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Seismic model-based inversion using Matlab

Emilson Pereira Leite
Institute of Geosciences — University of Campinas
Brazil

1. Introduction

This chapter presents a workflow to invert post-stack seismic reflection data into acoustic
impedance through the sequential use of several Matlab® codes. Acoustic impedance is
defined as the product of density and seismic velocity and, as such, it is an intrinsic physical
property of rocks. This physical property is closely related to variables that are of
fundamental importance in the context of hydrocarbon reservoir characterization, such as
lithology, porosity and, in some cases, water or oil saturation.

The basic premise of the vast majority of seismic inversion methods is the local validity of
the 1-D convolutional model. Recursive methods were developed first in the late 70s (e.g.
Lavergne and Willm, 1977; Lindseth, 1979) while sparse-spike methods were developed in
the 80s. The later consists of techniques that use an additional premise that the reflections
occur as sparsely distributed spikes within a layered Earth (e.g. Russell, 1988). Nowadays
both methods are still widely jointly used even in sophisticated commercial seismic
processing packages. Two well known methods that fall in this category are the L;-norm
sparse-spike inversion (e.g. Sacchi and Ulrych, 1996) and the maximum likelihood inversion
(e.g. Hampson and Russell, 1988). When the sparse-spike inversion is constrained by a low-
frequency model derived from acoustic impedance well logs or geologic models, it is
commonly referred to as model-based inversion (Russel, 1988).

The idea of the proposed workflow is to apply a L1-norm sparse-spike inversion algorithm
in the time domain, followed by a recursive inversion performed in the frequency domain.
A low-frequency impedance model estimated at well-logs is incorporated as constraints
during the recursive process. While it is clear that a similar inversion methodology can
readily be applied using commercial packages, there is no consistent workflow designed for
this type of application in low-cost scientific platforms such as Matlab. Therefore, the
processing and visualization tools presented here are potentially useful especially for
academic users of seismic data aiming at reservoir characterization.

2. Seismic-Well Tie

Before applying seismic inversion, an accurate depth-to-time conversion must be performed
in order to make the vertical scale of the well log Al data match the vertical scale of the
seismic data so as to allow spatial correlation. This conversion is carried out by using the
sonic log and the initial two-way travel time for the first log sample that provides the
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highest correlation coefficient between synthetic and observed trace. This is commonly
known as seismic-well tie (e.g White and Hu, 1998).

Synthetic traces are calculated using the convolutional model given by Equation 1. This
requires knowledge of the wavelet that represents the seismic pulse. By writing Equation 1
as a linear system and solving for w(t), a deterministic wavelet extraction is conducted
(Broadhead, 2008).

3. Model-Based Seismic Inversion

The fundamental premises behind all seismic inversion methods in the context of this work
are: (i) the Earth can be represented locally by a stack of plane and parallel layers with
constant physical properties; (ii) the seismic trace s(t) can be represented by the convolution
of the reflectivity coefficient series r(t) with a band-limited wavelet w(t) and the addition of a
random noise 7(t):

s(2) = r() * w(t) + n(t) . @)

For zero incident angles, r(t) is directly related to the contrast in the acoustic impedance (Al)
of superposed layers through a simple equation that, after some algebraic manipulations
and mathematical approximations, leads to the expression

M
Al = Al exp[2z p,j, (2)

Jj=2

which is the equation used in practice for recursive inversion with the aim of transform
reflectivities into impedances. Al; is the known acoustic impedance in the top layer and Aly
is that of the Mt layer. r; is the reflection coefficient of the jth layer. This approximation is

valid for most of the practical cases where r; < |0.3| (e.g. Berteussen & Ursin, 1983).

The low-frequency AI model is obtained by estimating the Al values over the entire seismic
volume through ordinary kriging of the Al values at the wells. The Al values at the wells are
obtained by simple multiplication of the measured density values and the inverted sonic
logs (i.e. interval transit time). For a properly usage of the recursive inversion, the seismic
traces should be deconvolved into reflectivity series as suggested by Equation 2. To
accomplish that, one has to apply a constrained sparse-spike optimization procedure that
minimizes the objective function

2

il 1
J(r)=a§‘rj‘+EH;(s—Wr) (3)

using, for example, a conjugate-gradient algorithm. The first term of Equation 3 minimizes
the Li-norm of the reflectivities where « controls the sparsity of the solution. The second
term minimizes the difference between the synthetic seismic traces (Wr) and the observed
traces (s). W is a wavelet coefficient matrix and o is the standard deviation of the seismic
data noise.
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After estimating r from the seismic amplitudes, then r is inverted into Al according to the
following sequential steps (Ferguson and Margrave, 1996):

(1) compute the linear trend of a spatial correspondent Al vector and subtract it, obtaining a
residual Al,.s vector;

(2) compute the Fourier spectra of Al;

(3) apply Equation (2) to the reflectivity series, obtaining a relative Al vector;

(4) compute the Fourier spectra of Al.j;

(5) determine a scalar o to match the mean power of Al and Al

(6) multiply the spectra of Al by o;

(7) low-pass filter Al,.; and add to the result of step (6);

(8) inverse Fourier transform the result of step (7); and

(9) add the low-frequency trend from step (1) to the result of step (8).

For the particular dataset used in this work, the wells are sparsely distributed through the
oil field (Figure 1). Thus, the low-frequency trend of step (1) was extracted from the spatial
correspondent Al trace estimated by kriging. A low cut-off for coupling the low frequency
trend and a high cut-off is defined by finding where the energy content of the original
seismic traces approaches to zero in the amplitude spectrum. This characterizes the band-
limited nature of the seismic data. The basic workflow is presented in Figure 2.
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Fig. 1. 3D seismic data and spatial location of wells. Size of 3D matrix is 301 x 61 x 375. In-
lines and cross-lines are spaced of about 13 and 27 m, respectively. Time interval is equal to
4 ms.
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Fig. 2. Flowchart of the proposed inversion methodology. Each AI log is obtained by
multiplying density log and inverted sonic log.

4. Matlab Algorithms

Seismic-well tie is conducted using functions from Seislab 3.01!. The core functions are
I_depth2time and s_wavextra. The former computes two-way travel time by inverting and
integrating sonic log starting from a given depth and a given time. Because at the beginning
of the process we do not know the correct depth/time pair to be used, a range of values
must be tested. The later performs deterministic wavelet extraction, as long as a reflectivity
series and an observed seismic trace around the well are provided. The reflectivity series is
obtained by rearranging Equation 2 and solving for each r(t). s_wavextra also outputs a
synthetic trace and the correlation coefficient with respect to the observed trace. The best
depth/time pair is that for which this correlation coefficient is higher.

Sparse-spike inversion is applied by using the function sparse_decon from SeismicLab
package?. This function performs L; regularization with Iterative Reweighted Least Squares
(Sacchi, 1997). In this step, a reflectivity series is obtained from an observed seismic trace
and a wavelet for each vertical column of seismic data.

1 http:/ /www.mathworks.fr/ matlabcentral/fileexchange /15674
2 http:/ /www-geo.phys.ualberta.ca/saig/SeismicLab/index.html
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To generate low-frequency models from known Al values at the wells, ordinary kriging is
applied using mGstat® function krig. mGstat is a very flexible package for geoestatistical
analysis and also provides interfaces to GSTAT, VISIM and SGeMS.

In the last step, recursive inversion is employed in order to map Al(t) from r(t). The blint
function from CREWES* group is used. This function calculates the summation that appears
in Equation 2 in the frequency domain. Domain conversion is applied by using Matlab®
native functions fft and ifft with few adaptations. Low and high frequency cut-offs must be
provided and the integration filter rolls off as a smoth gaussian. This is not a problem
because the seismic data is inherently of band-limited nature, so the task of the interpreter is
to find these cut-offs.

To incorporate the low-frequency Al model, firstly log trends are subtracted from the Al
logs. These log trends correspond to the lowest frequencies of the Al spectrum and they are
simply fitted polynomials whose coefficientes are calculated by using native Matlab® polyfit
function. Its value for a given time is obtained by polyval, which is also a native Matlab®
function. Having removed the trends, the logs are converted to the frequency domain and a
low-pass filters are applied to them. Finally, the results are merged with the band-limited
outputs from blint by using mergetrcs function. After merging, the output log is converted
back to time domain and the log trends are restored.

Visualizations can be performed using functions s_wplot and s_cplot for 2D seismic data,
s_volume_browser for 3D seismic data and I_plot for well log data. These are powerful
functions found in SeisLab.

5. Application Example

An example of depth-to-time conversion for Well 2 can be visualized in Figure 3, where it is
shown the acoustic impedance log, the estimated reflectivity, the synthetic traces and the
observed traces. Seismic-well ties were conducted by adjusting five traces around each well
and retaining the local means. A global mean was calculated and used for inversion of the
traces away from the wells.

Figure 4 shows the spectral content of the reflectivity, the wavelet, the synthetic traces and
the observed traces. The spectral content of the other four wells is similar and low and high
cut-offs were defined as 5 Hz and 60 Hz respectively.

In this case, the hydrocarbon reservoir top and base is estimated from well log markers
allowing the definition of a minimum and maximum time values, thus establishing vertical
boundaries for the seismic 3D grid. Lateral boundaries is defined so as to embrace wells that
were previously found to have some hydrocarbon content. The 3D Al inverted model is
shown in Figure 5. The average correlation coefficient of a synthetic seismic model
calculated from this inverted model and the observed seismic data is equal to 0.95.

3 http:/ /mgstat.sourceforge.net/
4 http:/ /www.crewes.org/
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Fig. 3. Example of seismic-well tie for Well 2. (a) Impedance log converted to two-way time
and resampled to the interval of 4 ms (values in m/s x g/cm3 x 104). (b) Reflectivity. (c)
Synthetic traces. (d) Observed traces.
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Fig. 4. Normalized Amplitude spectrum of (a) reflectivity; (b) wavelet; (c) synthetic traces;
and (d) observed traces near Well 2.
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Fig. 5. Al obtained through the proposed inversion methodology.
Color bar isinm/s x g/cmd.

6. Conclusions and recommendations

A simple methodology for mapping acoustic impedance and effective porosity from 3D
seismic amplitude data using Matlab® was presented. This methodology can be used for a
quick evaluation of reservoir properties, especially when powerful commercial programs
are not available. An example with real data was also presented, showing that consistent 3D
acoustic impedance models can be obtained if well-logs and 3D seismic data are available. A
further improvement would be to obtain the low-frequency model by taking into account
stratigraphic horizons, i.e., trend surfaces extracted from seismic data. This can be
performed through universal kriging, or kriging with a trend. In Matlab®, universal kriging
can be applied, for example, from mGstat toolbox. The use of stratigraphic horizons would
allow the creation of low-frequency models that are spatially more consistent with the
geological layering of a given reservoir area. Hopefully a Graphical User Interface will be
developed in the near future integrating all this functions building a complete framework
for performing seismic model-based inversion.
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