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1. Introduction      
 

During the last one and a half decades, the electro-mechanical impedance (EMI) technique 
has emerged as a universal cost-effective technique for structural health monitoring (SHM) 
and non destructive evaluation (NDE) of all types of engineering structures and systems 
(Sun et al., 1995; Ayres et al., 1998; Soh et al., 2000; Park et al., 2000, 2001; Giurgiutiu and 
Zagrai, 2000, 2002; Bhalla & Soh, 2003, 2004a, 2004b, 2004c). In this technique, a lead 
zirconate titanate piezo-electric ceramic (PZT) patch, surface bonded to the monitored 
structure, employs ultrasonic vibrations (typically in 30-400 kHz range), to derive a 
characteristic electrical ‘signature’ of the structure (in frequency domain), containing vital 
information concerning the phenomenological nature of the structure. Electro-mechanical 
admittance, which is the measured electrical parameter, can be decomposed and analyzed to 
extract the mechanical impedance parameters of the host structure (Bhalla & Soh, 2004b, 
2004c). In this manner, the PZT patch, acting as ‘piezo-impedance transducer’, enables 
structural identification, health monitoring and NDE (Bhalla, 2004).  
The PZT patches are made up of ‘piezoelectric’ materials, which generate surface charges in 
response to mechanical stresses and conversely undergo mechanical deformations in 
response to electric fields. In the EMI technique, the bonded PZT patch is electrically excited 
by applying an alternating voltage using an impedance analyzer. This produces 
deformations in the patch as well as in the local area of the host structure surrounding it. 
The response of this area is transferred back to the PZT wafer in the form of admittance (the 
electrical response), comprising of the conductance (the real part) and the susceptance (the 
imaginary part). Hence, the same PZT patch acts as an actuator as well as a sensor 
concurrently. Any damage to the structure manifests itself as a deviation in the admittance 
signature, which serves as an indication of the damage (assuming that the integrity of the 
PZT patch is granted). 
The EMI technique has been shown to possess far greater sensitivity to structural damages 
than the conventional global vibration techniques. It is typically of the order of the local 
ultrasonic techniques. The EMI technique employs low-cost PZT patches, which can be 
permanently bonded to the structures and unlike the ultrasonic techniques, can be 
interrogated without removal of the finishes or rendering the monitored structure out of 
service. In addition, no complex data processing or expensive hardware is warranted since 
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the data is directly acquired in frequency domain. The limited sensing area of the  piezo-
impedance transducers helps in isolating the effects of far field changes, such as mass 
loading and normal operational vibrations, thereby enabling damage localization (Park et 
al., 2000). 
 
The PZT patches are normally bonded to the surface of the monitored component using 
adhesives, which introduce the so-called ‘shear lag effect’. This chapter is primarily focused 
on development of analytical models for considering the shear lag effect inherent in the 
adhesively bonded PZT patches for direct use in SHM/ NDE via the EMI technique. The 
chapter covers a review of the modelling strategies since the 1980s and presents a detailed 
description of two shear lag models specifically developed for the EMI technique, the first 
one by Bhalla & Soh in 2004 and the second one, a simplified version, by Bhalla, Kumar, 
Gupta and Datta in  2009. 

 
2. Impedance Modelling of PZT-structure Interaction 
 

The PZT patches, which play the key role in the EMI technique, typically develop surface 
charges under mechanical stresses; and conversely undergo mechanical deformations when 
subjected to electric fields, expressed mathematically by (IEEE standard, 1987) 
 

mimj
T
iji TdED                            (1) 

m
E
kmjjkk TsEdS                              (2) 

 
where Di is the electric displacement, Sk the mechanical strain, Ej  the electric field and Tm the 

mechanical stress. T
ij denotes the complex electric permittivity of the PZT material  at 

constant stress, imd  and jkd  the piezoelectric strain coefficients (or constants) and E
kms  the 

complex elastic  compliance at constant electric field. The superscripts ‘T’ and ‘E’ indicate 
that the quantity has been measured at constant stress and constant electric field 
respectively.  
 
During the last one and half decades, several attempts have been made to model the PZT- 
structure electromechanical interaction. The beginning was made by Crawley and de Luis 
(1987) in the form of ‘static approach’, later substituted by the ‘impedance approach’ of 
Liang, et al. (1994). Liang and coworkers modelled the host structure as mechanical 
impedance Zs connected to the PZT patch at the end, as shown in Fig. 1(a), with the patch 
undergoing axial vibrations under an alternating electric field E3.  Mathematically, Zs is 
related to the force F and the velocity u  by 
 
       )()( lxSlx uZF                         (3) 
 
Solution of the governing 1D wave Eq. resulted in following expression for the complex 
electromechanical admittance for the system of Fig. 1(a)  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. (a) Liang’s 1D impedance model (Liang et al. 1994). 
            (b) A PZT patch surface-bonded to a structure. 
            (c) Impedance model for the system shown in (b). 
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where w, l and h represent the PZT patch’s dimensions (see Fig. 1a), 31d  the piezoelectric 

strain coefficient for the 1-3 axes and   the angular frequency. )1( jYY EE  is the 
complex Young’s modulus of the PZT patch (at constant electric field) and 

)1(3333 jEE   the complex electric permittivity (at constant stress), with the symbols  and 
 denoting the mechanical loss factor and the dielectric loss factor respectively. Za represents 
the mechanical impedance of the PZT patch (in short circuited condition), given by 
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where  , the wave number, is related to the density ρ and the Young’s modulus EY of the 
patch by 
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In real-life applications, where the PZT patch is surface-bonded on a structure, as shown in 
Fig. 1(b), the nodal plane passes through the centre line of the patch. The structure can be 
represented as a set of two impedances Zs connected on the either side of the patch, as 
illustrated in Fig. 1(c). For this scenario, l would be the half-length of the patch and Eq. (4) 
needs to be modified as 
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the data is directly acquired in frequency domain. The limited sensing area of the  piezo-
impedance transducers helps in isolating the effects of far field changes, such as mass 
loading and normal operational vibrations, thereby enabling damage localization (Park et 
al., 2000). 
 
The PZT patches are normally bonded to the surface of the monitored component using 
adhesives, which introduce the so-called ‘shear lag effect’. This chapter is primarily focused 
on development of analytical models for considering the shear lag effect inherent in the 
adhesively bonded PZT patches for direct use in SHM/ NDE via the EMI technique. The 
chapter covers a review of the modelling strategies since the 1980s and presents a detailed 
description of two shear lag models specifically developed for the EMI technique, the first 
one by Bhalla & Soh in 2004 and the second one, a simplified version, by Bhalla, Kumar, 
Gupta and Datta in  2009. 

 
2. Impedance Modelling of PZT-structure Interaction 
 

The PZT patches, which play the key role in the EMI technique, typically develop surface 
charges under mechanical stresses; and conversely undergo mechanical deformations when 
subjected to electric fields, expressed mathematically by (IEEE standard, 1987) 
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ij denotes the complex electric permittivity of the PZT material  at 

constant stress, imd  and jkd  the piezoelectric strain coefficients (or constants) and E
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complex elastic  compliance at constant electric field. The superscripts ‘T’ and ‘E’ indicate 
that the quantity has been measured at constant stress and constant electric field 
respectively.  
 
During the last one and half decades, several attempts have been made to model the PZT- 
structure electromechanical interaction. The beginning was made by Crawley and de Luis 
(1987) in the form of ‘static approach’, later substituted by the ‘impedance approach’ of 
Liang, et al. (1994). Liang and coworkers modelled the host structure as mechanical 
impedance Zs connected to the PZT patch at the end, as shown in Fig. 1(a), with the patch 
undergoing axial vibrations under an alternating electric field E3.  Mathematically, Zs is 
related to the force F and the velocity u  by 
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Solution of the governing 1D wave Eq. resulted in following expression for the complex 
electromechanical admittance for the system of Fig. 1(a)  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. (a) Liang’s 1D impedance model (Liang et al. 1994). 
            (b) A PZT patch surface-bonded to a structure. 
            (c) Impedance model for the system shown in (b). 
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In real-life applications, where the PZT patch is surface-bonded on a structure, as shown in 
Fig. 1(b), the nodal plane passes through the centre line of the patch. The structure can be 
represented as a set of two impedances Zs connected on the either side of the patch, as 
illustrated in Fig. 1(c). For this scenario, l would be the half-length of the patch and Eq. (4) 
needs to be modified as 
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Zhou et al. (1996) extended the formulations of Liang to model the a  PZT element coupled 
to a 2D host structure. The related physical model is schematically illustrated in Fig. 2. Zhou 
and coworkers replaced the single term Zs by a matrix consisting of the direct impedances 
Zxx and Zyy, and the cross impedances Zxy and Zyx, related to the planar forces F1 and F2 
(along axes 1 and 2 respectively) and the corresponding planar velocities 1u and 2u  by 
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Considering dynamic equilibrium along the two principal axes in conjunction with 
piezoelectric constitutive relations (Eqs. 1 and 2), they derived  
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where , the 2D wave number, is given by  
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Zaxx and Zayy are the two components of the mechanical impedance of the PZT patch along 
the two principal directions, given by Eq. 5. Although the analytical derivations of Zhou  
and co-workers are accurate in themselves, the experimental difficulties prohibit their direct 
application for the inverse problem, i.e. the extraction of host structure’s mechanical 
impedance. Using the EMI technique, one can experimentally obtain two parameters- G and 
B for a surface-bonded PZT patch. If complete information about the structure is desired, Eq. 
(9) needs to be solved for 4 complex unknowns- Zxx, Zyy, Zxy, Zyx  (or 8 real unknowns). 
Hence, the model could not be employed for the experimental determination of the drive 
point mechanical impedance from measurements alone.   
To alleviate these shortcomings, the concept of ‘effective impedance’ was introduced by 
Bhalla & Soh (2004b). The related physical model is shown in Fig. 3 for a square-shaped PZT 
patch of half-length l. Bhalla & Soh (2004b) represented the PZT-structure interaction in the 
form of boundary traction f per unit length, varying harmonically with time. The ‘effecive 
mechanical impedance’, Za,eff, of the patch was defined as  
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where Feff  is the overall planar force (or the effective force) causing area deformation of the 
PZT patch and n̂  the unit vector normal to the boundary. ueff = A/po is the ‘effective 
displacement’, with A denoting the change in the patch’s area and po its original 
undeformed perimeter. Differentiation of the effective displacement with respect to time 
yields the effective velocity, effu . The effective drive point impedance of the host structure 
can be similarly defined, by applying a force on the surface of the host structure, along the 
boundary of the proposed location of the PZT patch. The term T  is the complex tangent 
ratio, theoretically equal to [tan(l) /l]. However, in actual situations, it needs correction to 
realistically consider the deviation of the PZT patch from the ideal behavior, to 
accommodate which Bhalla and  Soh (2004b) introduced correction factors as 
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The correction factors C1 and C2 can be determined from the experimentally obtained 
conductance and susceptance signatures of the PZT patch in  ‘free-free’ conditions before 
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Fig. 3. Effective impedance model of Bhalla & Soh (2004a). 
(a) PZT bonded to host structure. (b) Interaction forces at boundary.  
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Zhou et al. (1996) extended the formulations of Liang to model the a  PZT element coupled 
to a 2D host structure. The related physical model is schematically illustrated in Fig. 2. Zhou 
and coworkers replaced the single term Zs by a matrix consisting of the direct impedances 
Zxx and Zyy, and the cross impedances Zxy and Zyx, related to the planar forces F1 and F2 
(along axes 1 and 2 respectively) and the corresponding planar velocities 1u and 2u  by 
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piezoelectric constitutive relations (Eqs. 1 and 2), they derived  
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where , the 2D wave number, is given by  
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where Feff  is the overall planar force (or the effective force) causing area deformation of the 
PZT patch and n̂  the unit vector normal to the boundary. ueff = A/po is the ‘effective 
displacement’, with A denoting the change in the patch’s area and po its original 
undeformed perimeter. Differentiation of the effective displacement with respect to time 
yields the effective velocity, effu . The effective drive point impedance of the host structure 
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boundary of the proposed location of the PZT patch. The term T  is the complex tangent 
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realistically consider the deviation of the PZT patch from the ideal behavior, to 
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The correction factors C1 and C2 can be determined from the experimentally obtained 
conductance and susceptance signatures of the PZT patch in  ‘free-free’ conditions before 
bonding it on the host structure. It has been demonstrated that this ‘updating’ enables much 
more accurate reults. Solution of the governing 2D wave Eq. for this system yielded 
following expression for the complex electro-mechanical admittance Y   
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Fig. 3. Effective impedance model of Bhalla & Soh (2004a). 
(a) PZT bonded to host structure. (b) Interaction forces at boundary.  
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Here, a single complex term for Zs,eff  (rather than four terms as in Zhou’s model) accounts 
for the 2D mechanical interaction of the patch with the host structure. This makes the 
resulting equation. simple enough to solve the inverse problem, i.e. to extract Zs,eff  (Bhalla & 
Soh, 2004c), to be directly utilized for SHM/ NDE.  No modelling is required for the host 
structure and the necessary data is directly obtainable from experimental measurements. 
Further, the corrected actuator effective impedance, Za,eff, can be expressed as 
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All the above models ignore the fact that the mechanical interaction between the PZT patch 
and the host structure occurs through a finitely thick layer of adhesive sandwiched between 
the PZT patch and the host structure, which introduces the so-called ‘shear lag effect’ 
through its elastic deformation. Presented in the following sections is a detailed review of 
the shear lag mechanism inherent in adhesively bonded PZT patches and its rigorous 
integration in 1D and 2D impedance models, as proposed by Bhalla & Soh (2004d). Further, 
a new simplified model model proposed by Bhalla et al. (2009), which is especially suitable 
for solving the inverse problem (of extracting Zs), considering the presence of bond layer, is 
also described.  

 
3. Shear Lag Effect 

Crawley and de Luis (1987) and Sirohi and Chopra (2000) respectively modelled the 
actuation and sensing of a generic beam element by an adhesively bonded PZT patch. The 
typical configuration of the system is shown in Fig. 4. The patch has a half-length l, width wp 
and thickness hp, while the bonding layer has a thickness hs. The beam has depth hb and 
width wb. Let Tp be the axial stress in the PZT patch and  the interfacial shear stress. The 
system is under quasi-static equilibrium and the beam is actuated in pure bending mode, 
with the bending strain linearly distributed across the cross section. Further, the PZT patch 
is in a state of pure 1D axial strain and the bond layer in pure shear, with the shear stress 
independent of ‘y’. The ends of the segmented PZT actuator/ sensor are stress free, 
implying a uniform strain distribution across the thickness of the patch. A more detailed 
deformation profile is shown in Fig. 5 for the symmetrical right half of the system. Let up be 
the displacement at the interface between the PZT patch and the bond layer, and u the 
corresponding displacement at the interface between the bond layer and the beam. The 
following subsections briefly review the shear transfer mechanism for sensor and actuator 
respectively. 

 
3.1 PZT patch as sensor  
Let the PZT patch be instrumented only to sense the strain on the beam surface, and hence, 
no external electric field be applied across it. Considering static equilibrium of the 
differential element of the PZT patch in the x-direction, as shown in Fig. 4, we can derive 
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At any cross section of the beam, within the portion containing the PZT patch, the bending 
moment is given by 
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Using Euler-Bernoulli’s beam theory and assuming (hp+2hs)<<hb, we can reduce Eq. (16) to 
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where Tb denotes the bending stress on the beam surface. Differentiating with respect to x, 
and substituting Eq. (15), we get 
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Fig. 4. A PZT patch bonded to a beam using adhesive bond layer.  
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Fig. 5. Deformation in bonding layer and PZT patch.  
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Here, a single complex term for Zs,eff  (rather than four terms as in Zhou’s model) accounts 
for the 2D mechanical interaction of the patch with the host structure. This makes the 
resulting equation. simple enough to solve the inverse problem, i.e. to extract Zs,eff  (Bhalla & 
Soh, 2004c), to be directly utilized for SHM/ NDE.  No modelling is required for the host 
structure and the necessary data is directly obtainable from experimental measurements. 
Further, the corrected actuator effective impedance, Za,eff, can be expressed as 
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is in a state of pure 1D axial strain and the bond layer in pure shear, with the shear stress 
independent of ‘y’. The ends of the segmented PZT actuator/ sensor are stress free, 
implying a uniform strain distribution across the thickness of the patch. A more detailed 
deformation profile is shown in Fig. 5 for the symmetrical right half of the system. Let up be 
the displacement at the interface between the PZT patch and the bond layer, and u the 
corresponding displacement at the interface between the bond layer and the beam. The 
following subsections briefly review the shear transfer mechanism for sensor and actuator 
respectively. 
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Fig. 4. A PZT patch bonded to a beam using adhesive bond layer.  
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Fig. 5. Deformation in bonding layer and PZT patch.  
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where Yb is the Young’s modulus of elasticity of the beam, Sb and SP the beam and PZT 
strains, Gs the shear modulus of the bond layer,  the shear strain in the bond layer and 

 1/  bp SS . Subtracting Eq. (20) from Eq. (19), we get 
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This phenomenon of the difference in the PZT strain and the host structure’s strain is called 
the shear lag effect. The parameter  (unit m-1) is called the shear lag parameter. The ratio , 
which is a measure of the differential PZT strain relative to surface strain of the host 
substrate, is called the strain lag ratio. The general solution for Eq. (21) is  
 
 xBxA  sinhcosh   (23) 
 
Since no external electric field is applied across the PZT patch, the free PZT strain, d31E3 = 0. 
Thus, at x = -l , SP = 0   = -1.  Similarly, at x = +l,  = -1. Applying these boundary 
conditions, we can obtain 
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Fig. 6 shows a plot of the strain ratio (SP/Sb) across the length of a PZT patch (l = 5mm) for 
typical values of  = 10, 20, 30, 40, 50 and 60 (cm-1). It is observed that the strain ratio (SP/Sb) 
is less than unity near the ends of the PZT patch. The length of this zone depends on , 
which in turn depends on the stiffness and thickness of the bond layer (Eq. 22). As Gs 
increases and hs reduces,  increases, the shear lag phenomenon diminishes and the shear is 
effectively transferred over very small zones near the ends of the PZT patch.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This analysis shows that if the PZT patch is employed as a sensor, it would develop less 
voltage across its terminals (than for perfectly bonded conditions) and hence underestimate 
the strain in the substructure.  In order to quantify the effect of shear lag, we can compute 
the effective length, leff, of the sensor, as defined by (Sirohi and Chopra, 2000) 
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which is nothing but the area under the curve (Fig. 6) between x/l = 0 and x/l = 1. Fig. 7 
shows a plot of the effective length (Eq. 26) for various values of the shear lag parameter .  
From this figure, it can be observed that typically, for  > 30cm-1, (leff / l) is very large, 
typically greater than 93%, suggesting that shear lag effect can be ignored for relatively high 
(> 30 cm-1) values of . 

 
3.2 PZT patch as actuator  
If the same PZT patch is employed as an actuator for a beam structure, it can be shown 
(Crawley and de Luis, 1987) that the strains SP and Sb are given by 
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where  = d31E3 is the free piezoelectric strain, and  = (Ybhb/YEhp) the product of modulus 
and thickness ratios of the beam and the PZT patch. Fig. 8 shows the plots of (Sp/) and (Sb 
/) along the length of the PZT patch (l = 5mm) for  = 15. It is observed that as in the case 
of sensor, as  increases, the shear is effectively transferred over small zone near the two 
ends of the patch.  Typically, for  > 30cm-1, the strain energy induced in the substructure by 
PZT actuator is within 5% of the perfectly bonded case. 

Fig. 6. Strain distribution across the length of 
PZT patch for various values of . 
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where Yb is the Young’s modulus of elasticity of the beam, Sb and SP the beam and PZT 
strains, Gs the shear modulus of the bond layer,  the shear strain in the bond layer and 
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This phenomenon of the difference in the PZT strain and the host structure’s strain is called 
the shear lag effect. The parameter  (unit m-1) is called the shear lag parameter. The ratio , 
which is a measure of the differential PZT strain relative to surface strain of the host 
substrate, is called the strain lag ratio. The general solution for Eq. (21) is  
 
 xBxA  sinhcosh   (23) 
 
Since no external electric field is applied across the PZT patch, the free PZT strain, d31E3 = 0. 
Thus, at x = -l , SP = 0   = -1.  Similarly, at x = +l,  = -1. Applying these boundary 
conditions, we can obtain 
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Fig. 6 shows a plot of the strain ratio (SP/Sb) across the length of a PZT patch (l = 5mm) for 
typical values of  = 10, 20, 30, 40, 50 and 60 (cm-1). It is observed that the strain ratio (SP/Sb) 
is less than unity near the ends of the PZT patch. The length of this zone depends on , 
which in turn depends on the stiffness and thickness of the bond layer (Eq. 22). As Gs 
increases and hs reduces,  increases, the shear lag phenomenon diminishes and the shear is 
effectively transferred over very small zones near the ends of the PZT patch.  
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voltage across its terminals (than for perfectly bonded conditions) and hence underestimate 
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which is nothing but the area under the curve (Fig. 6) between x/l = 0 and x/l = 1. Fig. 7 
shows a plot of the effective length (Eq. 26) for various values of the shear lag parameter .  
From this figure, it can be observed that typically, for  > 30cm-1, (leff / l) is very large, 
typically greater than 93%, suggesting that shear lag effect can be ignored for relatively high 
(> 30 cm-1) values of . 
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If the same PZT patch is employed as an actuator for a beam structure, it can be shown 
(Crawley and de Luis, 1987) that the strains SP and Sb are given by 
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where  = d31E3 is the free piezoelectric strain, and  = (Ybhb/YEhp) the product of modulus 
and thickness ratios of the beam and the PZT patch. Fig. 8 shows the plots of (Sp/) and (Sb 
/) along the length of the PZT patch (l = 5mm) for  = 15. It is observed that as in the case 
of sensor, as  increases, the shear is effectively transferred over small zone near the two 
ends of the patch.  Typically, for  > 30cm-1, the strain energy induced in the substructure by 
PZT actuator is within 5% of the perfectly bonded case. 

Fig. 6. Strain distribution across the length of 
PZT patch for various values of . 
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Fig. 8. Distribution of piezoelectric and beam strains for various values of . 
(a) Strain in PZT patch. (b) Beam surface strain. 

 
4. Shear Lag Effect in Electro-Mechanical Impedance Formulations 
 

It is observed in the preceding section that when acting as an actuator and/ or a sensor, 
there is shear lag phenomenon associated with force transmission between the PZT patch 
and the host structure through the adhesive bond layer. However, this aspect has not been 
thoroughly investigated for the EMI technique, in which the same patch concurrently serves 
both as a sensor as well as an actuator. Abe et al. (2002) encountered large errors in their 
stress prediction methodology using EMI technique, which were attributed to imprecise 
modeling of the interfacial bonding layer. This highlights the importance of modelling the 
shear lag mechanism accurately. 
Xu and Liu (2002) proposed a modified 1D impedance model in which the bonding layer 
was modelled as a single degree of freedom (SDOF) system connected in between the PZT 
patch and the host structure, as shown in Fig. 9. The bonding layer was assumed to possess 
a dynamic stiffness bK  (or mechanical impedance,  Zb = bK /j) and the structure a dynamic 
stiffness SK (or mechanical impedance, Zs = SK /j). Hence, the resultant mechanical 
impedance for this series system can be determined as (Hixon, 1988) 
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The coupled electromechanical admittance, as measured across the terminals of the PZT 
patch and expressed earlier by Eq. (4), can therefore be modified as  
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 = 1 implies infinitely stiff bond layer where as  = 0 implies a free PZT patch. Xu and Liu 
(2002) demonstrated numerically that for a SDOF system, as  decreases (i.e. as the bond 
quality degrades), the PZT system shows an increase in the associated structural resonant 
frequencies.   It was stated that  bK  depends on the bonding process and the thickness of the 
bond layer. However, no closed form solution was presented to quantitatively determine 
bK  and hence  (From Eq. 29).  Also, no experimental verification was attempted.  

Ong et al. (2002) integrated the shear lag effect into impedance modelling using the analysis 
presented by Sirohi and Chopra (2000). The PZT patch was assumed to possess an effective 
length leff (Eq. 26) instead of the actual length. However, since the effective length was 
determined by considering sensor effect only, the method considered the associated shear 
lag only partially. Also, the resulting formulations are valid for beam type structures only 
and are not generic in nature. In addition, since frequencies of the order of 30-400 kHz are 
involved in the EMI technique, quasi-static approximation (for calculating leff) is strictly not 
valid. The next section presents the model of Bhalla & Soh (2004d) to alleviate all the above 
shortcomings. 

 
5. Rigorous Shear Lag Model (Bhalla & Soh, 2004d) 
 

5.1 1D shear lag model 
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Fig. 8. Distribution of piezoelectric and beam strains for various values of . 
(a) Strain in PZT patch. (b) Beam surface strain. 
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 = 1 implies infinitely stiff bond layer where as  = 0 implies a free PZT patch. Xu and Liu 
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where dm is the infinitesimal mass of the element considered. Due to the dominance of the 
shear stress term, the inertial term can be neglected, which reduces Eq. (31) to Eq. (15). It 
should be noted that the inertial force term has been separately considered in impedance 
formulations (Liang et al., 1994), where, as a matter of fact, the shear lag effect has been 
ignored. Hence, the two effects are independently considered and will be finally combined. 
Assuming pure shear in the bond layer,  
 

 
s

ps

h
uuG )( 

   (32) 

 

where sG = Gs(1+ j) is the complex shear modulus of the bond layer and   is the 
associated  mechanical loss factor. From PZT constitutive relation, Eq. (2), the axial stress in 
the PZT patch is given by 
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where pp uS  is the PZT strain and  = E3d31 is the free piezoelectric strain. Substituting 
Eq.s (32) and (33) into Eq. (15) and simplifying, we get 
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At any vertical section through the host structure (which includes the PZT patch), the force 
transmitted to the host structure is related to the drive point impedance Zs of the host 
structure by 
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where u is the drive point displacement at the point in question on the surface of the host 
structure. Since the PZT patch is infinitesimally small, Zs is practically the same along the 
entire length of the PZT patch. Substituting Eq. (33), differentiating with respect to x (noting 
that Zs is constant), and rearranging, we get 
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From Eq.s (34) and (36), we derive 
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Eq.s (34) and (37) are the fundamental Eq.s governing the shear transfer mechanism via the 
adhesive bonding layer. Eliminating up from these equations and differentiating with 
respect to x, we can derive 
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p  and q are shear lag parameters, similar to the factor   in Eq. (22). The parameter q is 

equivalent to the first component of   and p  to the second component. As seen from Eq. 
(40), q is directly proportional to the bond layer’s shear modulus and inversely proportional 
to the PZT patch’s Young’s modulus, the PZT patch’s thickness and the bond layer 
thickness. Examination of Eq. (39) similarly shows that p  is directly proportional to the 
bond layer’s shear modulus and the PZT patch’s width. It is inversely proportional to 
structural mechanical impedance and the bond layer thickness. Being dynamic parameter, 
the frequency  also comes into picture, influencing p  inversely. Further, it should be noted 

that p is a complex term whereas the term q is approximated as a pure real term assuming  
and   to be very small in magnitude. Solving Eq. (41), we get the roots of the characteristic 
Eq. as 
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Hence, the solution of the governing differential equation (Eq. 38) can be written as 
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where dm is the infinitesimal mass of the element considered. Due to the dominance of the 
shear stress term, the inertial term can be neglected, which reduces Eq. (31) to Eq. (15). It 
should be noted that the inertial force term has been separately considered in impedance 
formulations (Liang et al., 1994), where, as a matter of fact, the shear lag effect has been 
ignored. Hence, the two effects are independently considered and will be finally combined. 
Assuming pure shear in the bond layer,  
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where sG = Gs(1+ j) is the complex shear modulus of the bond layer and   is the 
associated  mechanical loss factor. From PZT constitutive relation, Eq. (2), the axial stress in 
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At any vertical section through the host structure (which includes the PZT patch), the force 
transmitted to the host structure is related to the drive point impedance Zs of the host 
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p  and q are shear lag parameters, similar to the factor   in Eq. (22). The parameter q is 

equivalent to the first component of   and p  to the second component. As seen from Eq. 
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the frequency  also comes into picture, influencing p  inversely. Further, it should be noted 
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Differentiating Eq. (44) with respect to x, we obtain the strain in the PZT patch as  
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At x = 0 (see Figs 4 and 5), u = 0, hence Eq. (42) leads to 
 

     A1 = -(B + C)                    (47) 
 
Similarly, applying the boundary condition that at x = 0 and up = 0 to Eq. (44) leads to 
 
                                                               A2 = -(B3 + C4)                                                                (48) 
 
Hence, Eq. (46) can be modified as 
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The third and the fourth boundary conditions are imposed by the stress free ends of the PZT 
patch. That is, at x = -l and at x = +l, the axial strain in the PZT patch is equal to the free 
piezoelectric strain or  = E3d31 (Crawley and de Luis, 1987). This leads to constants B and C 
as 
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In general, the force transmitted to the host structure can be expressed as 
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where u(x=l) is the displacement at the surface of the host structure at the end point of the 
PZT patch. Conventional impedance models (for example, Liang and coworkers)  assume 
perfect bonding between the PZT patch and the host structure, i.e. the displacement 
compatibility u(x=l) = up(x=l), thereby approximating Eq. (51) as )( lxps ujZF   . However, 
due to the shear lag phenomenon associated with finitely thick bond layer, u(x=l)  up(x=l). 
Based on the analysis presented in this section, we can obtain following relationship 
between u(x=l) and  up(x=l from Eq. (37) 
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The term oo uu /  can be determined by using Eq.s (42) and (43). Making use of this 
relationship, Eq. (51) can be rewritten as 
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patch, taking into consideration the shear lag phenomenon associated with the bond layer. 
In the absence of shear lag effect (i.e. perfect bonding), Zs,eq = Zs. On comparing with the 
result of Xu and Liu (2002) i.e. Eq. (29), we find that 
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Hence, the derivation presented in this section enables quantitative prediction of the 
modifying term of the structural impedance, which was left undone by Xu and Liu (2002).  

 
5.2 Extension to 2D shear lag model 
The formulations derived above can be easily extended to the 2D effective impedance based 
electro-mechanical model introduced by Bhalla & Soh (2004b). For this derivation, it is 
assumed that the PZT is square in shape with a half-length equal to l. The strain distribution 
and the associated shear lag are determined along each principal direction and the two 
effects are assumed to be independent, which means that the effects at the corners are 
neglected.  
The patch is assumed to be mechanically isotropic and piezoelectrically orthotropic in the x-
y plane. The constitutive relations (Equations 1 and 2) can be thus reduced to (see Figure 3) 
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Differentiating Eq. (44) with respect to x, we obtain the strain in the PZT patch as  
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The term oo uu /  can be determined by using Eq.s (42) and (43). Making use of this 
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Hence, the derivation presented in this section enables quantitative prediction of the 
modifying term of the structural impedance, which was left undone by Xu and Liu (2002).  

 
5.2 Extension to 2D shear lag model 
The formulations derived above can be easily extended to the 2D effective impedance based 
electro-mechanical model introduced by Bhalla & Soh (2004b). For this derivation, it is 
assumed that the PZT is square in shape with a half-length equal to l. The strain distribution 
and the associated shear lag are determined along each principal direction and the two 
effects are assumed to be independent, which means that the effects at the corners are 
neglected.  
The patch is assumed to be mechanically isotropic and piezoelectrically orthotropic in the x-
y plane. The constitutive relations (Equations 1 and 2) can be thus reduced to (see Figure 3) 
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Consider an infinitesimal element of the PZT patch, in dynamic equilibrium with the host 
structure, as shown in Fig. 10. Since this figure shows a planar view, the shear stresses xz 
and yz are not visible. Considering force equilibrium along x-direction, we can write (De 
Faria, 2003) 
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Ignoring the terms involving rate of change of shear strains (consistent with the observation 
by Zhou et al., 1996), we get 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Stresses acting on an infinitesimal PZT element. 
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Further, using Eqs (56) and (57), we can derive (noting  = E3d31) 
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Differentiating with respect to x and ignoring the second order terms involving both x and y 
(Zhou et al., 1996), we get 
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Similarly, for the other direction, we get 
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Adding Eqs (63) and (64) and dividing by 2, we obtain, based on the definition of ‘effective 
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where effq  has been approximated as pure real number, as in the 1D case. Here, effpu , , by 

definition, is the effective displacement at the interface between the PZT patch and the bond 
layer, effu  is the corresponding effective displacement at the interface between the structure 
and the bond layer. Further, from the definition of effective impedance, we can write, for the 
host structure 
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Making use of  Eqs. (56) and (57), and noting  = E3d31, we get 
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Substituting for pxp uS 1 , pyp uS 2 , making use of the definition of effective 
displacement, and differentiating, we can derive 
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Eliminating  ''
,effpu from E.s (65) and (68), we get 
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where effq  has been approximated as pure real number, as in the 1D case. Here, effpu , , by 

definition, is the effective displacement at the interface between the PZT patch and the bond 
layer, effu  is the corresponding effective displacement at the interface between the structure 
and the bond layer. Further, from the definition of effective impedance, we can write, for the 
host structure 
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Substituting for pxp uS 1 , pyp uS 2 , making use of the definition of effective 
displacement, and differentiating, we can derive 
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Eqs (65) and (69) are the governing equations for 2D case. The parameters effp and qeff, 

which are the equivalent of the 1D shear lag parameter p  and q respectively, and can be 
expressed as 
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The rest of the procedure is identical to the one outlined in the previous section for 1D case. 
Hence, the equivalent effective impedance can be expressed as 
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5.3 Experimental verification 
In order to verify the derivations outlined above, two PZT patches, 10x10x0.3mm and 
10x10x0.15mm, conforming to grade PIC 151 (PI Ceramic, 2003), were bonded to two 
aluminium blocks, each 48x48x10mm in size, conforming to grade Al 6061-T6. The 
experimental set-up shown in Fig. 11 was employed. The PZT patches were bonded to the 
blocks using RS 850-940 two-part epoxy adhesive (RS Components, 2003). Before applying 
the epoxy, two optical fiber pieces, 0.125mm in diameter, were laid down on the surface of 
the specimens parallel to each other. The layer of epoxy was then applied on the surface and 
the PZT patch was placed on it. Light pressure was maintained over the assembly using a 
small weight. The setup was left undisturbed in this condition at room temperature for 24 
hours to enable full curing of adhesive. The optical fiber pieces were left permanently in the 
adhesive layer. This procedure ensured a uniform thickness of 0.125mm of the bond layer in 
both the specimens tested. The two specimens have (hs/hp) ratio equal to 0.417 and 0.833 
respectively. During the test, the voltage level of the impedance analyzer was maintained 
equal to 1 volt root mean square. Each admittance reading was worked out as the average of 
three experimental recordings.  In this way, the experimental signatures, consisting of the 
real part- the conductance (G) and the imaginary part- the susceptance (B) were obtained. 
Signatures of the five representative PZT patches were acquired in ‘free-free’ conditions to 
determine the key parameters of the patches. Table 1 lists the key averaged PZT parameters 
for the batch. 
 
The numerical approach based on FEM, as outlined by Bhalla & Soh (2004b), was employed 
to determine the effective mechanical impedance of the host structure. The physical 
properties of Al 6061-T6 were considered as: Young’s modulus = 68.95GPa, density = 2715 
kg/m3 and Poisson’s ratio = 0.33. Rayleigh damping was considered with α = 0 and β = 3 x 
10-9. Wavelength analysis and convergence test on this model has already been reported by 
Bhalla & Soh (2004b). Fig. 12 shos the finite element model of a quarter of the structure 
considered for this purpose. The PZT patch or the bond layer need not be meshed since their 
stiffness, mass and damping are separately considered  in the formulations. A uniformly 
distributed planar harmonic force was applied along the boundary of the PZT patch and the 

 

displacement response was obtained by full dynamic harmonic analysis to determine the 
effective drive point impedance of the structure as 
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The shear modulus of elasticity of the epoxy adhesive was assumed as 1.0 GPa, in 
accordance with Adams and Wake (1984). The mechanical loss factor of commercial 
adhesives shows a wide variation and is strongly dependent on temperature. It might vary 
from 5% to 30% at room temperature, depending upon the type of adhesive (Adams and 
Wake, 1984). For this study, a value of 10% was considered.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Experimental set-up to verify new electro-mechanical formulations including bond 
layer. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. 3D finite element model of one-quarter of structure. 
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Eqs (65) and (69) are the governing equations for 2D case. The parameters effp and qeff, 

which are the equivalent of the 1D shear lag parameter p  and q respectively, and can be 
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both the specimens tested. The two specimens have (hs/hp) ratio equal to 0.417 and 0.833 
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equal to 1 volt root mean square. Each admittance reading was worked out as the average of 
three experimental recordings.  In this way, the experimental signatures, consisting of the 
real part- the conductance (G) and the imaginary part- the susceptance (B) were obtained. 
Signatures of the five representative PZT patches were acquired in ‘free-free’ conditions to 
determine the key parameters of the patches. Table 1 lists the key averaged PZT parameters 
for the batch. 
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Physical Parameter Value 

Electric Permittivity,  T
33  (farad/m) 1.7785 x 10-8 

Peak correction factor, Cf 0.898 

)1(
2 2

31




EYdK    (N/V2) 
 
5.35x10-9 

Mechanical loss factor,  0.0325 

Dielectric loss factor,   0.0224 
Table 1. Averaged parameters of test sample of PZT patches. 
 
Fig. 13 shows the plot of normalized conductance (Gh/L2) worked out for the two specimens 
using the integrated 2D model presented in this paper. The plot for perfectly bonded 
condition is also shown. It is observed that on increasing thickness of the adhesive layer, the 
sharpness of peaks in the conductance plot tends to diminish. This fact is confirmed by the 
experimental plots shown in Fig. 14 for the two specimens.  Fig. 15 shows the plot of 
normalized susceptance (Bh/L2), worked out using the new model for three cases- no bond 
layer, (hs/hp) = 0.417 and (hs/hp) = 0.833.  Again, it is observed that an increase in thickness 
tends to flatten the peaks. In addition, the average slope of the curve also reduces 
marginally. This is confirmed by Fig. 16, which shows the curves determined experimentally 
for the two specimens. Thus, the shear lag model has made reasonably accurate predictions.  
 

 
 
 
 
 
 
 
 
 
 
Fig. 13. Theoretical normalized conductance. 
(a) Perfect bonding. (b) hs/hp = 0.417. (c) hs/hp = 0.834. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 14. Experimental normalized conductance for hs/hp = 0.417 and  hs/hp = 0.834. 
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Fig. 15. Theoretical normalized susceptance. 
(a) Perfect bonding. (b) hs/hp = 0.417. (c) hs/hp = 0.834. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. Experimental normalized susceptance for hs/hp = 0.417 and  hs/hp = 0.834. 
 
This model is not only more rigorous but at the same time generic in nature. A parametric 
study revealed that to achieve best results, the adhesive layer should possess high shear 
modulus and minimum practicable thickness. A related experimental study has been 
reported by Qing et al. (2006). However, shortcoming of this model is visible for solving the 
inverse problem for NDE. In the damage quantification approach postulated by Bhalla & 
Soh (2004c), one needs to extract the mechanical impedance of the host structure  (Zs, = x + 
yj) from the measured admittance signature. In the presence of the adhesive layer, this 
would be Zs,eq, from which it is computationally very difficult to obtain the true structural 
impedance Zs, as clearly evident from Eqs. (69) to (71). 
 
This difficulty of solving the inverse problem taking due consideration of the adhesive bond 
layer is very well alleviated by the simplified impedance model of Bhalla et al. (2009). In the next 
sections, the model is first derived first derived for 1D case and then extended to 2D situations.  
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Physical Parameter Value 
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Table 1. Averaged parameters of test sample of PZT patches. 
 
Fig. 13 shows the plot of normalized conductance (Gh/L2) worked out for the two specimens 
using the integrated 2D model presented in this paper. The plot for perfectly bonded 
condition is also shown. It is observed that on increasing thickness of the adhesive layer, the 
sharpness of peaks in the conductance plot tends to diminish. This fact is confirmed by the 
experimental plots shown in Fig. 14 for the two specimens.  Fig. 15 shows the plot of 
normalized susceptance (Bh/L2), worked out using the new model for three cases- no bond 
layer, (hs/hp) = 0.417 and (hs/hp) = 0.833.  Again, it is observed that an increase in thickness 
tends to flatten the peaks. In addition, the average slope of the curve also reduces 
marginally. This is confirmed by Fig. 16, which shows the curves determined experimentally 
for the two specimens. Thus, the shear lag model has made reasonably accurate predictions.  
 

 
 
 
 
 
 
 
 
 
 
Fig. 13. Theoretical normalized conductance. 
(a) Perfect bonding. (b) hs/hp = 0.417. (c) hs/hp = 0.834. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 14. Experimental normalized conductance for hs/hp = 0.417 and  hs/hp = 0.834. 
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Fig. 15. Theoretical normalized susceptance. 
(a) Perfect bonding. (b) hs/hp = 0.417. (c) hs/hp = 0.834. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. Experimental normalized susceptance for hs/hp = 0.417 and  hs/hp = 0.834. 
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This difficulty of solving the inverse problem taking due consideration of the adhesive bond 
layer is very well alleviated by the simplified impedance model of Bhalla et al. (2009). In the next 
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6. Simplified Shear Lag Model (Bhalla et al.,  2009) 

6.1 1D shear lag model 
Fig. 17 shows the physical aspects of the proposed simplified 1D impedance model. The PZT 
patch has length 2l with zero displacement at the mid point, which is the nodal point. Hence, 
only right half of the system is modelled here. The bond layer is assumed to be connected in 
between the PZT patch and the host structure such that it can transfer the force between the 
two through pure shear mechanism. Unlike the previous model of Bhalla & Soh (2004d), 
where shear strain varied along the patch, an average shear strain uniform along the length 
has been considered as a simplification. Let up be the displacement at the tip of the PZT patch 
at any point of time. Due to the shearing of the bond layer, same displacement would not be 
transferred to the host structure. Let u be the displacement of the host structure at a point just 
underneath the tip of the PZT patch. Let hp and hS respectively denote the thickness of the 
patch and the bond layer. Shear strain in the bond layer is given by 
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which can be rearranged as, 
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If F  be the force transmitted to the host structure over the area A  of one-half of the patch, 
Eq. (74) can be rewritten as 
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Further, in terms of the structural impedance Zs, the force transmitted to the host structure 
can be expressed as  
 
 
 
 
 
 
 
Fig. 17. Simplified 1D impedance model  proposed by Bhalla et al., 2009 (showing right 
symmetrical half of PZT patch- structure system).  
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Substituting u  from Eq. (75) and simplifying, we get 
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By rearranging the terms and with A = wl , Eq. (77) can be simplified as                                           
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This can be expressed in a format similar to Eq. (76) as                             
                                                            
 peqS ujZF ,                                      (79) 
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is the ‘equivalent impedance’, apparent at the ends of the PZT patch, taking into 
consideration the shear lag phenomenon associated with the bond layer. Replacing   Zs, by 
Zs,eq in Eq. (7), the modified expression for admittance across the PZT patch can be obtained 
as in the case of the model of Bhalla & Soh (2004d). 

 
6.2 Extension to 2D  
This section extends the 1D shear lag based impedance formulations derived above to 2D 
effective impedance-based electromechanical model. The PZT patch is assumed to be square 
in shape with a half-length equal to l. Again, the strain distribution and the associated shear 
lag are determined along each principal direction independently, invariably introducing 
discontinuity at the corners, which is ignored. By applying Eq. (75) along each principal 
direction for the configuration of Fig. 3b (for a quarter of the patch),  
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where F1 and F2 are the forces along each direction as shown in Fig. 3(b). Adding Eqs. (81) 
and (82) and dividing by 2, we get 
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From the definition of effective displacement (Bhalla & Soh, 2004b) 
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Further, from Eq. (11),  
 
 Feff= F1 + F2                  (85) 
 
Thus, using Eqs. (84) and (85), Eq. (83) can be reduced to 
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From the definition of effective impedance, 
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Substituting Eq. (86) into (87) and solving, as for the 1D case, an expression for the 
equivalent effective impedance can be derived as 
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With the above result, Eq. (13) can be modified, by replacing Zeff by Zs,eff,eq as 
 

 4 BjGY































 T

ZZ
ZYdYd

h
lj

effaeqeffs

effa
EE

T

,,,

,
2
31

2
31

33

2

)1(
2

)1(
2


            (89)   

 
In order to verify the proposed new model, the same aluminium block, 48x48x10mm in size, 
was considered as the host structure. A PZT patch, 10x10x0.3mm in size, was assumed to be 
surface-bonded on this structure. The effective drive point impedance of the host structure 
was computed by carrying out 3D dynamic harmonic analysis, as described earlier. Final 
values for G and B were determined in the frequency range 0-250kHz using Eq. (89). A  
0.150mm thick epoxy layer was considered with shear modulus of Gs = 1 GPa and a 
mechanical loss factor of ƞ’ = 10%. The parameters of the PZT patch considered are listed in 
Table 1. 
 
 
 
 
 
 
 
 
 

 

             
 

            
Fig. 18. Comparison of conductance signature.   
(a) Bhalla & Soh’s model.  (b) Simplified model. 
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Further, from Eq. (11),  
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Fig. 18. Comparison of conductance signature.   
(a) Bhalla & Soh’s model.  (b) Simplified model. 

0

0.0005

0.001

0.0015

0.002

0.0025

0 50 100 150 200 250

Frequency (kHz)

C
on

du
ct

an
ce

 (S
)

Perfect bond

Bhalla and Soh (2004c)

  (a) 

Bhalla & Soh (2004d) 

0

0.0005

0.001

0.0015

0.002

0.0025

0 50 100 150 200 250

Frequency (kHz)

C
on

du
ct

an
ce

 (S
)

Perfect bond

Present model

 (b)

Simplified model

www.intechopen.com



Piezoelectric Ceramics66

 

Fig. 18 shows a comparison of the variation of conductance with frequency obtained using the 
simplified model and also the rigorous model of Bhalla & Soh (2004d). Curves obtained by 
both models are plotted alongside the curves for the case of perfect bonding for comparison. 
The proposed simplified model predicts the conductance in consistency with the rigorous 
model. Both the models predict that the peaks tend to diminish down due to the presence of 
the bond layer. Similarly, Fig. 19 shows a comparison of the variation of susceptance for three 
cases- no bond layer, Bhalla & Soh (2004d) model and the  simplified model. It is observed that 
like the previous model, the simplified model leads to the observation that peaks lose their 
sharpness and the average slope of the susceptance curve tends to reduce owing to the shear 
lag effect.  However, the susceptance curve resulting from the simplified model lies 
intermediate of the two cases i.e perfect bond  and the model of Bhalla & Soh (2004d).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19. Comparison of susceptance signature from new model with Bhalla & Soh (2004d) model.  
 
The influence of important parameters on the conductance and susceptance signatures was 
studied by Bhalla et al. (2009) and the observations matched with the previous model.  
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analytically far more complicated . The main strength of the simplified shear lag model is the 
simplicity of application for solving the inverse problem. As pointed out above, it is 
computationally very difficult to obtain the true structural impedance Zs,eff  from Zs,eff,eq, using 
the previous model for adhesively bonded PZT patches. On the other hand, using the new 
simplified model, the true structural impedance can be directly determined, from Eq. (48) as, 
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Zs,eff,eq can be obtained from the measured G and B directly using the equations derived by 
Bhalla & Soh (2004c) for use in Eq. (90) above. No modelling is required for the host 
structure or the bond layer The finite element modelling done in the previous section was 
solely for model verification purpose only and not required in the actual applications where 
G and B will be available through measurement. The true structural mechanical impedance 
can be conveniently used for SHM of structural and aerospace components using the 
method proposed by Bhalla & Soh (2004 c).  
 
Fig. 20 compares the extracted structural impedance for an aluminium block 48x48x10mm, with 
and without considering the bond layer. Zs,eff,eq is derived  from the experimentally obtained 
admittance signatures (Bhalla & Soh, 2004b, c) followed by Zs,eff, using Eq. (90). It is observed that 
the ignoring the bond layer tends to overestimate the structural true impedance. This is because 
the bond layer offers additional impedance on account of its own stiffness, damping and inertia. 
Solving the inverse problem assuming perfect bond results into impedance “apparent ” at the 
patch ends, i.e with bond layer included . On the other hand, using the proposed formulations 
eliminates the effect of the bond layer and hence the impedance gets reduced. To determine the 
true impedance using the previous model would have demanded solving 4th order differential 
Eq., which is circumvented by the new simplified model.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 20. Considering influence of bond layer to extract structural mechanical impedance. 
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simplicity of application for solving the inverse problem. As pointed out above, it is 
computationally very difficult to obtain the true structural impedance Zs,eff  from Zs,eff,eq, using 
the previous model for adhesively bonded PZT patches. On the other hand, using the new 
simplified model, the true structural impedance can be directly determined, from Eq. (48) as, 
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Zs,eff,eq can be obtained from the measured G and B directly using the equations derived by 
Bhalla & Soh (2004c) for use in Eq. (90) above. No modelling is required for the host 
structure or the bond layer The finite element modelling done in the previous section was 
solely for model verification purpose only and not required in the actual applications where 
G and B will be available through measurement. The true structural mechanical impedance 
can be conveniently used for SHM of structural and aerospace components using the 
method proposed by Bhalla & Soh (2004 c).  
 
Fig. 20 compares the extracted structural impedance for an aluminium block 48x48x10mm, with 
and without considering the bond layer. Zs,eff,eq is derived  from the experimentally obtained 
admittance signatures (Bhalla & Soh, 2004b, c) followed by Zs,eff, using Eq. (90). It is observed that 
the ignoring the bond layer tends to overestimate the structural true impedance. This is because 
the bond layer offers additional impedance on account of its own stiffness, damping and inertia. 
Solving the inverse problem assuming perfect bond results into impedance “apparent ” at the 
patch ends, i.e with bond layer included . On the other hand, using the proposed formulations 
eliminates the effect of the bond layer and hence the impedance gets reduced. To determine the 
true impedance using the previous model would have demanded solving 4th order differential 
Eq., which is circumvented by the new simplified model.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 20. Considering influence of bond layer to extract structural mechanical impedance. 

 
7. Conclusions 

This chapter has rigorously addressed the problem of incorporating the presence of 
adhesive layer in the electro-mechanical impedance modeling. The treatment presented is 
generic in nature and not restricted to beam structures alone as in the case of Crawley and 
de Luis (1987) and Sirohi and Chopra (2000). Besides, dynamic equilibrium of the system 
has been considered rather than relying on equivalent length static coefficients. The 
formulations have been extended to 2D effective impedance based model and have been 
experimentally verified. Hence, the treatment is more general, rigorous and accurate. The 
bond layer can significantly influence structural identification if not carefully accounted for. 
This chapter has also presented the development of a simplified impedance model 
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incorporating the shear lag effect into electro-mechanical admittance formulations. The 
results of the model have been compared with those of the Bhalla & Soh’s (2004d) shear lag 
impedance model. Although far simplified, the model is found to predict the conductance 
and the susceptance signatures in close proximity with those predicted by the model of 
Bhalla & Soh (2004d). The advantages of the new model are quite apparent. This model 
simplifies the complex shear lag phenomenon associated with the force transmission 
between the PZT patch and the host structure bonded to each other by the adhesive bond 
layer. It enables computing the true mechanical impedance of the structure from the 
measured experimental data alone, thus circumventing the necessity of preparing a model 
of the host structure or the bond layer.  
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