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1. Introduction

Rack feeders represent the commonly used handling systems for the automated operation of
high-bay rackings. To further increase the handling capacity by shorter transport times, con-
trol measures are necessary for the reduction of excited structural oscillations, see also Asche-
mann & Ritzke (2009). One possible approach is given by flatness-based feedforward control,
where the desired control inputs are determined by dynamic system inversion using the de-
sired trajectories for the flat outputs as in Bachmayer et al. (2008) and M. Bachmayer & Ulbrich
(2008). However, both publications consider only a constant mass position in vertical direc-
tion on an elastic beam without any feedback control. A variational approach is presented in
Kostin & Saurin (2006) to compute an optimal feedforward control for an elastic beam. Unfor-
tunately, feedforward control alone is not sufficient to guarantee small tracking errors when
model uncertainty is present or disturbances act on the system. For this reason in this con-
tribution a model predictive control (MPC) design is presented for fast trajectory control. In
general, at model predictive control the optimal input vector is mostly calculated by minimis-
ing a quadratic cost function as, e.g., in Wang & Boyd (2010) or Magni & Scattolini (2004). In
contrast, the here considered MPC approach aims at reducing future state errors, see Jung &
Wen (2004), and allows for a relatively small computational effort as required in a real-time
implementation. Hence, the proposed MPC algorithm is well suited for systems with fast
dynamics, e.g., a high-speed linear axis with pneumatic muscles as presented in Schindele &
Aschemann (2008) or high-speed rack feeders as in the given case. A further attractive char-
acteristic of this MPC approach is its applicability to linear as well as nonlinear systems.
For the experimental investigation of modern control approaches to active oscillation damp-
ing as well as tracking control, a test rig of a high-speed rack feeder has been build up at the
Chair of Mechatronics at the University of Rostock, see Figure 1. The experimental set-up
consists of a carriage driven by an electric DC servo motor via a toothed belt, on which an
elastic beam as the vertical supporting structure is mounted. On this beam structure, a cage
with variable load mass is guided relocatably in vertical direction. This cage with the coor-
dinate yK(t) in horizontal direction and xK(t) in vertical direction represents the tool center
point (TCP) of the rack feeder that should track desired trajectories as accurate as possible.
The movable cage is driven by a tooth belt and an electric DC servo motor as well. The angles
of the actuators are measured by internal angular transducers, respectively. Additionally, the
horizontal position of the carriage is detected by a magnetostrictive transducer. Both axes are
operated with a fast underlying velocity control on the current converter. Consequently, the
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Fig. 1. Experimental set-up of the high-speed rack feeder (left) and the corresponding elastic
multibody model (right).

corresponding velocities deal as new control input, and the implementational effort is tremen-
dously reduced as compared to the commonly used force or torque input, like in Staudecker
et al. (2008), where passivity techniques were employed for feedback control of a similar set-
up. Two strain gauges are used to determine the bending deformation of the elastic beam.
Basis of the control design for the rack feeder is a planar elastic multibody system, where
for the mathematical description of the bending deflection of the elastic beam a Ritz ansatz
is introduced, covering for instance the first bending mode. The decentralised feedforward
and feedback control design for both axes is performed employing a linearised state space
representation, respectively. Given couplings between both axes are taken into account by the
gain-scheduling technique with the normalised vertical cage position as scheduling param-
eter, see also Aschemann & Ritzke (2010). This leads to an adaptation of the whole control
structure for the horizontal axis. The capability of the proposed control concept is shown by
experimental results from the test set-up with regard to tracking behaviour and damping of
bending oscillations. Especially the artificial damping introduced by the closed control loop
represents a main improvement. The maximum velocity of the TCP during the tracking ex-
periments is approx. 2.5 m/s.

2. Control-oriented modelling of the mechatronic system

Elastic multibody models have proven advantageously for the control-oriented modelling of
flexible mechanical systems. For the feedforward and feedback control design of the rack
feeder a multibody model with three rigid bodies - the carriage (mass mS), the cage movable
on the beam structure (mass mK , mass moment of inertia θK), and the end mass at the tip of
the beam (mass mE) - and an elastic Bernoulli beam (density ρ, cross sectional area A, Youngs
modulus E, second moment of area IzB, and length ℓ) is chosen. The varying vertical position
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xK(t) of the cage on the beam is denoted by the dimensionless system parameter

κ (t) =
xκ (t)

l
. (1)

The elastic degrees of freedom of the beam concerning the bending deflection can be described
by the following Ritz ansatz

v (x, t) = ¯̄v1 (x) v1 (t) =

[

3

2

( x

l

)2
−

1

2

( x

l

)3
]

v1 (t) , (2)

which takes into account only the first bending mode. The vector of generalised coordinates
results in

q (t) =

[

yS (t)
v1 (t)

]

. (3)

The nonlinear equations of motion can be derived either by Lagrange’s equations or, advan-
tageously, by the Newton-Euler approach, cf. Shabana (2005). After a linearisation for small
bending deflections, the equations of motion can be stated in M-D-K form

Mq̈ (t) +Dq̇ (t) +Kq (t) = h · [FSM (t)− FSR (ẏS (t))] . (4)

The symmetric mass matrix is given by

M =

[

mS + ρAl + mK + mE
3
8 ρAl + mKκ2

2 [3 − κ] + mE
3
8 ρAl + mKκ2

2 [3 − κ] + mE m22

]

, (5)

with m22 = 33
140 ρAl +

6ρIzB

5l + mKκ2

4 [3 − κ]2 + 9θKκ2

l2

[

1 − κ + κ2

4

]

+ mE. The damping matrix,

which is specified with stiffness-proportional damping properties, and the stiffness matrix
become

D =

[

0 0

0 3kd EIzB

l3

]

, (6)

K =

[

0 0

0 3EIzB

l3 −
3
8 ρAg −

3mK gκ3

l

[

1 + 3κ2

20 −
3κ
4

]

−

6mE g
5l

]

. (7)

The input vector of the generalised forces, which accounts for the control input as well as the
disturbance input, reads

h =
[

1 0
]T

. (8)

The electric drive for the carriage is operated with a fast underlying velocity control on the
current converter. The resulting dynamic behaviour is characterised by a first-order lag system
with a time constant T1y

T1y ÿS (t) + ẏS (t) = vS (t) . (9)

This differential equation replaces now the equation of motion for the carriage in the mechan-
ical system model, which leads to a modified mass matrix as well as a modified damping
matrix

My =

[

T1y 0
3
8 ρAl + mKκ2

2 [3 − κ] + mE m22

]

, (10)
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Dy =

[

1 0

0 3kd EIzB

l3

]

. (11)

The stiffness matrix K = Ky and the input vector for the generalised forces h = hy, however,
remain unchanged. Hence, the equations of motion are given by

q̈ = −M−1
y Kyq −M−1

y Dyq̇ +M−1
y hyvS . (12)

For control design, the system representation is reformulated in state space form

ẋy =

[
q̇

q̈

]

=

[
0 I

−M−1
y Ky −M−1

y Dy

]

︸ ︷︷ ︸

Ay

[
q

q̇

]

︸ ︷︷ ︸

xy

+

[
0

M−1
y hy

]

︸ ︷︷ ︸

by

vS
︸︷︷︸

uy

. (13)

The design model for the vertical movement of the cage can be directly stated in state space
representation. Here, an underlying velocity control is employed on the current converter,
which is also described by a first-order lag system

T1x ẍK (t) + ẋK (t) = vK (t) . (14)

The corresponding state space description follows immediately in the form

ẋx =

[
ẋK

ẍK

]

=

[
0 1

0 −
1

T1x

]

︸ ︷︷ ︸

Ax

[
xK

ẋK

]

︸ ︷︷ ︸

xx

+

[
0
1

T1x

]

︸ ︷︷ ︸

bx

vK
︸︷︷︸

ux

. (15)

Whereas the state space respresentation for the horizontal y-axis depends on the varying sys-
tem parameter κ(t), the description of the x-axis is invariant. A gain-scheduling, hence, is
necessary only for the horizontal axis in y-direction.

3. Decentralised control design

As for control, a decentralised approach is followed, at which the coupling of the vertical
cage motion with the horizontal axis is taken into account by gain-scheduling techniques. For
the control of the cage position xK(t) a simple proportional feedback in combination with
feedforward control, which is based on the inverse transfer function of this axis, is sufficient

vK (t) = KR (xKd (t)− xK (t)) + ẋKd (t) + T1x ẍKd (t) . (16)

For this purpose, the desired trajectory xKd(t) and its first two time derivatives are available
from trajectory planning. The design of the state feedback for the horizontal motion is carried
out by the MPC approach, which is explained in the following chapter.
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Fig. 2. Implementation of the control structure.

4. Model Predictive Control

The main idea of the control approach consists in a minimisation of a future tracking error
in terms of the predicted state vector based on the actual state and the desired state vector
resulting from trajectory planning, see Lizarralde et al. (1999), Jung & Wen (2004). The min-
imisation is achieved by repeated approximate numerical optimisation in each time step, in
the given case using the Newton-Raphson technique. The optimisation is initialised in each
time step with the optimisation result of the preceding time step in form of the input vector.
The MPC-algorithm is based on the following discrete-time state space representation

xk+1 = Axk + buk , (17)

yk = c
T
xk , (18)

with the state vector xk ∈ R
n, the control input uk ∈ R and the output vector yk ∈ R.

The constant M specifies the prediction horizon TP as a multiple of the sampling time ts, i.e.
TP = M · ts. The predicted input vector at time k becomes

uk,M =
[

u
(k)
1 , ..., u

(k)
M

]T
, (19)

www.intechopen.com



Model Predictive Control188

with uk,M ∈ R
M. The predicted state vector at the end of the prediction horizon φM(xk,uk,M)

is obtained by repeated substitution of k by k + 1 in the discrete-time state equation (17)

xk+2 = Axk+1 + buk+1 = A2xk +Abuk + buk+1

...

xk+M = AMxk +AM−1buk +AM−2buk−1 + . . . + buk+M−1

= φM(xk,uk,M) .

(20)

The difference of φM(xk,uk,M) and the desired state vector xd yields the final control error

eM,k = φM(xk,uk,M)− xd , (21)

i.e. to the control error at the end of the prediction horizon. The cost function to be minimised
follows as

JMPC =
1

2
· eT

M,keM,k , (22)

and, hence, the necessary condition for an extremum can be stated as

∂JMPC

∂eM,k
= eM,k

!
= 0 . (23)

A Taylor-series expansion of (23) at uk,M in the neighbourhood of the optimal solution leads
to the following system of equations

0 = eM,k +
∂φM

∂uk,M
∆uk,M + T.h.O.. (24)

The vector ∆uk,M denotes the difference which has to be added to the input vector uk,M to
obtain the optimal solution. The n equations (24) represent an under-determined set of equa-
tions with m · M unknowns having an infinite number of solutions. An unique solution for
∆uk,M can be determined by solving the following L2-optimisation problem with (24) as side
condition

J =
1

2
· ∆uT

k,M∆uk,M + λT

(

eM,k +
∂φM

∂uk,M
∆uk,M

)

. (25)

Consequently, the necessary conditions can be stated as

∂J

∂∆uk,M

!
= 0 = ∆uk,M +

(
∂φM

∂uk,M

)T

λ,

∂J

∂λ

!
= 0 = eM,k +

∂φM

∂uk,M
∆uk,M,

(26)

which results in eM,k

eM,k =
∂φM

∂uk,M

(
∂φM

uk,M

)T

︸ ︷︷ ︸

S(φM ,uk,M)

λ . (27)

If the matrix S
(
φM,uk,M

)
is invertible, the vector λ can be calculated as follows

λ = S−1
(
φM,uk,M

)
eM,k . (28)
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An almost singular matrix S
(

φM,uk,M

)

can be treated by a modification of (28)

λ =
[

µI +S
(

φM,uk,M

)]−1
eM,k , (29)

where I denotes the unity matrix. The regularisation parameter µ > 0 in (29) may be chosen
constant or may be calculated by a sophisticated algorithm. The latter solution improves
the convergence of the optimisation but increases, however, the computational complexity.
Solving (26) for ∆uk,M and inserting λ according to (28) or (29), directly yields the L2-optimal
solution

∆uk,M = −

(

∂φM

∂uk,M

)T

S−1
(

φM,uk,M

)

eM,k = −

(

∂φM

∂uk,M

)†

eM,k . (30)

Here,
(

∂φM

∂uk,M

)†
denotes the Moore-Penrose pseudo inverse of

∂φM

∂uk,M
. The overall MPC-

algorithm can be described as follows:
Choice of the initial input vector u0,M at time k = 0, e.g. u0,M = 0, and repetition of steps a) -
c) at each sampling time k ≥ 0:

a) Calculation of an improved input vector vk,M according to

vk,M = uk,M − ηk

(

∂φM

∂uk,M

)†

eM,k . (31)

The step width ηk can be determined with, e.g., the Armijo-rule.

b) For the calculation of uk+1,M the elements of the vector vk,M have to be shifted by one
element and the steady-state input ud corresponding to the final state has to be inserted
at the end

uk+1,M =

[

0((M−1)×1)

1

]

ud +

[

0((M−1)×1) I(M−1)

0 0(1×(M−1))

]

vk,M. (32)

In general, the steady-state control input ud can be computed from

xd = Axd + bud. (33)

Alternatively, the desired input vector ud can be calculated by an inverse system model.
If the system is differentially flat, see Fliess et al. (1995) the desired input ud can be cal-
culated exactly by the flat system output and a finite number of its time derivative. For
non-flat outputs -as in the given case- the approach presented in chapter 4.4 is useful.

c) The first element of the improved input vector vk,M is applied as control input at time k

uk =
[

1 0(1×(M−1))

]

vk,M . (34)

In the proposed algorithm only one iteration is performed per time step. A similar approach
using several iteration steps is described in Weidemann et al. (2004). An improvement of
the trajectory tracking behaviour can be achieved if an input vector resulting from an inverse
system model is used as initial vector for the subsequent optimisation step instead of the last
input vector. The slightly modified algorithm can be stated as follows
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a) Calculation of the ideal input vector u
(d)
k,M by evaluating an inverse system model with

the specified reference trajectory as well as a certain number β ∈ N of its time deriva-
tives

u
(d)
k,M = u

(d)
k,M

(

yd, ẏd, ...,
(β)
y

d

)

. (35)

b) Calculation of the improved input vector vk,M based on the equation

vk,M = u
(d)
k,M − ηk

(

∂φM

∂uk,M

)†

eM,k . (36)

c) Application of the first element of vk,M to the process

uk =
[

1 0(1×(M−1))

]

vk,M . (37)

If the reference trajectory is known in advance, the according reference input vector u
(d)
k,M can

be computed offline. Consequently, the online computational time remains unaffected.

4.1 Numerical calculations

The analytical computation of the Jacobian
∂φM

∂uk,M
becomes increasingly complex for larger

values of M. Therefore, a numerical approach is preferred taking advantage of the chain rule
with i = 0, ..., M − 1

∂φM

∂u
(k)
i+1

=
∂φM

∂xk+M−1
·

∂xk+M−1

∂xk+M−2
· . . . ·

∂xk+i+2

∂xk+i+1
·

∂xk+i+1

∂u
(k)
i+1

. (38)

In this way, the Jacobian can be computed as follows

∂φM

∂uk,M
= [AM−1b,AM−2b, ...,Ab, b] . (39)

For the inversion of the symmetric and positive definite matrix S
(

φM,uk,M

)

=

∂φM

∂uk,M

(

∂φM

∂uk,M

)T

the Cholesky-decomposition has proved advantageous in terms of compu-

tational effort.

4.2 Choice of the MPC design parameters

The most important MPC design parameter is the prediction horizon TP, which is given as the
product of the sampling time ts and the constant value M. Large values of TP lead to a slow
and smooth transient behaviour and result in a robust and stable control loop. For fast trajec-
tory tracking, however, a smaller value TP is desirable concerning a small tracking error. The
choice of the sampling time ts is crucial as well: a small sampling time is necessary regard-
ing both discretisation error and stability; however, the MPC-algorithm has to be evaluated
in real-time within the sampling inverval. Furthermore, the smaller ts, the larger becomes M

for a given prediction horizon, which in turn increases the computational complexity of the
optimisation step. Consequently, a system-specific trade-off has to be made for the choice of
M and ts. This paper follows the moving horizon approach with a constant prediction hori-
zon and, hence, a constant dimension m · M of the corresponding optimisation problem in
constrast to the shrinking horizon approach according to Weidemann et al. (2004).
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TP
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x0
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x

tt s

φM(x  , u     )1 1,M

x1

eM,1

t sM

Predicted State

xd,0

xd,1

Fig. 3. Design parameters.

4.3 Input constraints

One major advantage of predictive control is the possibility to easily account for input con-
straints, which are present in almost all control applications. To this end, the cost function can
be extended with a corresponding term

h(u
(k)
j ) =















0 umin ≤ u
(k)
j ≤ umax

g1(u
(k)
j ) for u

(k)
j > umax

g2(u
(k)
j ) u

(k)
j < umin

, (40)

which has to be evaluated componentwise, i.e. for each input variable at each sampling time.
Thus, the contribution of the additional input constraints depending on uk,M is given by

z(uk,M) =
M

∑
j=1

h(u
(k)
j ). (41)

Instead of eM,k, the extended vector
[

e
T
M,k, z

]T
has to be minimised in the MPC-algorithm.

4.4 MPC of the horizontal cage position

The state space representation for the cage position control in y-direction design is given by
(13). The discrete-time representation of the continous-time system is obtained by Euler dis-
cretisation

xy,k+1 =
(

I + ts ·Ay (κ)
)

xy,k + ts · by (κ) uy,k. (42)
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Using this simple discretisation method, the computational effort for the MPC-algorithm can
be kept acceptable. By the way, no significant improvement could be obtained for the given
system with the Heun discretisation method because of the small sampling time ts = 3 ms.
Only in the case of large sampling times, e.g. ts > 20 ms, the increased computational effort
caused by a sophisticated time discretisation method is advantageous. Then, the smaller dis-
cretisation error allows for less time integration steps for a specified prediction horizon, i.e. a
smaller number M. As a result, the smaller number of time steps can overcompensate the
larger effort necessary for a single time step.
The ideal input ud(t) can be obtained in continous time as function of the output variable

yK(t) = c
T
y xy(t) =

[

1 1
2 κ2 (3 − κ) 0 0

]

xy(t) , (43)

and a certain number of its time derivatives. For this purpose the corresponding transfer
function of the system under consideration is employed

YK (s)

Ud (s)
= c

T
y

(

sI −Ay
)−1

by =

(

b0 + b1 · s + b2 · s2
)

N (s)
. (44)

Obviously, the numerator of the control transfer function contains a second degree polynomial
in s, leading to two transfer zeros. This shows that the considered output yK(t) represents a
non-flat output variable that makes computing of the feedforward term more difficult. A pos-
sible way for calculating the desired input variable is given by a modification of the numerator
of the control transfer function by introducing a polynomial ansatz for the feedforward action
according to

Ud (s) =
[

kV0 + kV1 · s + . . . + kV4 · s4
]

YKd (s) . (45)

For its realisation the desired trajectory yKd(t) as well as the first four time derivatives are
available from a trajectory planning module. The feedforward gains can be computed from
a comparison of the corresponding coefficients in the numerator as well as the denominator
polynomials of

YK (s)

YKd (s)
=

(

b0 + . . . + b2 · s2
) [

kV0 + . . . + kV4 · s4
]

N (s)

=
bV0

(

kVj

)

+ bV1

(

kVj

)

· s + . . . + bV6

(

kVj

)

· s6

a0 + a1 · s + . . . + s4
(46)

according to

ai = bVi

(

kVj

)

, i = 0, . . . , n = 4 . (47)

This leads to parameter-dependent feedforward gains kVj = kVj(κ). It is obvious that due
the higher numerator degree in the modified control transfer function a remaining dynamics
must be accepted. Lastly, the desired input variable in the time domain is represented by

ud(t) = ud

(

ẏKd(t), ÿKd(t),
...
y Kd(t), y

(4)
Kd (t), κ

)

. (48)

To obtain the desired system states as function of the output trajectory the output equation
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Fig. 4. Desired trajectories for the cage motion: desired and actual position in horizontal
direction (upper left corner), desired and actual position in vertical direction (upper right
corner), actual velocity in horizontal direction (lower left corner) and actual velocity in vertical
direction (lower right corner).

and its first three time derivatives are considered. Including the equations of motion (12)
yields the following set of equations

yKd(t) = yS(t) +
1
2 κ2 (3 − κ) · v1(t), (49)

ẏKd(t) = ẏS(t) +
1
2 κ2 (3 − κ) · v̇1(t), (50)

ÿKd(t) = ÿS(t) +
1
2 κ2 (3 − κ) · v̈1(t) = ÿK (v1(t), ẏS(t), v̇1(t), ud(t), κ) , (51)

...
y Kd(t) =

...
y K (v1(t), ẏS(t), v̇1(t), ud(t), u̇d(t), κ) . (52)

Solving equation (49) to (52) for the system states results in the desired state vector

xd(t) =









ySd (yKd(t), ẏKd(t), ÿKd(t),
...
y Kd(t), ud(t), u̇d(t), κ)

v1d (ẏKd(t), ÿKd(t),
...
y Kd(t), ud(t), u̇d(t), κ)

ẏSd (ẏKd(t), ÿKd(t),
...
y Kd(t), ud(t), u̇d(t), κ)

v̇1d (ẏKd(t), ÿKd(t),
...
y Kd(t), ud(t), u̇d(t), κ)









. (53)

This equation still contains the inverse dynamics ud(t) and its time derivative u̇d. Substituting
ud for equation (48) and u̇d(t) for the time derivative of (48), which can be calculated analyti-
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cally, finally leads to

xd(t) =

















ySd

(

yKd(t), ẏKd(t), ÿKd(t),
...
y Kd(t), y

(4)
Kd (t), y

(5)
Kd (t), κ

)

v1d

(

yKd(t), ẏKd(t), ÿKd(t),
...
y Kd(t), y

(4)
Kd (t), y

(5)
Kd (t), κ

)

ẏSd

(

yKd(t), ẏKd(t), ÿKd(t),
...
y Kd(t), y

(4)
Kd (t), y

(5)
Kd (t), κ

)

v̇1d

(

yKd(t), ẏKd(t), ÿKd(t),
...
y Kd(t), y

(4)
Kd (t), y

(5)
Kd (t), κ

)

















. (54)
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Fig. 5. Tracking error ey (t) for the cage motion in horizontal direction.
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Fig. 6. Tracking error ex (t) for the cage motion in vertical direction.
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5. Experimental validation on the test rig

The benefits and the efficiency of the proposed control measures shall be pointed out by exper-
imental results obtained from the test set-up available at the Chair of Mechatronics, University
of Rostock. For this purpose, a synchronous four times continuously differentiable desired
trajectory is considered for the position of the cage in both x- and y-direction. The desired
trajectory is given by polynomial functions that comply with specified kinematic constraints,
which is achieved by taking advantage of time scaling techniques. The desired trajectory
shown in Figure 4 comprises a sequence of reciprocating motions with maximum velocities of
2 m/s in horizontal direction and 1.5 m/s in vertical direction. The resulting tracking errors

ey (t) = yKd (t)− yK (t) (55)

and
ex (t) = xKd (t)− xK (t) (56)

are depicted in Figure 5 and Figure 6. As can be seen, the maximum position error in y-
direction during the movements is about 6 mm and the steady-state position error is smaller
than 0.2 mm, whereas the maximum position error in x-direction is approx. 4 mm. Figure 7
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0.005
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t in s

v 1 in
 m

v1d
v1

Fig. 7. Comparison of the desired values v1d (t) and the actual values v1 (t) for the bending
deflection.

shows the comparison of the bending deflection measured by strain gauges attached to the
flexible beam with desired values. During the acceleration as well as the deceleration inter-
vals, physically unavoidable bending deflections could be noticed. The achieved benefit is
given by the fact the remaining oscillatons are negligible when the rack feeder arrives at its
target position. This underlines both the high model accuracy and the quality of the active
damping of the first bending mode. Figure 8 depicts the disturbance rejection properties due
to an external excitation by hand. At the beginning, the control structure is deactivated, and
the excited bending oscillations decay only due to the very weak material damping. After
approx. 2.8 seconds, the control structure is activated and, hence, the first bending mode is
actively damped. The remaining oscillations are characterised by higher bending modes that
decay with material damping. In future work, the number of Ritz ansatz functions shall be
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Fig. 8. Transient response after a manual excitation of the bending deflection: at first without
feedback control, after approx. 2.8 seconds with active control.

increased to include the higher bending modes as well in the active damping. The correspond-
ing elastic coordinates and their time derivatives can be determined by observer techniques.

6. Conclusions

In this paper, a gain-scheduled fast model predictive control strategy for high-speed rack feed-
ers is presented. The control design is based on a control-oriented elastic multibody system.
The suggested control algorithm aims at reducing the future tracking error at the end of the
prediction horizon. Beneath an active oscillation damping of the first bending mode, an accu-
rate trajectory tracking for the cage position in x- and y-direction is achieved. Experimental
results from a prototypic test set-up point out the benefits of the proposed control structure.
Experimental results show maximum tracking errors of approx. 6 mm in transient phases,
whereas the steady-state tracking error is approx. 0.2 mm. Future work will address an active
oscillation damping of higher bending modes as well as an additional gain-scheduling with
respect to the varying payload.
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