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1. Introduction      

Signal processing techniques have been widely used for analyzing power signals for the 
purpose of automatic power quality (PQ) disturbance recognition. Among the different 
signal processing techniques used  in extracting features of disturbances from a large 
number of power signals, the most widely used techniques are the fast Fourier transform 
(FFT) and  the windowed Fourier transform which comprises of  the short time Fourier 
transform (STFT) and the wavelet transform (Moussa et al., 2004). The FFT is ideal for 
calculating magnitudes of the steady-state sinusoidal signals but it does not have the 
capability of coping with sharp changes and discontinuities in the signals. Thus, it cannot 
accurately detect the end of sustained events such as voltage sag, swell, transient and 
interruption. Although the modified version of the Fourier transform referred to as the STFT 
can resolve some of the drawbacks of the FFT, it still has some technical problems. In the 
STFT technique, its resolution is greatly dependent on the width of the window function in 
which if the window is of finite length, the technique covers only a portion of the signal, 
thus causing poor frequency resolution.  On the other hand, if the length of the window in 
the STFT is infinite so as to obtain a perfect frequency resolution, then all the time 
information will be lost.  Due to this reason, researchers have switched to wavelet transform 
from the STFT (Karami et al., 2000).   
Some of the well-known wavelet transforms are the continuous wavelet mechanism 
transform (CWT) and a modification of the CWT which is known as the S-transform. 
Although CWT based multiresolution analysis monitors the regions of interest closely which 
is short windows at high frequencies and longer windows at low frequencies, its accuracy is 
susceptible to noise and if a particular frequency of interest has not been extracted due to 
octave filter bands, there is a chance of misclassification. To overcome this problem, the S-
transform based multiresolution analysis using a variable window (Stockwell, 1996) offers 
significant advantage with a superior time-frequency localization property and yields 
amplitude and phase spectrum of the PQ event signals in the presence of noise. 
The S-transform is based on a moving and scalable localizing Gaussian window and has 
characteristics superior to the CWT. It is fully convertible from the time domain to the two-
dimensional frequency translation domain and to the familiar Fourier frequency domain. 
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The amplitude-frequency–time spectrum and the phase–frequency–time spectrum are both 
useful in defining local spectral characteristics. The superior properties of the S-transform 
are due to the fact that the modulating sinusoids are fixed with respect to the time axis while 
the localizing scalable Gaussian window dilates and translates. As a result, the phase 
spectrum is absolute in the sense that it is always referred to as the origin of the time axis or 
the fixed reference point (Stockwell et al., 1996). A significant improvement in the detection 
and localization of PQ disturbances can be obtained from the S-transform (Chilukuri & 
Dash, 2004). 
In this chapter, the background theories of the FFT, CWT and S-transform are first 
presented.  The application of CWT and S-transform for detection of single and multiple PQ 
disturbances, prediction of incipient faults and prediction of voltage sag sources which may 
be due to utility or non-utility faults are  also described in this chapter.   

 
2. Fourier Transform Theory 

2.1 Fourier Series  
Most of the signals in practice are time domain signals in their raw format. That is whatever 
that signal is measuring, it is a function of time. However, the distinguished information is 
hidden in the frequency content of the signal. The frequency spectrum of a signal is basically 
the frequency components or spectral components of that signal.  The frequency spectrum of 
a signal indicates what frequencies exist in the signal. By analyzing a signal in time domain 
using the Fourier transform, the frequency-amplitude of that signal can be obtained 
(Langton, 2002).  
Distorted waveforms can be decomposed into a fundamental component and a set of 
harmonics using Fourier analysis which is based on the Fourier series principle. A 
continuous periodic function, x(t) has three parts, namely, a dc component, a fundamental 
sinusoidal and a series of higher order sinusoidal components  and can be expressed as, 
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2.2 Fourier Transform  
The Fourier transform of a continuous-time signal, x (t) is given by, 
 

  dtft2je)t(x)X(F 




     (7) 

 
and the  inverse of the transform is given by, 
 

 dXft2je)X(F)t(x 



    (8)           

 
The Fourier transform consists of two parts, namely the real and imaginary parts, given as, 
 
 )()()( XimFXreFXF         (9) 
where, 

  



 dt)ft2cos()t(x)X(reF     (10) 

   



 dt)ft2sin()t(x)X(imF     (11) 

 
The magnitude and phase of the Fourier transform can be expressed as, 

 2
1

22 ]))(())([()( XimFXreFXF      (12) 

www.intechopen.com



Power Quality Disturbance Detection and Source  
Prediction Using Advanced Signal Processing Techniques 3

 

The amplitude-frequency–time spectrum and the phase–frequency–time spectrum are both 
useful in defining local spectral characteristics. The superior properties of the S-transform 
are due to the fact that the modulating sinusoids are fixed with respect to the time axis while 
the localizing scalable Gaussian window dilates and translates. As a result, the phase 
spectrum is absolute in the sense that it is always referred to as the origin of the time axis or 
the fixed reference point (Stockwell et al., 1996). A significant improvement in the detection 
and localization of PQ disturbances can be obtained from the S-transform (Chilukuri & 
Dash, 2004). 
In this chapter, the background theories of the FFT, CWT and S-transform are first 
presented.  The application of CWT and S-transform for detection of single and multiple PQ 
disturbances, prediction of incipient faults and prediction of voltage sag sources which may 
be due to utility or non-utility faults are  also described in this chapter.   

 
2. Fourier Transform Theory 

2.1 Fourier Series  
Most of the signals in practice are time domain signals in their raw format. That is whatever 
that signal is measuring, it is a function of time. However, the distinguished information is 
hidden in the frequency content of the signal. The frequency spectrum of a signal is basically 
the frequency components or spectral components of that signal.  The frequency spectrum of 
a signal indicates what frequencies exist in the signal. By analyzing a signal in time domain 
using the Fourier transform, the frequency-amplitude of that signal can be obtained 
(Langton, 2002).  
Distorted waveforms can be decomposed into a fundamental component and a set of 
harmonics using Fourier analysis which is based on the Fourier series principle. A 
continuous periodic function, x(t) has three parts, namely, a dc component, a fundamental 
sinusoidal and a series of higher order sinusoidal components  and can be expressed as, 
 

 )sin()cos()(
11

0 twbtwaatx n
n

nn
n

n 







     (1) 

where, 

  





2

2

)(1
T

T
n dttx

T
a

   (2) 

   dtnwttx
T

b

T

T
n )cos()(2 2

2




   (3) 

 

nw : frequency component which is given by   nf2wn   
n : harmonic component 
 
Fourier functions are symmetrical which are odd, even or half way symmetric. When the 
functions are odd, which means, x (t) is = -x (-t), then  na  and nb become, 

 

 0an     and    dt)nwtsin()t(x
T
4b

2
T

0
n   (4) 

 
In the case of even functions, that is x (t) = x (-t), na  and  nb become,  
 

 0bn        and     dt)nwtcos()t(x
T
4a

2
T

0
n    (5) 

 
In half wave symmetric function case, in which x (t) = -x (t+T/2), then, 
 

  0na      and    dt)nwtsin()t(x
T
8b

4
T

0
n      (6) 

 
2.2 Fourier Transform  
The Fourier transform of a continuous-time signal, x (t) is given by, 
 

  dtft2je)t(x)X(F 




     (7) 

 
and the  inverse of the transform is given by, 
 

 dXft2je)X(F)t(x 



    (8)           

 
The Fourier transform consists of two parts, namely the real and imaginary parts, given as, 
 
 )()()( XimFXreFXF         (9) 
where, 

  



 dt)ft2cos()t(x)X(reF     (10) 

   



 dt)ft2sin()t(x)X(imF     (11) 

 
The magnitude and phase of the Fourier transform can be expressed as, 

 2
1

22 ]))(())([()( XimFXreFXF      (12) 

www.intechopen.com



Modelling, Simulation and Identiication4

 

   ]
)X(reF
)X(imF[1tan)X(      (13) 

 
2.3 Sampling   
The sampling theory states that under a certain condition it is possible to recover with full 
accuracy the values intervening between regularly spaced samples. The condition is that the 
function should be band limited and have a Fourier transform that is nonzero over a finite 
range of the transform variable and zero elsewhere (Bracewell, 2000). The Fourier transform 
F(X) is a summation of discrete signals,  ( )x nt   and it is given by, 
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where, 

sf   : sampling frequency used to obtain the samples of a signal. 
According to the Nyquist–Shannon sampling theorem, the sampling rate is twice the highest 
frequency in a signal.  This theorem states that perfect reconstruction of a signal is possible 
when the sampling frequency is greater than twice the maximum frequency of a signal 
being sampled or equivalently, that the Nyquist frequency exceeds the highest frequency of 
a signal being sampled. If lower sampling rates are used, the original signal information 
may not be completely recoverable from the sampled signal (Shannon, 1998).  

 
2.4 Discrete Fourier Transform    
Discrete Fourier Transform (DFT) is a special case of the Fourier transform which converts 
time-domain sequence into an equivalent frequency domain sequence. The inverse DFT 
performs the reverse operation and converts frequency domain sequence into an equivalent 
time domain sequence. To find the Fourier transform of sampled and finite length signals, 
the DFT is used and it is given by, 
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where, 
[ ]x n : a sequence obtained by sampling the continuous signal ( )x n  

The frequency function, [ ]x n  is then given by, 
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2.5 Fast Fourier Transform    
The Fast Fourier Transform (FFT) is a mathematical algorithm used to reduce the calculation 
time as compared to using the DFT. It is a powerful algorithm used in signal processing 
analysis made in the twentieth century (Walker, 1996).  It is an efficient algorithm that is 
used for converting a time-domain signal into an equivalent frequency-domain signal, based 
on the DFT with fewer computations required. The FFT reduces the computational 
complexity from N  in DFT to N log N multiplications. In other words, the results of  FFT 
are the same as DFT, but the only difference is that the FFT algorithm is optimized to 
remove the redundant calculations. This means that  for a 1024-point, the FFT needs just 
10,240 operations as compared to 1,048,576 operations for the DFT.  FFT is still one of the 
most commonly used operations in digital signal processor and all modern signal 
processing to provide a frequency spectrum analysis (Chassaing, 2005). 
The FFT can be obtained from the DFT as follows,      
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Cooley and Tukey (1948) came up with a computational breakthrough of FFT which allows 
the computation of N point DFT as a function of only 2N instead of N2 . The FFT  can then be 
written as,                                       
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By separating ]n[x into its odd and even parts, the FFT is expressed as, 
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3. Continuous Wavelet Transform 

Wavelets are mathematical functions that divide data into different frequency components, 
and then study each component with a resolution matched to its scale. The fundamental 
idea behind wavelets is to analyze signal according to scale rather than frequency. The scale 
is defined as a frequency inverse. Wavelets have advantages over traditional Fourier 
methods in analyzing physical situations where the signal contains discontinuities and 
sharp spikes. Wavelet techniques can divide a complicated function into several simpler 
ones and study them separately. This property, along with fast wavelet algorithms which 
are comparable in efficiency to the FFT algorithms, makes the wavelet techniques very 
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attractive in analysis and synthesis problems. Different types of wavelets have been used as 
tools to solve problems in signal analysis, image analysis, medical diagnostics, geophysical 
signal processing, statistical analysis, pattern recognition, and many others. By using 
wavelet multiresolution analysis, a signal can be represented by a finite sum of components 
at different resolutions so that each component can be adaptively processed based on the 
objectives of the application. This capability of representing signals compactly and in several 
levels of resolutions is the major strength of the wavelet analysis. 
There are essentially two types of wavelet transforms, continuous wavelet transform (CWT) 
and discrete wavelet transform (DWT). The CWT type is usually preferred for signal 
analysis, feature extraction and detection tasks whereas the DWT type is more appropriate 
for performing some kind of data reduction. CWT uses a time-window function that 
changes with frequency. This adaptive time window function is derived from a prototype 
function known as the mother wavelet which is scaled and translated to provide 
information in the frequency and time domains, respectively (Poularikas, 2000).  Thus, a 
transformed signal is a function of two variables, the translation and scale parameters, 
respectively. The term wavelet means a small wave in which the smallness refers to the 
condition that this window or function is of finite length. The term mother implies a 
function with different region of support that is used in the transformation process.  In other 
words, the mother wavelet is a model for generating the window functions.  
The CWT of a continuous signal,  is expressed  in terms of wavelet coefficients,   for different 
values of scaling factor, s and translation factor, d,  as:                  
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where,  
x (t) : signal as a function of  time 
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Substituting (22) into (21), the CWT can be written as, 
 

  dt)
s
dt(*)t(x

s
1)d,s(xCWT 





    (23)     

                             
As for the scaling factor, large values of this factor  provide a broad time-width windowing 
function located in the low frequency domain.  On the other hand, small values of this factor  
provide a narrow time-width windowing function in the high frequency domain.  
The CWT has a filter-bank interpretation in which each wavelet basis function can be 
thought of as a filter through which the original signal is passed. Each filter, however, has a 
fixed relative bandwidth as opposed to the fixed absolute bandwidth in the  STFT 
(Poularikas, 2000).  

 

3.1 Understanding the Mother Wavelet  
All the wavelets are generated from a single basic wavelet  (t), the so-called mother wavelet, 
by scaling and translation: 
 

    (24) 
 
where,  
s : scale factor 

:translation factor  
 
The factor s-1/2 is for energy normalization across the different scales. The term mother 
implies that the functions with different region of support that are used in the 
transformation process are derived from one main function, or the mother wavelet. In other 
words, the mother wavelet is a prototype for generating the other window functions.  
Each mother wavelet has its own characteristics and will project different types of 
resolutions. The mother wavelets selected will serve as prototypes for all windows in the 
process. All the windows that are used are dilated and shifted versions of the mother 
wavelet functions. The common question commonly asked on WT is, which mother wavelet 
function generates the best resolution for detection of disturbances. There are different types 
of mother wavelet, namely, the Morlet, Meyer, Gaussian,  Mexican hat, Haar and 
Daubechies wavelets. The Morlet wavelet is commonly used for signal analysis and 
therefore it is used for analysis of power disturbances.   

 
4. S-transform Theory 

The S-transform produces a time-frequency representation of a time series. It uniquely 
combines a frequency-dependent resolution that simultaneously localizes the real and 
imaginary spectra. The basis functions for the S-transform are Gaussian modulated 
cosinusoids, so that it is possible to use intuitive notions of cosinusoidal frequencies in 
interpreting and exploiting the resulting time-frequency spectrum. With the advantage of 
fast lossless invariability from time domain to time-frequency domain, and back to the time 
domain, the usage of the S-transform is very analogous to the Fourier transform. In the case 
of non-stationary disturbances with noisy data, the S-transform provides patterns that 
closely resemble the disturbance type and, thus, requires a simple classification procedure. 
Furthermore, the S-transform can be derived from the CWT by choosing a specific mother 
wavelet and multiplying a phase correction factor. Thus, the S-transform can be interpreted 
as phase-corrected CWT (Lee & Dash, 2003).  The S–transform generates contours, which are 
suitable for classification by simple visual inspection unlike wavelet transform that requires 
specific methods like Standard-Multi resolution analysis (Jaya et al, 2004).  
By using a simple rule base or a neural network along with the features extracted from the 
S–transform contours, one can easily dispense with the visual inspection procedure of the S-
transform.  The derivation of S-transform from CWT is described as follows: 
The CWT of a function is defined as, 
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thought of as a filter through which the original signal is passed. Each filter, however, has a 
fixed relative bandwidth as opposed to the fixed absolute bandwidth in the  STFT 
(Poularikas, 2000).  

 

3.1 Understanding the Mother Wavelet  
All the wavelets are generated from a single basic wavelet  (t), the so-called mother wavelet, 
by scaling and translation: 
 

    (24) 
 
where,  
s : scale factor 

:translation factor  
 
The factor s-1/2 is for energy normalization across the different scales. The term mother 
implies that the functions with different region of support that are used in the 
transformation process are derived from one main function, or the mother wavelet. In other 
words, the mother wavelet is a prototype for generating the other window functions.  
Each mother wavelet has its own characteristics and will project different types of 
resolutions. The mother wavelets selected will serve as prototypes for all windows in the 
process. All the windows that are used are dilated and shifted versions of the mother 
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function generates the best resolution for detection of disturbances. There are different types 
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4. S-transform Theory 

The S-transform produces a time-frequency representation of a time series. It uniquely 
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of non-stationary disturbances with noisy data, the S-transform provides patterns that 
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as phase-corrected CWT (Lee & Dash, 2003).  The S–transform generates contours, which are 
suitable for classification by simple visual inspection unlike wavelet transform that requires 
specific methods like Standard-Multi resolution analysis (Jaya et al, 2004).  
By using a simple rule base or a neural network along with the features extracted from the 
S–transform contours, one can easily dispense with the visual inspection procedure of the S-
transform.  The derivation of S-transform from CWT is described as follows: 
The CWT of a function is defined as, 
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where, 
( , )w t d : mother wavelet  

 
The S-transform is obtained by multiplying the CWT with a phase factor as expressed 
below, 

  f2ie)d,(W)f,(S   (26) 
 
Substituting (25) into (26), the S-transform can be written as, 
 

 



 dtf2ie)d,t(w)t(h)f,(S    (27)     

 
where, 
d  : scale which can defined as inverse of f. 
 
The mother wavelet for this particular case is defined as, 
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


    (28) 

and can also be written as, 
 

  ft2ie)f,(G)f,t(w     (29) 
where, 

)f,(G  :  modulation function 
 
Considering the mother wavelet in (29), the S-transform written in terms of ( )h t  is defined 
as: 

 

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The modulation function )f,(G   is given by, 
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
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where  is a Gaussian window width which is given by, 
 

 

  
f
1T)f(    (32) 

 
Substituting (31) and (32) into (30), the final S-transform equation becomes,  
 

 dtft2ie2/2f2)t(e)t(h
2
f

)f,(S 


 



   (33) 

 
where, 
f: frequency 
t and  : time  
 
The S-transform distinguishes itself from the many time-frequency representations available 
by uniquely combining progressive resolution with absolutely referenced phase 
information. It is known that progressive resolution gives a fundamentally sounder time-
frequency representation (Daubechies, 1990). Referenced phase means that the phase 
information given by the S-transform is always referenced to time t = 0, which is also true 
for the phase given by the Fourier transform. This is true for each S-transform sample of the 
time-frequency space. This is in contrast to the CWT approach, where the phase of the 
wavelet transform is relative to the center in time of the analyzing wavelet. Thus, as the 
wavelet translates, the reference point of the phase translates. This is called “locally 
referenced phase” to distinguish it from the phase properties of the S-transform. From one 
point of view, local spectral analysis is a generalization of the global Fourier spectrum. 
However, the fundamental principle of S-transform analysis is that the time average of the 
local spectral representation should result identically in the complex-valued global Fourier 
spectrum (Stockwell, 2006). This leads to phase values of the local spectrum that are obvious 
and significant.  
The S-transform has unique properties in which it uniquely combines frequency dependent 
resolution with absolutely reference phase, so that the time average of the S-transform 
equals the Fourier spectrum. It simultaneously estimates the local amplitude spectrum and 
the local phase spectrum, whereas the CWT approach is only capable of probing the local 
amplitude and power spectrum. It independently probes the positive frequency spectrum 
and the negative frequency spectrum, whereas many wavelet approaches are incapable of 
being applied to a complex time series. It is sampled at the discrete Fourier transform 
frequencies unlike the CWT where sampling is done randomly (Stockwell, 2006).  

 
5. Application of Continuous Wavelet Transform for Power Quality 
Disturbance Detection 

The CWT program was written using the four mother wavelet functions as shown in 
Figures 1 to 4. Voltage sag signals were obtained from the utility PQ monitoring for the 
purpose of analysing the signals using the CWT with the four mother wavelets (Faisal, 
2009).  
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Fig. 1. Meyer Wavelet Function                               
 

 
Fig. 2. Mexican Hat Wavelet Function  
 

 
Fig. 3. Gauss Wavelet Function                                                     
 

 
Fig. 4. Morlet Wavelet Function  

 

5.1 CWT Analysis with the Meyer Wavelet Function 
Visually, using the Meyer wavelet function (Figure 1) in the CWT analysis, voltage sags can 
be easily detected as shown in Figure 5. The Meyer wavelet gives high values of CWT 
coefficients, around 4 to 5. These high value coefficients will enable a clear distinction to be 
observed in the detection of voltage sags. It can  also  be used  in the extraction of the CWT 
features for the classification of disturbances. In the feature extraction process, the standard 
deviation and the mean of the amplitude would be calculated and later used in the 
classification of the power quality disturbances. The scale axis which is actually the 
frequency inverse correctly identifies the existence of the system frequency of 50 Hz which 
is located at a high scale of 20. 
 

 
Fig. 5. Analysis of voltage sag using the Meyer wavelet 

 
5.2 CWT Analysis with the Mexican Hat Wavelet Function 
The results of CWT analyses using the Mexican Hat wavelet show that the CWT coefficients 
are with values around 4 as shown in Figure 6.  From visual inspection, the signature that 
depicts a voltage sag event are not obvious by using the Mexican hat wavelet function as 
compared to using the Meyer wavelet. 
 

 
Fig. 6. Analysis of voltage sag  using the Mexican Hat Wavelet 
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5.3 CWT Analysis with Gauss Wavelet Function 
The results of CWT analyses using the Gauss wavelet function are as shown in Figure 7.  
Similar to the Meyer wavelet function, the Gauss wavelet enables one to detect the signature 
of voltage sag easily. The Gauss wavelet gives the highest values of CWT coefficients, that 
is, around 6. These high value coefficients will enable a very clear distinction to be observed 
in the detection of voltage sags. 
 

 
Fig. 7. Analysis of voltage sag using the Gauss Wavelet 

 
5.4 CWT Analysis with Morlet Wavelet Function 
Similar to the Meyer and  Gauss wavelet functions, the Morlet wavelet enables one to 
visualize the signature of voltage sag easily. The Morlet wavelet gives lowest values of the 
CWT coefficients, that is, around 3. However, the low coefficient values will not give a very 
clear distinction in the extraction of the features for the purpose of disturbance classification.  
The contours of the CWT are also not very smooth and therefore such information may be 
misleading because the signature of rugged surface highlights the existence of harmonics. In 
this study, no harmonics exist in the signal. 
 

 
Fig. 8. Analysis of voltage sag using the Morlet Wavelet 

 

From the analyses done on the twenty voltage sag data, it is confirmed that the best result in 
the detection of voltage sag will depend on the selection of the mother wavelet. The 
selection of a wavelet that closely matches the signal is important in the detection of the 
waveform. From the findings, it is noted the Gauss wavelet function gives the most accurate 
detection of voltage sag. The resolution of the contour is very clear and the high coefficient 
amplitudes are useful for the extraction of voltage sag features to be used in the power 
quality disturbance classification. 

 
6. Using the S-transform for Detection of Voltage Disturbances and Incipient 
Faults in Power Distribution Networks  

To illustrate the use of the S-transform for voltage disturbance and incipient fault detection, 
a case study at an industrial plant in Malaysia is presented (Faisal et al, 2009). The plant had 
complained of frequent occurrences of nuisance tripping and damages to it’s production 
equipment for the last one year and put the blame on the power utility. To understand the 
problem, the power utility installed a power quality recorder in the plant for three months 
and the recorded data were then analyzed by this new technique. From the analysis of 
results, 3 voltage sags (Figure 9), 3 notches (Figure 10) and 12 unknown events (Figure 11) 
were detected. In Figure 9, the S-transform contour shows the existence of voltage sags in 
three phases while in Figure 10, minor notches in the S-transform contour are detected.  The 
causes of the voltage sags were due to lightning strokes on the utility power lines. The cause 
of the notches  (Figure 10) was found out after implementing a thermal scan at the main 
switch board conductors in which the cause was due to lose connection at the blue phase 
conductor. The results in Figure 11, showed frequent occurrences of incipient faults at the 
red phase of a factory power supply. Overall, 12 events were recorded at the red phase.  
Locating faults based solely on substation measurements has always been time consuming 
and difficult, and locating subtle incipient faults is even more challenging because of the low 
magnitude signals often involved. The signature of the change in the feeder current due to 
incipient fault is very delicate and difficult to detect. However, based on analysis performed 
in this study, the S-transform is able to perform efficient detection and isolation for both 
incipient and abrupt faults in power supply systems. Thus, the existence of the incipient 
fault is only detectable by using the S-transform.  
 

 
Fig. 9. Detection of multiple voltage sags using S-transform  
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Fig. 10. Detection of notches using S-transform 
 

 
Fig. 11. Detection of incipient fault at the red phase using S-transform 

 
7. Using the S-transform for Voltage Sag Source Prediction    

The identification of sources of disturbances is very critical in power quality diagnosis so as 
to provide the necessary information to customers for resuming back their operations. A 
disturbance source can originate from either inside a facility or outside in a distribution 
network.  One method of predicting the source of voltage sag at a monitoring point is by 
determining whether the source is from either upstream or downstream. The concept of 
automatic sag source prediction is shown in Figure 12. A power quality recorder (PQR) is 
installed at point M in a power supply network.  If voltage sag occurs in the network, the 
PQR will detect and record the disturbance depending upon its voltage threshold setting 
which is based on the definition of voltage sags. The source of sag can appear either 

 

upstream or downstream with respect to point M. Upstream side can be defined as the side 
that supplies the fundamental power into the monitoring point at steady state conditions 
whereas the downstream side is defined as the side that leaves the fundamental power from 
the monitoring point. 
 
 
 
 
 
 
 
Fig. 12. Concept of upstream and downstream voltage sags  
 
Several methods have been developed for performing sag source prediction (Polajžer, 2007). 
The obtained results showed that all the existing methods do not work well, particularly in 
cases of asymmetrical voltage sags due to upstream events and therefore further 
development is still needed to increase the degree of sensitivity and confidence in the 
existing techniques for performing automatic sag source prediction. Here, a novel method 
based on the S-transform is proposed for improving the sensitivity of the sag source 
prediction (Faisal & Mohamed, 2009). The S-transform is used for producing the time-
frequency representation for the voltage and current waveforms. The time-averaged 
amplitudes and spectral contents for all these signals are extracted from the time-frequency 
values which are then used to determine the origin of voltage sags. 
In the proposed voltage sag source prediction method, the features that characterize both 
the voltage and current waveforms are extracted from the time and frequency resolutions of 
the S-transform. The output of the S-transform is an N x M matrix called the S-matrix whose 
rows pertain to the frequency and columns to time.  The S-transform will generate time 
frequency contours, which clearly display the disturbance patterns for ease of visual 
inspections. It will also generate the relevant contours for both voltage and current 
waveforms. From these contours, the values of the disturbance voltages, currents and 
powers are derived. 
 

 
Fig. 13. Plots of the S-matrix locus for voltage values 
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In this study, the first set of features is based on the maximum values for all the columns in 
the S-transform contours for voltages. Examples on the graphical representations of the 
maximum value plots for voltages are shown in Figure 13. The first rows showed the 
original waveforms for the voltage values. The plots in the second rows are the loci of the 
maximum values for voltage from the S-transform. Features can be extracted from these 
maximum value plots to characterize voltage sags and swells. 
The second sets of features are selected based on the maximum values for all the columns in 
the S-transform for currents and disturbance powers. The values are termed as S-transform 
maximum current (STMI) and S-transform disturbance power (STDP). Examples on the 
maximum value plots for currents and powers are shown in Figures 14 and 15. In Figure 14, 
the first rows showed the original waveforms for the current values. The plots in the second 
rows are the loci of the maximum values for currents from the S-transform. In Figure 15, the 
plots show the loci of the S-transform disturbance powers for each phase during the voltage 
disturbances. The disturbance powers are derived from the voltage and current contours of 
the S-transform. Features can also be extracted from the current and disturbance power 
plots to identify the origin of the disturbances. 
 

 
Fig. 14. Plots of the S-matrix locus for current values 
 

 
Fig. 15. Plots of the S-matrix locus for disturbance powers (downstream sag source) 
 
When faults occur either at the transmission system or distribution system, they typically 
draw energy from the power system. Energy is just the value of the power flow multiply 
with the specified duration. In Figures 14 and 15, the plots of both the current and 

 

disturbance power showed increase of the maximum values for both current and 
disturbance power during the disturbance. The increase of the maximum value plots for 
disturbance power during the disturbance will show that the origin of the disturbance is 
downstream.  
If voltage sag originates from upstream, the change in the current and power profile will 
show either reduction or minor increase. Example on plots for voltages, currents and 
disturbance powers due to upstream sag sources are shown in Figures 16, 17 and 18.   
 

 
Fig. 16.  S-matrix locus for voltages (upstream sag source) 
 

 
Fig. 17.  S-matrix locus for currents (upstream sag source) 
 

 
Fig. 18. Plots of the S-matrix locus for disturbance powers (upstream sag source) 
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the S-transform. Features can also be extracted from the current and disturbance power 
plots to identify the origin of the disturbances. 
 

 
Fig. 14. Plots of the S-matrix locus for current values 
 

 
Fig. 15. Plots of the S-matrix locus for disturbance powers (downstream sag source) 
 
When faults occur either at the transmission system or distribution system, they typically 
draw energy from the power system. Energy is just the value of the power flow multiply 
with the specified duration. In Figures 14 and 15, the plots of both the current and 

 

disturbance power showed increase of the maximum values for both current and 
disturbance power during the disturbance. The increase of the maximum value plots for 
disturbance power during the disturbance will show that the origin of the disturbance is 
downstream.  
If voltage sag originates from upstream, the change in the current and power profile will 
show either reduction or minor increase. Example on plots for voltages, currents and 
disturbance powers due to upstream sag sources are shown in Figures 16, 17 and 18.   
 

 
Fig. 16.  S-matrix locus for voltages (upstream sag source) 
 

 
Fig. 17.  S-matrix locus for currents (upstream sag source) 
 

 
Fig. 18. Plots of the S-matrix locus for disturbance powers (upstream sag source) 
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The S-transform disturbance power plots are used to indicate the origin of the disturbances 
from the monitoring point. If during a disturbance, the power flow shows increase in power, 
then the source of the disturbance is downstream whereas if the power flow indicates 
decrease in power, then the source of the disturbance is upstream from the monitoring 
point.  

 
8. Conclusion 

The application and performance of CWT and S-transform for detection of multiple PQ 
disturbances and incipient faults and prediction of voltage sag sources which may originate 
from upstream or downstream have been presented.  From the analyses done to evaluate 
the effectiveness of using CWT with the various mother wavelet functions in the detection 
of voltage sags, it is confirmed that the Gauss wavelet function gives the most accurate 
detection of voltage sag. A novel approach for detecting multiple power quality 
disturbances and incipient faults using the S-transform techniques has also been presented. 
The S-transform is proven to be very effective in analyzing and detecting multiple voltage 
disturbances and incipient faults in underground cable system. The S-transform accurately 
detects minor voltage and current transients generated from defects in underground cables.  
The usefulness of the S-transform is further illustrated by applying it for predicting the 
source of voltage sags. The numerical results obtained with actual power quality data 
recorded in a power distribution system indicated that the S-transform is effective in 
locating the sources of voltage sags which originate from either upstream or downstream. 
The results proved that the S-transform technique has the potential for use in the existing 
Power Quality Monitoring System for performing diagnosis of real-time power quality 
measurement data.  
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from the monitoring point. If during a disturbance, the power flow shows increase in power, 
then the source of the disturbance is downstream whereas if the power flow indicates 
decrease in power, then the source of the disturbance is upstream from the monitoring 
point.  
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