ  and 1( )zR  which are 
important design decisions. 
The control law which minimises the above cost function given by (5) can be expressed 
as( Zayed, A. & et al., (2004)): 
 

 0( ) [ ( ) ( )]s st t t Q u H w F y  (7) 
 

where sQ  and 0H  are the user transfer functions matrices which they depend on Q  and 
R , respectively. 
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  and sQ  are the ( nn ) polynomial matrices, and V  is a user-defined polynomial 

diagonal gain matrix. Here H  and I  are the ( n n ) desired closed loop system zeros 
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In this case, 

 1
0 1

1( ) ....... s
Qs

Q
s s s ns

n
z z z



       Q Q Q Q  (10) 
 

It can clearly be seen from (8) that the polynomial sQ  and the gain V  can be considered as 

user defined parameters since they depend on the user transfer function 1( )zQ . 
We can see clearly from equations (8) and (9) that the controller denominator has now 
conveniently been split into two parts: 
1. An integrator action part ( ) required for PID design 
2. An arbitrary compensator ( 1( )s zQ ) that may be used for pole-placement placement 

design. 

 
2.1 Multivariable Self-tuning PID Controller design (mode 1) 
In this mode, the generalised minimum variance controller operates as a conventional self-
tuning PID controller, which can be expressed in the most commonly used velocity form  
[1, 2] as: 
 
 ( ) [ ] ( ) [ 2 ] ( 1) [ ] ( 2)t t t t        P I D P D Du K K K e K K e K e  (11) 
 ( ) ( ) ( )t t t e w y  (12) 
 
where PK , IK  and DK  are ( n n ) matrices denote the proportional gain, the integral 

gain and derivative gain respectively.   is the difference operator defined as: 
In order to obtain a self-tuning controller with PID structure the control law in equation (9) 
must have the same form of as the PID controller in equation (11).  
If we assume that the degree of  polynomial sF  is equal to 2: 
 

 1 1 2
0 1 2( ) s s sz z z       F F F F  (13a) 

and if we set  
 1( )s z  Q H I  (13b) 
 

and make use of equations (13a), (13b) and (9) a multivariable self-tuning  controller with 
PID structure is obtained, where 
 

 1 2
0 1 2( ) ( )[ ( ) ( )]s s s st z z t t        Q u V F F F w y  (14) 

 1 2( 2 )s s   PK V F F  (15a) 

 0 1 2( )s s s    IK V F F F  (15b) 

 2( )sDK V F  (15c) 
 
As can be seen from equations (5) and (8)-(15) that the PID controller is tuned by a selection 
of the polynomial P  and the gain V  which must be selected in trial and error procedure. 

Alternatively, these tuning parameters can be automatically and implicitly set on line by 
specifying the desired closed loop poles Zhu Q., & et al., (2002); Zayed A. & Hussain A., 
(2004).  

 
2.2 New Implicit Multivariable PID Pole-placement Controller (Mode 2) 
The generalised minimum variance control law given by equation (9) was extended to 
achieve explicit PID pole-zero placement by Zayed A., (1997); Zayed A., (2005) Zayed A.,& 
et al., (2006) and Zhu and Zhu Q., & et al., (2002). However, these explicit PID controller 
designs have two drawbacks in that the controllers involve the solution of Diophantine 
equation. In addition, the explicit designs have the right fraction structure and an additional 
transforming step from a right to left-matrix description is required in order to implement 
the control law. For this reasons the generalised minimum variance control is modified such 
that solving Diophantine is not considered in the design and has a left fraction structure 
enables direct implementation.. The controller may then be considered as an implicit 
controller in the sense that the control design step is trivial. 
If we set the desired closed loop zeros matrix  H I , then the control law given by 
equation (9) can also expressed as follows: 
 
 ( ) [ ( ) ( )]s s st t t   q u VF w VF y  (16) 
where  

 s s  q Q  (17) 
 
By combining equations (16) and (1), the closed loop transfer function is obtained as: 
 

 1 1 1( ) ( [ ] ) [ ( ) ( ) ( ) ( )]k k
s s s st z z t t         y A B q VF B q VF w Cξ  (18) 

If we set  
 s F A  (19) 
 

then equation (18) becomes after some arrangement: 
 

 1 1 1( ) [ ( ) ] ( )( ) [ ( ) ( )k k
s st z z t       y A B q VA B q V A w  

 1( ) ( )]k
s z t q B Cξ  (20) 

 
Next, we can introduce the following relation [6]: 
 
 1 1 1 1 1( [ ] ) ( ) ( )k k k k

s s sz z z z            A B q VA B q A B q VB  (21) 
 
Making use of equations (20) and (21), we obtain: 
 
 1 1 1( ) ( ) [ ( ) ( ) ( ) ( )]k k k

s st z z t z t        y A B q VB V A w q B Cξ  (22) 
 
The desired closed loop configuration is achieved by setting: 
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 ( )k
s z   q VB CT K  (23) 

 

where T  represents the desired closed loop poles.  
It is assumed, without loss of generality, that T  is normalised such that  
 
 (1) T I  (24) 
 
The above equation can easily be satisfied by selecting T  such that [6]: 
 
 1 1 1 2

1 1 2( ) ( ..., ... ) ( ....., ..... )T
T T

n
n nz z z z 

 

              T I T T I T T T  (25) 

 
Here K  is ( n n ) user-defined gain matrix that has to be chosen such that the steady state 
error is zero. It can be seen from (17) and (23) that the user-defined gain matrix K  is 
employed to ensure the incorporation of the integral action into the design (i.e. (1)sq  in 
equation (23) equal to zero). 
where Tn   represents the degree of the polynomials T . 
Using equations (19) and (23) and rearranging, we obtain: 
 
 k

s z   q CT K VB  (26) 
 

It can be seen from (17) and (26) that in order to ensure that sq  involves ( )(i.e. (1)sq  in 
equation (23) equal to zero), we set: 
 
 (1) (1) (1) (1) 0s    q C T K VB  (27) 
 
The above equation (27) can be satisfied by setting: 
 
 1 1[ (1) (1)] ( (1)) [ (1)] (1)   K C T VB C VB  (28) 
 

We can easily compute sQ  from equation (17) as follows: 
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If we assume that the degree of 1( )s zF  is equal to 2, then equation (16) becomes: 
 

 1 2
0 1 2( ) [ ( )[ ( ) ( )]s s s st z z t t        Q u V F F F w y  (30) 

However, the zeros may be used to achieve better set point tracking or they may also help 
reduce the magnitude of the control action [5, 7, 11]. In the following section (2.3) a new 
implicit zero pole-placement is derived. 

 
2.3 New Implicit Multivariable PID Zero Pole-placement Controller (Mode 3) 
If we set the desired closed loop zeros matrix  H I , then the control law given by 
equation (9) can be expressed as follows: 
 
 ( ) [ ( ) ( )]s s st t t    q u VF w H VF y   (31) 
 
By combining equations (31) and (1), the closed loop transfer function is obtained as: 
 
 1 1 1( ) ( [ ] ) [ ( ) ( ) ( ) ( )]k k

s s s st z z t t           y A B q H VF B q H VF w Cξ   (32) 
 
If we assume, without loss of generality, at steady state that:   
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then equation (32) becomes after some arrangement: 
 
 1 1 1

0( ) [ ( ) ] ( )( ) [( (1) ) ( )k k
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 1( ) ( )]k
s z t q B Cξ  (34) 

 
Next, we can introduce the following relation [5]: 
 
 1 1 1 1 1( [ ] ) ( ) ( )k k k k
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Making use of equations (35) and (34), we obtain: 
 
 1 1 1

0( ) ( ) [( ) ( ) ( ) ( )]k k k
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The desired closed loop configuration is achieved by setting: 
 

 ( )k
s sz    q H B CT K  (37) 

 

where T  represents the desired closed loop poles and H  represents the desired closed 
loop zeros.  
It is assumed, without loss of generality, that T  and H  are normalised such that  
 

www.intechopen.com



A Novel Implicit Adaptive zero pole-placement PID Controller 159

 ( )k
s z   q VB CT K  (23) 

 

where T  represents the desired closed loop poles.  
It is assumed, without loss of generality, that T  is normalised such that  
 
 (1) T I  (24) 
 
The above equation can easily be satisfied by selecting T  such that [6]: 
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Here K  is ( n n ) user-defined gain matrix that has to be chosen such that the steady state 
error is zero. It can be seen from (17) and (23) that the user-defined gain matrix K  is 
employed to ensure the incorporation of the integral action into the design (i.e. (1)sq  in 
equation (23) equal to zero). 
where Tn   represents the degree of the polynomials T . 
Using equations (19) and (23) and rearranging, we obtain: 
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It can be seen from (17) and (26) that in order to ensure that sq  involves ( )(i.e. (1)sq  in 
equation (23) equal to zero), we set: 
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The above equation (27) can be satisfied by setting: 
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We can easily compute sQ  from equation (17) as follows: 
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If we assume that the degree of 1( )s zF  is equal to 2, then equation (16) becomes: 
 

 1 2
0 1 2( ) [ ( )[ ( ) ( )]s s s st z z t t        Q u V F F F w y  (30) 

However, the zeros may be used to achieve better set point tracking or they may also help 
reduce the magnitude of the control action [5, 7, 11]. In the following section (2.3) a new 
implicit zero pole-placement is derived. 

 
2.3 New Implicit Multivariable PID Zero Pole-placement Controller (Mode 3) 
If we set the desired closed loop zeros matrix  H I , then the control law given by 
equation (9) can be expressed as follows: 
 
 ( ) [ ( ) ( )]s s st t t    q u VF w H VF y   (31) 
 
By combining equations (31) and (1), the closed loop transfer function is obtained as: 
 
 1 1 1( ) ( [ ] ) [ ( ) ( ) ( ) ( )]k k

s s s st z z t t           y A B q H VF B q H VF w Cξ   (32) 
 
If we assume, without loss of generality, at steady state that:   
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then equation (32) becomes after some arrangement: 
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 1( ) ( )]k
s z t q B Cξ  (34) 

 
Next, we can introduce the following relation [5]: 
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Making use of equations (35) and (34), we obtain: 
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The desired closed loop configuration is achieved by setting: 
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s sz    q H B CT K  (37) 

 

where T  represents the desired closed loop poles and H  represents the desired closed 
loop zeros.  
It is assumed, without loss of generality, that T  and H  are normalised such that  
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 (1) (1) T H  (38) 
 

The above equation can easily be satisfied by selecting T  and H  such that [5]: 
 

 1 1 1
1( ) ( .... ) ( ...... )h

h h

n
n nz z z 

 

          H I h h I h h 
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n
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 
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Here K  is the ( n n ) user-defined gain matrix that has to be chosen such that the steady 
state error is zero. It can be seen from (17) and (37) that the user-defined gain matrix K  is 
employed to ensure the incorporation of the integral action into the design (i.e. (1)sq  in 
equation (37) equal to zero) [5]. 
where Tn   and hn ~  represents the degree of the polynomials T  and H , respectively. 

Using equations(33) and (37) and rearranging, we obtain: 
 

 k
s z    q CT K H VB  (41) 

 

It can be seen from (17) and (41) that in order to ensure that sq  involves ( )(i.e. (1)sq  in 
equation (37) equal to zero), we set: 
 

 (1) (1) (1) (1) (1) 0s     q C T K H VB  (42) 
 

The above equation (42) can be satisfied by setting: 
 

 1 1[ (1) (1)] ( (1) (1)) [ (1)] (1)    K C T H VB C VB  (43) 
 

It can be seen from equation (36) that the closed loop poles will be placed in the desired 
locations if we assume the following:  
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The new implicit multivariable pole-zero placement controller block diagram is shown in 
Figure (1a). 
The implicit pole-zero placement controller illustrated in Figure (1a) is now extended to 
combine the advantages of both PID control and pole-zero placement control. In order to 
show the inherent incorporation of the PID control explicitly in our design, the polynomial 

sq  in equation (17) must be split into an integral action (  ) part and a pole-placement 

compensator sQ . 

We can easily compute sq  from equation (17) as follows: 
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Fig. (1a). New implicit multivariable pole-zero placement controller. 
 
If we assume that the degree of 1( )s zF  is equal to 2, then equation (31) becomes: 
 
 1 2

0 1 2 0( ) [ ( ) ( )s s s st z z t        Q u H V F F F K w  

 1 2
0 1 2( ) ( )]s s sz z t    V F F F y  (46) 

 
The controller parameters 0K , sQ  and 1( )s zF  in the above equation (46) are obtained 
from the equations (44), (46) and (33) respectively. 
The implicit pole-zero placement control law given by equation (46) is shown in Figure (1b). 
It can be seen from the above equation (46) and Figure (1b) that the pole-zero placement 
controller can be represented by an equivalent controller consisting of a PID controller plus 
three compensators labelled as compensator 1, compensator 2 and compensator 3 in the 
Figure (1b). The first compensator is used to ensure that at steady state, the output signal 
tracks the set point. The compensator 2 is used to achieve pole-placement control and 
compensator 3 is used to achieve zero-placement. 
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 (1) (1) T H  (38) 
 

The above equation can easily be satisfied by selecting T  and H  such that [5]: 
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Here K  is the ( n n ) user-defined gain matrix that has to be chosen such that the steady 
state error is zero. It can be seen from (17) and (37) that the user-defined gain matrix K  is 
employed to ensure the incorporation of the integral action into the design (i.e. (1)sq  in 
equation (37) equal to zero) [5]. 
where Tn   and hn ~  represents the degree of the polynomials T  and H , respectively. 

Using equations(33) and (37) and rearranging, we obtain: 
 

 k
s z    q CT K H VB  (41) 

 

It can be seen from (17) and (41) that in order to ensure that sq  involves ( )(i.e. (1)sq  in 
equation (37) equal to zero), we set: 
 

 (1) (1) (1) (1) (1) 0s     q C T K H VB  (42) 
 

The above equation (42) can be satisfied by setting: 
 

 1 1[ (1) (1)] ( (1) (1)) [ (1)] (1)    K C T H VB C VB  (43) 
 

It can be seen from equation (36) that the closed loop poles will be placed in the desired 
locations if we assume the following:  
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The new implicit multivariable pole-zero placement controller block diagram is shown in 
Figure (1a). 
The implicit pole-zero placement controller illustrated in Figure (1a) is now extended to 
combine the advantages of both PID control and pole-zero placement control. In order to 
show the inherent incorporation of the PID control explicitly in our design, the polynomial 

sq  in equation (17) must be split into an integral action (  ) part and a pole-placement 

compensator sQ . 

We can easily compute sq  from equation (17) as follows: 
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Fig. (1a). New implicit multivariable pole-zero placement controller. 
 
If we assume that the degree of 1( )s zF  is equal to 2, then equation (31) becomes: 
 
 1 2
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 1 2
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The controller parameters 0K , sQ  and 1( )s zF  in the above equation (46) are obtained 
from the equations (44), (46) and (33) respectively. 
The implicit pole-zero placement control law given by equation (46) is shown in Figure (1b). 
It can be seen from the above equation (46) and Figure (1b) that the pole-zero placement 
controller can be represented by an equivalent controller consisting of a PID controller plus 
three compensators labelled as compensator 1, compensator 2 and compensator 3 in the 
Figure (1b). The first compensator is used to ensure that at steady state, the output signal 
tracks the set point. The compensator 2 is used to achieve pole-placement control and 
compensator 3 is used to achieve zero-placement. 
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From equation (33) it is clear that a PI controller is achieved if the polynomial 1( )zA  is of 

order 1, whereas, a PID controller is achieved if 1( )zA  is of order 2. 
A pure PI/PID control is achieved if these three compensators are switched off.  
The algorithm for the pole-zero placement controller can then be summarised as follows: 
Step 1. Select the desired closed-loop system poles and zeros polynomial matrices, 1( )zT  

and 1( )zH  respectively, and select the user-defined gain matrix V . 
Step 2. Read the new values of the output ( )ty , the control input ( )tu  and reference signal 

( )tw  

Step 3. Estimate the process parameters Â , B̂ , and Ĉ  using the linear least squares 
algorithm. 

Step 4. Set 1 1ˆ( ) ( )s z z  F A . 
Step 5. Compute 0K  and K  using equations (44) and (43), respectively. 

Step 6. Compute ˆ
sq  using equation (41). 

Step 7. Apply the control law using equation (31). 
Steps 2 to 7 are repeated for every sampling instant. 

 
3 Simulation results 

The objective of this section is to study the performance and the robustness of the proposed 
multivariable pole-zero placement controller.  
Two simulation examples are carried out in order to demonstrate the ability of the proposed 
algorithm to locate the closed loop poles and zeros at their pre-specified locations under set 
point changes. The simulation study also includes an investigation of the influence of the 
load disturbances and stochastic disturbances on the system. In all performed simulations 
the least squares estimator has been employed and 800 samples are used with a set point 
change every 100 sampling instants. 
In order to demonstrate the closed loop performance of the implicit controller we arrange 
manually (for reason of comparison) the controller to work in three control modes, namely 
as a PID pole-placement controller, a PID pole-zero placement controller and as a PID self-
tuning controller as described below: 
a) From 0th up to 250th sampling time, the implicit PID pole-placement controller is selected 
to operate on-line. 
b) The Implicit PID pole-zero placement controller is switched on from 251st to 550th 
sampling times. 
c) The conventional PID self-tuning controller is switched on from 551st to 800th sampling 
time. 
Two case studies are considered in this section: a two-input two-output water bath system 
and a simulated non-minimum phase system.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1b). Novel implicit multivariable PID pole-zero placement controller. 
 
3.1 Case study 1: Two-input Two-output Water Bath System Simulation results 
The algorithm proposed in sections (2.2) was applied to a two-input two-output water bath 
treated previously by Yusof et al. [2, 13] and Zayed et al. [4, 10, 11]. The water bath system is 
shown in Figure (2). The water bath is an example of an important component in many 
industrial chemical processes. The control objective is to bring the temperature of the water 
or some chemical product in the bath to the desired set-points as accurately as possible. 
The discrete model of the water bath system can be written as [2, 10, 11]:  
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and the sample time = 30 sec. 
The simulation was performed over 800 samples (400 minutes) under set point 
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ÂB̂Ĉ
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From equation (33) it is clear that a PI controller is achieved if the polynomial 1( )zA  is of 

order 1, whereas, a PID controller is achieved if 1( )zA  is of order 2. 
A pure PI/PID control is achieved if these three compensators are switched off.  
The algorithm for the pole-zero placement controller can then be summarised as follows: 
Step 1. Select the desired closed-loop system poles and zeros polynomial matrices, 1( )zT  

and 1( )zH  respectively, and select the user-defined gain matrix V . 
Step 2. Read the new values of the output ( )ty , the control input ( )tu  and reference signal 

( )tw  

Step 3. Estimate the process parameters Â , B̂ , and Ĉ  using the linear least squares 
algorithm. 

Step 4. Set 1 1ˆ( ) ( )s z z  F A . 
Step 5. Compute 0K  and K  using equations (44) and (43), respectively. 

Step 6. Compute ˆ
sq  using equation (41). 

Step 7. Apply the control law using equation (31). 
Steps 2 to 7 are repeated for every sampling instant. 

 
3 Simulation results 

The objective of this section is to study the performance and the robustness of the proposed 
multivariable pole-zero placement controller.  
Two simulation examples are carried out in order to demonstrate the ability of the proposed 
algorithm to locate the closed loop poles and zeros at their pre-specified locations under set 
point changes. The simulation study also includes an investigation of the influence of the 
load disturbances and stochastic disturbances on the system. In all performed simulations 
the least squares estimator has been employed and 800 samples are used with a set point 
change every 100 sampling instants. 
In order to demonstrate the closed loop performance of the implicit controller we arrange 
manually (for reason of comparison) the controller to work in three control modes, namely 
as a PID pole-placement controller, a PID pole-zero placement controller and as a PID self-
tuning controller as described below: 
a) From 0th up to 250th sampling time, the implicit PID pole-placement controller is selected 
to operate on-line. 
b) The Implicit PID pole-zero placement controller is switched on from 251st to 550th 
sampling times. 
c) The conventional PID self-tuning controller is switched on from 551st to 800th sampling 
time. 
Two case studies are considered in this section: a two-input two-output water bath system 
and a simulated non-minimum phase system.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1b). Novel implicit multivariable PID pole-zero placement controller. 
 
3.1 Case study 1: Two-input Two-output Water Bath System Simulation results 
The algorithm proposed in sections (2.2) was applied to a two-input two-output water bath 
treated previously by Yusof et al. [2, 13] and Zayed et al. [4, 10, 11]. The water bath system is 
shown in Figure (2). The water bath is an example of an important component in many 
industrial chemical processes. The control objective is to bring the temperature of the water 
or some chemical product in the bath to the desired set-points as accurately as possible. 
The discrete model of the water bath system can be written as [2, 10, 11]:  
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1)  1( )tw  changes from 060 C  to 080 C  and from 080 C  to 060 C . 

2)  2 ( )tw  changes from 035 C  to 055 C  and from 055 C  to 035 C .  

In each sampling instant the parameter estimations 1Â  and 0B̂  are estimated using the 
least squares estimator and the steps summarised in section (2) are followed.  
Note that, by selecting the pre-filter polynomial matrix 1( )d zP  to be of order one, a PI self-
tuning controller is obtained. 
The user-defined gain and the pre-filter polynomial matrices were respectively selected as: 
 

1

2

V 0 0.7 0
0 V 0 0.8

   
    
   

V , 
1

1 1( )d dz z  P I P  and 
1

1 1( )n nz z  P I P . 

where,  

1

1 0.8 0
( )

0 0.9d z
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   
P  and 

1

1 0.3 0
( )

0 0.4n z
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   
P . 

 
The desired closed loop poles polynomial matrix ( T ) and the desired zero-placement 
polynomial matrix ( H ) were selected as follows: 
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Fig. (2). A two channel water bath system 
 

  Heater1 

  Adiabatic wall 

  Heater2 

    )(2 ty   
temperature  
lower layer 

     )(1 ty  
temperature  
upper layer Channel 1 

Channel 2 

)(1 tu  

)(2 tu  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (3a). The outputs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (3b). The control inputs  
 
The outputs and the control inputs of the multiple controller are respectively shown in the 
Figures (3a) and (3b). 
It is clear from these Figures (3a) and (3b) that, the transient response is significantly shaped 
by the choice of the polynomial T  when either a PI pole-placement controller or a PI pole-
zero placement controller is used. It can also clearly be seen from Figure (3b) that excessive 
control action, which resulted from set-point changes, is tuned most effectively when the 
new implicit PI zero-pole placement controller is on-line (during the sampling interval  
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1)  1( )tw  changes from 060 C  to 080 C  and from 080 C  to 060 C . 

2)  2 ( )tw  changes from 035 C  to 055 C  and from 055 C  to 035 C .  

In each sampling instant the parameter estimations 1Â  and 0B̂  are estimated using the 
least squares estimator and the steps summarised in section (2) are followed.  
Note that, by selecting the pre-filter polynomial matrix 1( )d zP  to be of order one, a PI self-
tuning controller is obtained. 
The user-defined gain and the pre-filter polynomial matrices were respectively selected as: 
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V 0 0.7 0
0 V 0 0.8

   
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V , 
1

1 1( )d dz z  P I P  and 
1

1 1( )n nz z  P I P . 

where,  
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0 0.4n z
 
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P . 

 
The desired closed loop poles polynomial matrix ( T ) and the desired zero-placement 
polynomial matrix ( H ) were selected as follows: 
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Fig. (3b). The control inputs  
 
The outputs and the control inputs of the multiple controller are respectively shown in the 
Figures (3a) and (3b). 
It is clear from these Figures (3a) and (3b) that, the transient response is significantly shaped 
by the choice of the polynomial T  when either a PI pole-placement controller or a PI pole-
zero placement controller is used. It can also clearly be seen from Figure (3b) that excessive 
control action, which resulted from set-point changes, is tuned most effectively when the 
new implicit PI zero-pole placement controller is on-line (during the sampling interval  
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251-550). Also note that during the last 250 samples (551-800 sampling times), where the 
conventional self tuning PI is operating, small oscillations can be seen in the control input 
and closed loop output, hence exhibiting the worst performance as expected, due to its 
inherent limitations. The other disadvantage of the self-tuning PID controller is that the 
tuning parameters must be selected using a trial and error procedure. The performance of 
the conventional PI controller can be improved by fine adjusting the user defined 
polynomial matrices 1( )n zP , 1( )d zP  and gain matrix V .  
The following simulation experiment investigates the effect of the user-defined parameter V 
on the response of the closed loop system when the PI multiple-controller is used. 

 
3.1.1 Investigating the Influence of the Gain V  on the Closed-Loop Performance 
In order to see the effect of the user-defined gain on all controllers (the PI controller, PI 
pole-placement controller and PI pole-zero placement controller), the gain matrix V was 

changed  from 
0.7 0
0 0.8

 
  
 

V  to 
2 0
0 0.8
 

  
 

V   (only 1V  was increased). The  outputs  

and the control inputs are respectively shown in the Figures (4a) and (4b). 
It is clear from these Figures (4a) and (4b) that increasing only the gain 1V  influences the 
outputs 1( )y t  and 2 ( )y t , when the PI controller is used, whereas the desired outputs are 
obtained (as expected) when the implicit PI pole-placement or the implicit PI pole-zero 
placement controllers is turned on. It can clearly be seen from Figure (4a) that the control 
action 1u  is increased. 
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251-550). Also note that during the last 250 samples (551-800 sampling times), where the 
conventional self tuning PI is operating, small oscillations can be seen in the control input 
and closed loop output, hence exhibiting the worst performance as expected, due to its 
inherent limitations. The other disadvantage of the self-tuning PID controller is that the 
tuning parameters must be selected using a trial and error procedure. The performance of 
the conventional PI controller can be improved by fine adjusting the user defined 
polynomial matrices 1( )n zP , 1( )d zP  and gain matrix V .  
The following simulation experiment investigates the effect of the user-defined parameter V 
on the response of the closed loop system when the PI multiple-controller is used. 

 
3.1.1 Investigating the Influence of the Gain V  on the Closed-Loop Performance 
In order to see the effect of the user-defined gain on all controllers (the PI controller, PI 
pole-placement controller and PI pole-zero placement controller), the gain matrix V was 

changed  from 
0.7 0
0 0.8

 
  
 

V  to 
2 0
0 0.8
 

  
 

V   (only 1V  was increased). The  outputs  

and the control inputs are respectively shown in the Figures (4a) and (4b). 
It is clear from these Figures (4a) and (4b) that increasing only the gain 1V  influences the 
outputs 1( )y t  and 2 ( )y t , when the PI controller is used, whereas the desired outputs are 
obtained (as expected) when the implicit PI pole-placement or the implicit PI pole-zero 
placement controllers is turned on. It can clearly be seen from Figure (4a) that the control 
action 1u  is increased. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (4a). The outputs  
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Fig. (5a). The outputs 
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It can obviously be seen from the above Figures (5a) and (5b) that decreasing only the gain 
1V  influences the outputs 1( )y t  and 2 ( )y t , when the PI controller is used, whereas the 

demanded outputs are achieved when the PI pole-placement or PI pole-zero placement is 
turned on. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (5b). The control inputs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (6a). The outputs 
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The gain V was further changed from 0.1 0
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V  (only 2V  was changed). 

The outputs and the control inputs are respectively shown in the Figures (6a) and (6b). 
We can clearly see from the Figures (6a) and (6b) that changing the gain 2V  affects the 
outputs 1( )y t  and 2 ( )y t  only if the PI controller is used, whereas the desired outputs are 
obtained when either the implicit PI pole-placement controller or implicit PI pole-zero 
placement controller is used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (6b). The control inputs 
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locations. 
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It can obviously be seen from the above Figures (5a) and (5b) that decreasing only the gain 
1V  influences the outputs 1( )y t  and 2 ( )y t , when the PI controller is used, whereas the 

demanded outputs are achieved when the PI pole-placement or PI pole-zero placement is 
turned on. 
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We can clearly see from the Figures (6a) and (6b) that changing the gain 2V  affects the 
outputs 1( )y t  and 2 ( )y t  only if the PI controller is used, whereas the desired outputs are 
obtained when either the implicit PI pole-placement controller or implicit PI pole-zero 
placement controller is used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (6b). The control inputs 
 
It is clear from the previous figures that changing either 1V  or 2V  influences the closed loop 
system responses if the conventional self-tuning PI controller is used.  
Excessive changes of either 1V  or 2V  will produce an unstable closed loop system if the PI 
self-tuning is used.  
The gain matrix V has no influence on the closed system if the PI based Pole-zero placement 
controller is used, since the controller parameters change automatically in response to the 
change of the gain matrix V in order to place the closed loop system poles at pre-specified 
locations. 

 
3.1.2 Investigating the Influence of the load disturbances on the Closed Loop 
Performance Using implicit Controller 
The next task is to see the effect of the load disturbances on the closed system when the 
implicit PI pole zero placement for MIMO case is used. Artificial load disturbances of values 
8oC and 5.5oC (10% of set point values) were added respectively to the outputs 1( )y t  and 

2 ( )y t , from the 350th sampling interval to 800th sampling interval.  











1.00
01.0

V , 












4.00
03.0

1nP , 














9.00
08.0

1dP , 














6.00
05.0

1T  and T2 










0 0
0 0

. 











8.00
09.0~

1h  and 









00
00~

2h . 

0 100 200 300 400 500 600 700 800
-60

-40

-20

0

20

40

60

PI pole- 
placement 
controller 

PI pole-zero 
placement 
controller 

PI controller 

No. of samples 

1u  

2u  

u(t) 

www.intechopen.com



Modelling, Simulation and Identiication170

The two controller set points were both kept constant at values of 55oC and 80oC 
throughout. The outputs and the control inputs for PI pole-zero placement are shown in the 
Figures (7a) and (7b) respectively.  
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polynomial matrix T  was fixed as before and only the closed loop zeros polynomial 
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1 2( ) [ (1)] ( )z z z     H h I h h    was changed three times as follows: 
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The outputs and the control inputs are shown in the Figures (8a), (8b) and (8c), respectively.  
It is clear from the Figures (8a), (8b) and (8c) that changing the polynomial H   affects 
 the closed loop system performance. Excessive control input results from selecting 
unsuitable H .  
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The two controller set points were both kept constant at values of 55oC and 80oC 
throughout. The outputs and the control inputs for PI pole-zero placement are shown in the 
Figures (7a) and (7b) respectively.  
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The outputs and the control inputs are shown in the Figures (8a), (8b) and (8c), respectively.  
It is clear from the Figures (8a), (8b) and (8c) that changing the polynomial H   affects 
 the closed loop system performance. Excessive control input results from selecting 
unsuitable H .  
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Fig. (8c). The control input 

 
3.1.4 Investigating the Influence of the Polynomial T  on the Closed loop 
Performance Using Implicit Controller 
In order to see the effect of the desired closed loop poles polynomial, on the closed loop 
system performance, the implicit PI pole-zero placement was switched on from 0t  to 

800t  and the zero placement polynomial matrix 1 1
1[ ] ( )z   H I h I h   was fixed, 

whereas, the polynomial matrix 1 1 2
1 2( )z z z    T I T T  was changed three times as 

follows: 
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The polynomial h  is selected as follows: 
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0 0.9
z z  
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 

h I  

The outputs and the control inputs are shown in the Figures (9a) and (9b) respectively. 
It clear from the Figures (9a) and (9b) that the performance of the closed loop system is 
affected by the changes in the polynomial T . 
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3.2 Case study 2: Non-minimum Phase System 
The implicit PID based pole-zero placement for MIMO systems proposed in section (2.2) is 
applied to the following MIMO plant, originally introduced by Prager and Wellstead (1980)  
and treated previously by Zayed  et al.(2004) : 
 
 1 2 1 1 1

1 2 0 1 1( ) ( ) ( ) ( ) ( ) ( )z z t z z t z t         I A A y B B u I C  (50) 
where: 

1
1.4 0.2
0.1 0.9

  
    

A , 2
0.48 0.1

0 0.2
 

  
 

A , 0
1 0
0 0
 

  
 

B , 1
1.5 1
0 1

 
  
 

B , 1
0.5 0

0.1 0.3
 

   
C  

and ( )t  is a white noise vector sequence with zero mean and variance 
0.1 0
0 0.1

 
   

 
R . 

Notice that the plant is a non-minimum phase system and also has different time delays in 
the two channels.  
The set point )(tw  changes every 100 samples as follows: 

1. )(1 tw  changes from 5 to 10 and from 10 to 5. 

2. )(2 tw  changes from 15 to 20 and from 20 to 15. 
The user-defined gain and the pre-filter polynomials were respectively selected as: 

1

2

0 0.02 0
0 0 0.04

V
V

   
    
   

V , 
1

1 1( )d dz z  P I P  and 
1

1 1( )n nz z  P I P  

 

where 
1

1 0.5 0
( )

0 0.6d z
 

   
P  and 

1

1 0.4 0
( )

0 0.4n z
 

   
P . 

It can clearly be seen from equations (13a), (15a), (15b) and (15c), that a PID controller is 
obtained if the polynomial matrix sF  is of second order. This can be achieved by selecting 

the pre-filter polynomial matrix 1( )d zP  to be of order one.  
The desired closed loop poles and zeros polynomial matrices are respectively selected as 
follows: 

10.5 0
0 0.6

z
 

    
T I  and 10.8 0

0 0.85
z

 
   

 
h I . 

The outputs and the control inputs are, respectively, shown in Figures (10a) and (10b). We 
can see clearly from these Figures (10a) and (10b) that the excessive control actions resulting 
from set point changes are further reduced (i.e. more effectively tuned) when the new PID 
pole-zero placement controller is on line (during thesampling interval 251-550). Small 
oscillations can also be seen in the control inputs and closed loop system outputs during the 
last 250 samples (551-800 sampling times), where the conventional self-tuning PID is 
operating. The performance of the conventional PID controller can be further improved by 
adjusting the gain matrix V  and the user defined polynomial matrices dP  and nP . 
However these tuning parameters must be selected using a trial and error procedure 
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1[ ] ( )z   H I h I h   was fixed, 
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follows: 

 

1 2

1 2

1 2

.7 0 0 0
0 250 +

0 -1.65 0 0.7870

0.8 0 0 0
250 550 +

0 0.95 0 0

1.85 0 0.887 0
550 800 +

0 0.9 0 0

t z z

t z z

t z z

 

 

 

   
       

   
   

          
   

          

T I

T I

T I

 (49) 

The polynomial h  is selected as follows: 
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The outputs and the control inputs are shown in the Figures (9a) and (9b) respectively. 
It clear from the Figures (9a) and (9b) that the performance of the closed loop system is 
affected by the changes in the polynomial T . 
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3.2 Case study 2: Non-minimum Phase System 
The implicit PID based pole-zero placement for MIMO systems proposed in section (2.2) is 
applied to the following MIMO plant, originally introduced by Prager and Wellstead (1980)  
and treated previously by Zayed  et al.(2004) : 
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and ( )t  is a white noise vector sequence with zero mean and variance 
0.1 0
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 
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Notice that the plant is a non-minimum phase system and also has different time delays in 
the two channels.  
The set point )(tw  changes every 100 samples as follows: 

1. )(1 tw  changes from 5 to 10 and from 10 to 5. 

2. )(2 tw  changes from 15 to 20 and from 20 to 15. 
The user-defined gain and the pre-filter polynomials were respectively selected as: 
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It can clearly be seen from equations (13a), (15a), (15b) and (15c), that a PID controller is 
obtained if the polynomial matrix sF  is of second order. This can be achieved by selecting 

the pre-filter polynomial matrix 1( )d zP  to be of order one.  
The desired closed loop poles and zeros polynomial matrices are respectively selected as 
follows: 
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The outputs and the control inputs are, respectively, shown in Figures (10a) and (10b). We 
can see clearly from these Figures (10a) and (10b) that the excessive control actions resulting 
from set point changes are further reduced (i.e. more effectively tuned) when the new PID 
pole-zero placement controller is on line (during thesampling interval 251-550). Small 
oscillations can also be seen in the control inputs and closed loop system outputs during the 
last 250 samples (551-800 sampling times), where the conventional self-tuning PID is 
operating. The performance of the conventional PID controller can be further improved by 
adjusting the gain matrix V  and the user defined polynomial matrices dP  and nP . 
However these tuning parameters must be selected using a trial and error procedure 
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Fig. (10a). The outputs 
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Fig. (10b). The control inputs 

 
3.2.1 Investigating the Influence of the load disturbances on the Closed Loop 
Performance Using the Implicit Controller  
The next task is to investigate the influence of the load disturbances on the closed loop 

system. Constant load disturbances of value 
1
1
 
 
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 were added to the outputs from the 350th 

instant to 800th sampling time instant. The two controller set points were both kept constant 
at values of 10 and 20 throughout. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (11a). The outputs 
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3.2.1 Investigating the Influence of the load disturbances on the Closed Loop 
Performance Using the Implicit Controller  
The next task is to investigate the influence of the load disturbances on the closed loop 

system. Constant load disturbances of value 
1
1
 
 
 

 were added to the outputs from the 350th 
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The outputs and the control inputs for each of the three controller modes (namely PID pole-
placement, PID pole-zero placement and the PID controller modes) are shown in the Figures 
(11a) to (11b) respectively.  
It can clearly be seen from all the figures (11a) and (11b) that at steady state, the proposed 
PID based pole-zero placement controller has the ability to effectively regulate constant load 
disturbances to zero.  
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controller through the flick of a switch. The switching decision between the different PID 
controllers can be done manually or by using stochastic learning Automata. 
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